$$ \newcommand{\uex}{{u_{\small\mbox{e}}}} \newcommand{\half}{\frac{1}{2}} \newcommand{\tp}{\thinspace .} \newcommand{\Oof}[1]{\mathcal{O}(#1)} \newcommand{\x}{\boldsymbol{x}} \newcommand{\dfc}{\alpha} % diffusion coefficient \newcommand{\Ix}{\mathcal{I}_x} \newcommand{\Iy}{\mathcal{I}_y} \newcommand{\If}{\mathcal{I}_s} % for FEM \newcommand{\Ifd}{{I_d}} % for FEM \newcommand{\basphi}{\varphi} \newcommand{\baspsi}{\psi} \newcommand{\refphi}{\tilde\basphi} \newcommand{\xno}[1]{x_{#1}} \newcommand{\dX}{\, \mathrm{d}X} \newcommand{\dx}{\, \mathrm{d}x} \newcommand{\ds}{\, \mathrm{d}s} $$

« Previous
Next »

Table of contents

      What makes a differential equations nonlinear?
      Examples on linear and nonlinear differential equations
Introduction of basic concepts
      The scaled logistic ODE
      Linearization by explicit time discretization
      An implicit method: Backward Euler discretization
      Detour: new notation
      Exact solution of quadratic nonlinear equations
      How do we pick the right solution in this case?
      Linearization
      Picard iteration
      The algorithm of Picard iteration
      The algorithm of Picard iteration with classical math notation
      Stopping criteria
      A single Picard iteration
      Implicit Crank-Nicolson discretization
      Linearization by a geometric mean
      Newton's method
      Newton's method with an iteration index
      Using Newton's method on the logistic ODE
      Using Newton's method on the logistic ODE with typical math notation
      Relaxation may improve the convergence
      Implementation; part 1
      Implementation; part 2
      Implementation; part 3
      Experiments: accuracy of iteration methods
      Experiments: number of iterations
      The effect of relaxation can potentially be great!
      Generalization to a general nonlinear ODE
      Explicit time discretization
      Backward Euler discretization
      Picard iteration for Backward Euler scheme
      Manual linearization for a given \( f(u,t) \)
      Computational experiments with partially implicit treatment of \( f \)
      Newton's method for Backward Euler scheme
      Crank-Nicolson discretization
      Picard and Newton iteration in the Crank-Nicolson case
      Systems of ODEs
      A Backward Euler scheme for the vector ODE \( u^{\prime}=f(u,t) \)
      Example: Crank-Nicolson scheme for the oscillating pendulum model
      The nonlinear \( 2\times 2 \) system
Systems of nonlinear algebraic equations
      Notation for general systems of algebraic equations
      Picard iteration
      Algorithm for relaxed Picard iteration
      Newton's method for \( F(u)=0 \)
      Algorithm for Newton's method
      Newton's method for \( A(u)u=b(u) \)
      Comparison of Newton and Picard iteration
      Combined Picard-Newton algorithm
      Stopping criteria
      Combination of absolute and relative stopping criteria
      Example: A nonlinear ODE model from epidemiology
      Implicit time discretization
      A Picard iteration
      Newton's method
      Actually no need to bother with nonlinear algebraic equations for this particular model...
Linearization at the differential equation level
      PDE problem
      Explicit time integration
      Backward Euler scheme
      Picard iteration for Backward Euler scheme
      Picard iteration with alternative notation
      Backward Euler scheme and Newton's method
      Calculation details of Newton's method at the PDE level
      Calculation details of Newton's method at the PDE level
      Result of Newton's method at the PDE level
      Similarity with Picard iteration
      Using new notation for implementation
      Combined Picard and Newton formulation
      Crank-Nicolson discretization
      Arithmetic means: which variant is best?
      Solution of nonlinear equations in the Crank-Nicolson scheme
Discretization of 1D stationary nonlinear differential equations
      Relevance of this stationary 1D problem
      Finite difference discretizations
      Finite difference scheme
      Boundary conditions
      The structure of the equation system
      The equation for the Neumann boundary condition
      The equation for the Dirichlet boundary condition
      Picard iteration
      Details: without Dirichlet condition equation
      Details: with Dirichlet condition equation
      Newton's method; Jacobian (1)
      Newton's method; Jacobian (2)
      Newton's method; nonlinear equations at the end points
      Galerkin-type discretizations
      The nonlinear algebraic equations
      Fundamental integration problem: how to deal with \( \int f(\sum_kc_k\baspsi_k)\baspsi_idx \) for unknown \( c_k \)?
      We choose \( \baspsi_i \) as finite element basis functions
      The group finite element method
      What is the point with the group finite element method?
      Simplified problem for symbolic calculations
      Integrating very simple nonlinear functions results in complicated expressions in the finite element method
      Application of the group finite element method
      Lumping the mass matrix gives finite difference form
      Alternative: evaluation of finite element terms at nodes gives great simplifications
      Numerical integration of nonlinear terms
      Finite elements for a variable coefficient Laplace term
      Numerical integration at the nodes
      Summary of finite element vs finite difference nonlinear algebraic equations
      Real computations utilize accurate numerical integration
      Picard iteration defined from the variational form
      The linear system in Picard iteration
      The equations in Newton's method
      Useful formulas for computing the Jacobian
      Computing the Jacobian
      Computations in a reference cell \( [-1,1] \)
      How to handle Dirichlet conditions in Newton's method
Multi-dimensional PDE problems
      Backward Euler and variational form
      Nonlinear algebraic equations arising from the variational form
      A note on our notation and the different meanings of \( u \) (1)
      A note on our notation and the different meanings of \( u \) (2)
      Newton's method (1)
      Newton's method (2)
      Non-homogeneous Neumann conditions
      Robin condition
      Finite difference discretization in a 2D problem
      Picard iteration
      Newton's method: the nonlinear algebraic equations
      Newton's method: the Jacobian and its sparsity
      Newton's method: details of the Jacobian
      Good exercise at this point: \( J_{i,j,i,j} \)
Continuation methods
      Continuation method: solve difficult problem as a sequence of simpler problems
      Example on a continuation method

« Previous
Next »