$$ \newcommand{\uex}{{u_{\small\mbox{e}}}} \newcommand{\half}{\frac{1}{2}} \newcommand{\tp}{\thinspace .} \newcommand{\Oof}[1]{\mathcal{O}(#1)} \newcommand{\x}{\boldsymbol{x}} \newcommand{\dfc}{\alpha} % diffusion coefficient \newcommand{\Ix}{\mathcal{I}_x} \newcommand{\Iy}{\mathcal{I}_y} \newcommand{\If}{\mathcal{I}_s} % for FEM \newcommand{\Ifd}{{I_d}} % for FEM \newcommand{\basphi}{\varphi} \newcommand{\baspsi}{\psi} \newcommand{\refphi}{\tilde\basphi} \newcommand{\xno}[1]{x_{#1}} \newcommand{\dX}{\, \mathrm{d}X} \newcommand{\dx}{\, \mathrm{d}x} \newcommand{\ds}{\, \mathrm{d}s} $$

« Previous
Next »

Calculation details of Newton's method at the PDE level

Insert \( u^{n,k} +\delta u \) for \( u^n \) in PDE: $$ \frac{u^{n,k} +\delta u - u^{n-1}}{\Delta t} = \nabla\cdot (\dfc(u^{n,k} + \delta u)\nabla (u^{n,k}+\delta u)) + f(u^{n,k}+\delta u) $$

Taylor expand \( \dfc(u^{n,k} + \delta u) \) and \( f(u^{n,k}+\delta u) \): $$ \begin{align*} \dfc(u^{n,k} + \delta u) & = \dfc(u^{n,k}) + \frac{d\dfc}{du}(u^{n,k}) \delta u + \Oof{\delta u^2}\approx \dfc(u^{n,k}) + \dfc^{\prime}(u^{n,k})\delta u\\ f(u^{n,k}+\delta u) &= f(u^{n,k}) + \frac{df}{du}(u^{n,k})\delta u + \Oof{\delta u^2}\approx f(u^{n,k}) + f^{\prime}(u^{n,k})\delta u \end{align*} $$

« Previous
Next »