$$ \newcommand{\uex}{{u_{\small\mbox{e}}}} \newcommand{\half}{\frac{1}{2}} \newcommand{\tp}{\thinspace .} \newcommand{\Oof}[1]{\mathcal{O}(#1)} \newcommand{\x}{\boldsymbol{x}} \newcommand{\dfc}{\alpha} % diffusion coefficient \newcommand{\Ix}{\mathcal{I}_x} \newcommand{\Iy}{\mathcal{I}_y} \newcommand{\If}{\mathcal{I}_s} % for FEM \newcommand{\Ifd}{{I_d}} % for FEM \newcommand{\basphi}{\varphi} \newcommand{\baspsi}{\psi} \newcommand{\refphi}{\tilde\basphi} \newcommand{\xno}[1]{x_{#1}} \newcommand{\dX}{\, \mathrm{d}X} \newcommand{\dx}{\, \mathrm{d}x} \newcommand{\ds}{\, \mathrm{d}s} $$

« Previous
Next »

Alternative: evaluation of finite element terms at nodes gives great simplifications

Idea: integrate \( \int f(u)v\dx \) numerically with a rule that samples \( f(u)v \) at the nodes only. This involves great simplifications, since $$ \sum_k u_k\basphi_k(\xno{\ell}) = u_\ell$$

and $$ f\basphi_i(\xno{\ell}) = f(\sum_k u_k\underbrace{\basphi_k(\xno{\ell})}_{\delta_{k\ell}}) \underbrace{\basphi_i(\xno{\ell})}_{\delta_{i\ell}} = f(u_\ell)\delta_{i\ell}\quad \neq 0\mbox{ only for } f(u_i)$$

(\( \delta_{ij}=0 \) if \( i\neq j \) and \( \delta_{ij}=1 \) if \( i=j \))

« Previous
Next »