Jacobian: $$ \renewcommand*{\arraystretch}{2} J = \left(\begin{array}{cc} \frac{\partial}{\partial S} F_S & \frac{\partial}{\partial I}F_S\\ \frac{\partial}{\partial S} F_I & \frac{\partial}{\partial I}F_I \end{array}\right) = \left(\begin{array}{cc} 1 + \half\Delta t\beta I & \half\Delta t\beta\\ - \half\Delta t\beta S & 1 - \half\Delta t\beta I - \half\Delta t\nu \end{array}\right) $$
Newton system: \( J(u^{-})\delta u = -F(u^{-}) \) $$ \begin{align*} \renewcommand*{\arraystretch}{1.5} & \left(\begin{array}{cc} 1 + \half\Delta t\beta I^{-} & \half\Delta t\beta S^{-}\\ - \half\Delta t\beta S^{-} & 1 - \half\Delta t\beta I^{-} - \half\Delta t\nu \end{array}\right) \left(\begin{array}{c} \delta S\\ \delta I \end{array}\right) =\\ & \qquad\qquad \left(\begin{array}{c} S^{-} - S^{(1)} + \half\Delta t\beta(S^{(1)}I^{(1)} + S^{-}I^{-})\\ I^{-} - I^{(1)} - \half\Delta t\beta(S^{(1)}I^{(1)} + S^{-}I^{-}) - \half\Delta t\nu(I^{(1)} + I^{-}) \end{array}\right) \end{align*} $$