$$ \newcommand{\uex}{{u_{\small\mbox{e}}}} \newcommand{\half}{\frac{1}{2}} \newcommand{\tp}{\thinspace .} \newcommand{\Oof}[1]{\mathcal{O}(#1)} \newcommand{\x}{\boldsymbol{x}} \newcommand{\dfc}{\alpha} % diffusion coefficient \newcommand{\Ix}{\mathcal{I}_x} \newcommand{\Iy}{\mathcal{I}_y} \newcommand{\If}{\mathcal{I}_s} % for FEM \newcommand{\Ifd}{{I_d}} % for FEM \newcommand{\basphi}{\varphi} \newcommand{\baspsi}{\psi} \newcommand{\refphi}{\tilde\basphi} \newcommand{\xno}[1]{x_{#1}} \newcommand{\dX}{\, \mathrm{d}X} \newcommand{\dx}{\, \mathrm{d}x} \newcommand{\ds}{\, \mathrm{d}s} $$

« Previous
Next »

The nonlinear algebraic equations

Find \( u\in V \) such that $$ \int_0^L \dfc(u)u^{\prime}v^{\prime}\dx + \int_0^L auv\dx = \int_0^L f(u)v\dx - Cv(0),\quad \forall v\in V $$

\( \forall v\in V\ \Rightarrow\ \forall i\in\If \), \( v=\baspsi_i \). Inserting \( u=D+\sum_jc_j\baspsi_j \) and sorting terms: $$ \sum_{j}\left( \int\limits_0^L \dfc(D+\sum_{k}c_k\baspsi_k) \baspsi_j^{\prime}\baspsi_i^{\prime}\dx\right)c_j = \int\limits_0^L f(D+\sum_{k}c_k\baspsi_k)\baspsi_i\dx - C\baspsi_i(0) $$

This is a nonlinear algebraic system

« Previous
Next »