$$ \newcommand{\uex}{{u_{\small\mbox{e}}}} \newcommand{\half}{\frac{1}{2}} \newcommand{\tp}{\thinspace .} \newcommand{\Oof}[1]{\mathcal{O}(#1)} \newcommand{\x}{\boldsymbol{x}} \newcommand{\dfc}{\alpha} % diffusion coefficient \newcommand{\Ix}{\mathcal{I}_x} \newcommand{\Iy}{\mathcal{I}_y} \newcommand{\If}{\mathcal{I}_s} % for FEM \newcommand{\Ifd}{{I_d}} % for FEM \newcommand{\basphi}{\varphi} \newcommand{\baspsi}{\psi} \newcommand{\refphi}{\tilde\basphi} \newcommand{\xno}[1]{x_{#1}} \newcommand{\dX}{\, \mathrm{d}X} \newcommand{\dx}{\, \mathrm{d}x} \newcommand{\ds}{\, \mathrm{d}s} $$

« Previous
Next »

Computations in a reference cell \( [-1,1] \)

$$ \begin{align*} \tilde F_r^{(e)} &= \int_{-1}^1\left( \dfc(\tilde u^{-})\tilde u^{-\prime}\refphi_r^{\prime} + (a-f(\tilde u^{-}))\refphi_r\right)\det J\dX - C\refphi_r(0) \\ \tilde J_{r,s}^{(e)} &= \int_{-1}^1 (\dfc^{\prime}(\tilde u^{-})\tilde u^{-\prime}\refphi_r^{\prime}\refphi_s + \dfc(\tilde u^{-})\refphi_r^{\prime}\refphi_s^{\prime} + (a - f(\tilde u^{-}))\refphi_r\refphi_s)\det J\dX \end{align*} $$

\( r,s\in\Ifd \) (local degrees of freedom)

« Previous
Next »