$$ \newcommand{\uex}{{u_{\small\mbox{e}}}} \newcommand{\half}{\frac{1}{2}} \newcommand{\tp}{\thinspace .} \newcommand{\Oof}[1]{\mathcal{O}(#1)} \newcommand{\x}{\boldsymbol{x}} \newcommand{\dfc}{\alpha} % diffusion coefficient \newcommand{\Ix}{\mathcal{I}_x} \newcommand{\Iy}{\mathcal{I}_y} \newcommand{\If}{\mathcal{I}_s} % for FEM \newcommand{\Ifd}{{I_d}} % for FEM \newcommand{\basphi}{\varphi} \newcommand{\baspsi}{\psi} \newcommand{\refphi}{\tilde\basphi} \newcommand{\xno}[1]{x_{#1}} \newcommand{\dX}{\, \mathrm{d}X} \newcommand{\dx}{\, \mathrm{d}x} \newcommand{\ds}{\, \mathrm{d}s} $$

« Previous
Next »

Computing the Jacobian

$$ \begin{align*} J_{i,j} = \frac{\partial F_i}{\partial c_j} & = \int_0^L \frac{\partial}{\partial c_j} (\dfc(u)u^{\prime}\baspsi_i^{\prime} + au\baspsi_i - f(u)\baspsi_i)\dx\\ &= \int_0^L ((\dfc^{\prime}(u)\frac{\partial u}{\partial c_j}u^{\prime} + \dfc(u)\frac{\partial u^{\prime}}{\partial c_j})\baspsi_i^{\prime} + a\frac{\partial u}{\partial c_j}\baspsi_i - f^{\prime}(u)\frac{\partial u}{\partial c_j}\baspsi_i)\dx\\ &= \int_0^L ((\dfc^{\prime}(u)\baspsi_ju^{\prime} + \dfc(u)\baspsi_j^{\prime}\baspsi_i^{\prime} + a\baspsi_j\baspsi_i - f^{\prime}(u)\baspsi_j\baspsi_i)\dx\\ &= \int_0^L (\dfc^{\prime}(u)u^{\prime}\baspsi_i^{\prime}\baspsi_j + \dfc(u)\baspsi_i^{\prime}\baspsi_j^{\prime} + (a - f(u))\baspsi_i\baspsi_j)\dx \end{align*} $$

Use \( \dfc^{\prime}(u^{-}) \), \( \dfc(u^{-}) \), \( f^\prime (u^{-}) \), \( f(u^{-}) \) and integrate expressions numerically (only known functions)

« Previous
Next »