$$ \newcommand{\uex}{{u_{\small\mbox{e}}}} \newcommand{\half}{\frac{1}{2}} \newcommand{\tp}{\thinspace .} \newcommand{\Oof}[1]{\mathcal{O}(#1)} \newcommand{\x}{\boldsymbol{x}} \newcommand{\dfc}{\alpha} % diffusion coefficient \newcommand{\Ix}{\mathcal{I}_x} \newcommand{\Iy}{\mathcal{I}_y} \newcommand{\If}{\mathcal{I}_s} % for FEM \newcommand{\Ifd}{{I_d}} % for FEM \newcommand{\basphi}{\varphi} \newcommand{\baspsi}{\psi} \newcommand{\refphi}{\tilde\basphi} \newcommand{\xno}[1]{x_{#1}} \newcommand{\dX}{\, \mathrm{d}X} \newcommand{\dx}{\, \mathrm{d}x} \newcommand{\ds}{\, \mathrm{d}s} $$

« Previous
Next »

Useful formulas for computing the Jacobian

$$ \begin{align*} \frac{\partial u}{\partial c_j} &= \frac{\partial}{\partial c_j} \sum_kc_k\baspsi_k = \baspsi_j\\ \frac{\partial u^{\prime}}{\partial c_j} &= \frac{\partial}{\partial c_j} \sum_kc_k\baspsi_k^{\prime} = \baspsi_j^{\prime} \end{align*} $$

« Previous
Next »