$$ \newcommand{\uex}{{u_{\small\mbox{e}}}} \newcommand{\half}{\frac{1}{2}} \newcommand{\tp}{\thinspace .} \newcommand{\Oof}[1]{\mathcal{O}(#1)} \newcommand{\x}{\boldsymbol{x}} \newcommand{\dfc}{\alpha} % diffusion coefficient \newcommand{\Ix}{\mathcal{I}_x} \newcommand{\Iy}{\mathcal{I}_y} \newcommand{\If}{\mathcal{I}_s} % for FEM \newcommand{\Ifd}{{I_d}} % for FEM \newcommand{\basphi}{\varphi} \newcommand{\baspsi}{\psi} \newcommand{\refphi}{\tilde\basphi} \newcommand{\xno}[1]{x_{#1}} \newcommand{\dX}{\, \mathrm{d}X} \newcommand{\dx}{\, \mathrm{d}x} \newcommand{\ds}{\, \mathrm{d}s} $$

« Previous
Next »

Newton's method for \( F(u)=0 \)

Linearization of \( F(u)=0 \) equation via multi-dimensional Taylor series: $$ F(u) = F(u^{-}) + J(u^{-}) \cdot (u - u^{-}) + \mathcal{O}(||u - u^{-}||^2) $$

where \( J \) is the Jacobian of \( F \), sometimes denoted \( \nabla_uF \), defined by $$ J_{i,j} = \frac{\partial F_i}{\partial u_j}$$

Approximate the original nonlinear system \( F(u)=0 \) by $$ \hat F(u) = F(u^{-}) + J(u^{-}) \cdot \delta u =0,\quad \delta u = u - u^{-}$$

which is linear vector equation in \( u \)

« Previous
Next »