$$ \newcommand{\uex}{{u_{\small\mbox{e}}}} \newcommand{\half}{\frac{1}{2}} \newcommand{\tp}{\thinspace .} \newcommand{\Oof}[1]{\mathcal{O}(#1)} \newcommand{\x}{\boldsymbol{x}} \newcommand{\dfc}{\alpha} % diffusion coefficient \newcommand{\Ix}{\mathcal{I}_x} \newcommand{\Iy}{\mathcal{I}_y} \newcommand{\If}{\mathcal{I}_s} % for FEM \newcommand{\Ifd}{{I_d}} % for FEM \newcommand{\basphi}{\varphi} \newcommand{\baspsi}{\psi} \newcommand{\refphi}{\tilde\basphi} \newcommand{\xno}[1]{x_{#1}} \newcommand{\dX}{\, \mathrm{d}X} \newcommand{\dx}{\, \mathrm{d}x} \newcommand{\ds}{\, \mathrm{d}s} $$

« Previous
Next »

A note on our notation and the different meanings of \( u \) (1)

PDE problem: \( u(\x,t) \) is the exact solution of $$ u_t = \nabla\cdot(\dfc(u)\nabla u) + f(u) $$

Time discretization: \( u(\x) \) is the exact solution of the time-discrete spatial equation $$ u - \Delta t\nabla\cdot(\dfc(u^n)\nabla u) - \Delta t f(u) = u^{(1)}$$

The same \( u(\x) \) is the exact solution of the (continuous) variational form: $$ \int_\Omega (uv + \Delta t\,\dfc(u)\nabla u\cdot\nabla v - \Delta t f(u)v - u^{(1)} v)\dx,\quad\forall v\in V $$

« Previous
Next »