$$ \newcommand{\uex}{{u_{\small\mbox{e}}}} \newcommand{\half}{\frac{1}{2}} \newcommand{\tp}{\thinspace .} \newcommand{\Oof}[1]{\mathcal{O}(#1)} \newcommand{\x}{\boldsymbol{x}} \newcommand{\dfc}{\alpha} % diffusion coefficient \newcommand{\Ix}{\mathcal{I}_x} \newcommand{\Iy}{\mathcal{I}_y} \newcommand{\If}{\mathcal{I}_s} % for FEM \newcommand{\Ifd}{{I_d}} % for FEM \newcommand{\basphi}{\varphi} \newcommand{\baspsi}{\psi} \newcommand{\refphi}{\tilde\basphi} \newcommand{\xno}[1]{x_{#1}} \newcommand{\dX}{\, \mathrm{d}X} \newcommand{\dx}{\, \mathrm{d}x} \newcommand{\ds}{\, \mathrm{d}s} $$

« Previous
Next »

A note on our notation and the different meanings of \( u \) (2)

Or we may approximate \( u \): \( u(\x) = \sum_jc_j\baspsi_j(\x) \) and let this spatially discrete \( u \) enter the variational form, $$ \int_\Omega (uv + \Delta t\,\dfc(u)\nabla u\cdot\nabla v - \Delta t f(u)v - u^{(1)} v)\dx,\quad\forall v\in V $$

Picard iteration: \( u(\x) \) solves the approximate variational form $$ \int_\Omega (uv + \Delta t\,\dfc(u^{-})\nabla u\cdot\nabla v - \Delta t f(u^{-})v - u^{(1)} v)\dx $$

Could introduce

« Previous
Next »