$$ \newcommand{\uex}{{u_{\small\mbox{e}}}} \newcommand{\half}{\frac{1}{2}} \newcommand{\tp}{\thinspace .} \newcommand{\Oof}[1]{\mathcal{O}(#1)} \newcommand{\x}{\boldsymbol{x}} \newcommand{\dfc}{\alpha} % diffusion coefficient \newcommand{\Ix}{\mathcal{I}_x} \newcommand{\Iy}{\mathcal{I}_y} \newcommand{\If}{\mathcal{I}_s} % for FEM \newcommand{\Ifd}{{I_d}} % for FEM \newcommand{\basphi}{\varphi} \newcommand{\baspsi}{\psi} \newcommand{\refphi}{\tilde\basphi} \newcommand{\xno}[1]{x_{#1}} \newcommand{\dX}{\, \mathrm{d}X} \newcommand{\dx}{\, \mathrm{d}x} \newcommand{\ds}{\, \mathrm{d}s} $$

« Previous
Next »

The nonlinear \( 2\times 2 \) system

Introduce \( u_0 \) and \( u_1 \) for \( u_0^{n+1} \) and \( u_1^{n+1} \), write \( u_0^{(1)} \) and \( u_1^{(1)} \) for \( u_0^n \) and \( u_1^n \), and rearrange: $$ \begin{align*} F_0(u_0,u_1) &= {\color{red}u_0} - u_0^{(1)} + \Delta t\,\sin\left(\frac{1}{2}({\color{red}u_1} + u_1^{(1)})\right) + \frac{1}{4}\Delta t\beta ({\color{red}u_0} + u_0^{(1)}) |{\color{red}u_0} + u_0^{(1)}| =0 \\ F_1(u_0,u_1) &= {\color{red}u_1} - u_1^{(1)} -\frac{1}{2}\Delta t({\color{red}u_0} + u_0^{(1)}) =0 \end{align*} $$

« Previous
Next »