$$
\newcommand{\uex}{{u_{\small\mbox{e}}}}
\newcommand{\half}{\frac{1}{2}}
\newcommand{\tp}{\thinspace .}
\newcommand{\Oof}[1]{\mathcal{O}(#1)}
\newcommand{\x}{\boldsymbol{x}}
\newcommand{\dfc}{\alpha} % diffusion coefficient
\newcommand{\Ix}{\mathcal{I}_x}
\newcommand{\Iy}{\mathcal{I}_y}
\newcommand{\If}{\mathcal{I}_s} % for FEM
\newcommand{\Ifd}{{I_d}} % for FEM
\newcommand{\basphi}{\varphi}
\newcommand{\baspsi}{\psi}
\newcommand{\refphi}{\tilde\basphi}
\newcommand{\xno}[1]{x_{#1}}
\newcommand{\dX}{\, \mathrm{d}X}
\newcommand{\dx}{\, \mathrm{d}x}
\newcommand{\ds}{\, \mathrm{d}s}
$$
Relaxation may improve the convergence
- Problem: Picard and Newton iteration may change the solution too much
- Remedy: relaxation (less change in the solution)
- Let \( u^* \) be the suggested new value from Picard or Newton iteration
Relaxation with relaxation parameter \( \omega \) (weight old and new value):
$$ u = \omega u^* + (1-\omega) u^{-},\quad \omega \leq 1$$
Simple formula when used in Newton's method:
$$
u = u^{-} - \omega \frac{F(u^{-})}{F^{\prime}(u^{-})}
$$