$$ \newcommand{\uex}{{u_{\small\mbox{e}}}} \newcommand{\half}{\frac{1}{2}} \newcommand{\tp}{\thinspace .} \newcommand{\Oof}[1]{\mathcal{O}(#1)} \newcommand{\x}{\boldsymbol{x}} \newcommand{\dfc}{\alpha} % diffusion coefficient \newcommand{\Ix}{\mathcal{I}_x} \newcommand{\Iy}{\mathcal{I}_y} \newcommand{\If}{\mathcal{I}_s} % for FEM \newcommand{\Ifd}{{I_d}} % for FEM \newcommand{\basphi}{\varphi} \newcommand{\baspsi}{\psi} \newcommand{\refphi}{\tilde\basphi} \newcommand{\xno}[1]{x_{#1}} \newcommand{\dX}{\, \mathrm{d}X} \newcommand{\dx}{\, \mathrm{d}x} \newcommand{\ds}{\, \mathrm{d}s} $$

« Previous
Next »

Newton's method; Jacobian (1)

Nonlinear eq.no \( i \) has the structure $$ \begin{align*} F_i &= A_{i,i-1}(u_{i-1},u_i)u_{i-1} + A_{i,i}(u_{i-1},u_i,u_{i+1})u_i +\\ &\qquad A_{i,i+1}(u_i, u_{i+1})u_{i+1} - b_i(u_i) \end{align*} $$

Need Jacobian, i.e., need to differentiate \( F(u)=A(u)u - b(u) \) wrt \( u \). Example: $$ \begin{align*} &\frac{\partial}{\partial u_i}(A_{i,i}(u_{i-1},u_i,u_{i+1})u_i) = \frac{\partial A_{i,i}}{\partial u_i}u_i + A_{i,i} \frac{\partial u_i}{\partial u_i}\\ &\quad = \frac{\partial}{\partial u_i}( \frac{1}{2\Delta x^2}(-\dfc(u_{i-1}) + 2\dfc(u_{i}) -\dfc(u_{i+1})) + a)u_i +\\ &\qquad\frac{1}{2\Delta x^2}(-\dfc(u_{i-1}) + 2\dfc(u_{i}) -\dfc(u_{i+1})) + a\\ &\quad =\frac{1}{2\Delta x^2}(2\dfc^\prime (u_i)u_i -\dfc(u_{i-1}) + 2\dfc(u_{i}) -\dfc(u_{i+1})) + a \end{align*} $$

« Previous
Next »