$$ \newcommand{\uex}{{u_{\small\mbox{e}}}} \newcommand{\half}{\frac{1}{2}} \newcommand{\tp}{\thinspace .} \newcommand{\Oof}[1]{\mathcal{O}(#1)} \newcommand{\x}{\boldsymbol{x}} \newcommand{\dfc}{\alpha} % diffusion coefficient \newcommand{\Ix}{\mathcal{I}_x} \newcommand{\Iy}{\mathcal{I}_y} \newcommand{\If}{\mathcal{I}_s} % for FEM \newcommand{\Ifd}{{I_d}} % for FEM \newcommand{\basphi}{\varphi} \newcommand{\baspsi}{\psi} \newcommand{\refphi}{\tilde\basphi} \newcommand{\xno}[1]{x_{#1}} \newcommand{\dX}{\, \mathrm{d}X} \newcommand{\dx}{\, \mathrm{d}x} \newcommand{\ds}{\, \mathrm{d}s} $$

« Previous
Next »

Details: with Dirichlet condition equation

\( N_x=2 \) and including \( u_2=D \) as a separate equation: $$ \left(\begin{array}{ccc} A_{0,0}& A_{0,1} & A_{0,2}\\ A_{1,0} & A_{1,1} & A_{1,2}\\ A_{2,0} & A_{2,1} & A_{2,2} \end{array}\right) \left(\begin{array}{c} u_0\\ u_1\\ u_2 \end{array}\right) = \left(\begin{array}{c} b_0\\ b_1\\ b_2 \end{array}\right) $$ with \( A_{i,j} \) and \( b_i \) as before for \( i,j=1,2 \), keeping \( u_2 \) as unknown in \( A_{1,1} \), and $$ \begin{align*} A_{0,2}&=A_{2,0}=A_{2,1}=0\\ A_{1,2}&= -\frac{1}{2\Delta x^2}(\dfc(u_{1}) + \dfc(u_{2}))\\ A_{2,2}=&1,\ b_2=D \end{align*} $$

« Previous
Next »