The Jacobian becomes $$ \begin{align*} J_{i,j} = \frac{\partial F_i}{\partial c_j} = \int_\Omega & (\baspsi_j\baspsi_i + \Delta t\,\dfc^{\prime}(u)\baspsi_j \nabla u\cdot\nabla \baspsi_i + \Delta t\,\dfc(u)\nabla\baspsi_j\cdot\nabla\baspsi_i - \\ &\ \Delta t f^{\prime}(u)\baspsi_j\baspsi_i)\dx \end{align*} $$
Evaluation of \( J_{i,j} \) as the coefficient matrix in the Newton system \( J\delta u = -F \) means \( J(u^{-}) \): $$ \begin{align*} J_{i,j} = \int_\Omega & (\baspsi_j\baspsi_i + \Delta t\,\dfc^{\prime}(u^{-})\baspsi_j \nabla u^{-}\cdot\nabla \baspsi_i + \Delta t\,\dfc(u^{-})\nabla\baspsi_j\cdot\nabla\baspsi_i - \\ &\ \Delta t f^{\prime}(u^{-})\baspsi_j\baspsi_i)\dx \end{align*} $$