$$ \newcommand{\uex}{{u_{\small\mbox{e}}}} \newcommand{\half}{\frac{1}{2}} \newcommand{\tp}{\thinspace .} \newcommand{\Oof}[1]{\mathcal{O}(#1)} \newcommand{\x}{\boldsymbol{x}} \newcommand{\dfc}{\alpha} % diffusion coefficient \newcommand{\Ix}{\mathcal{I}_x} \newcommand{\Iy}{\mathcal{I}_y} \newcommand{\If}{\mathcal{I}_s} % for FEM \newcommand{\Ifd}{{I_d}} % for FEM \newcommand{\basphi}{\varphi} \newcommand{\baspsi}{\psi} \newcommand{\refphi}{\tilde\basphi} \newcommand{\xno}[1]{x_{#1}} \newcommand{\dX}{\, \mathrm{d}X} \newcommand{\dx}{\, \mathrm{d}x} \newcommand{\ds}{\, \mathrm{d}s} $$

« Previous
Next »

Non-homogeneous Neumann conditions

A natural physical flux condition: $$ -\dfc(u)\frac{\partial u}{\partial n} = g,\quad\x\in\partial\Omega_N $$

Integration by parts gives the boundary term $$ \int_{\partial\Omega_N}\dfc(u)\frac{\partial u}{\partial u}v\ds $$

Inserting the nonlinear Neumann condition: $$ -\int_{\partial\Omega_N}gv\ds$$

(no nonlinearity)

« Previous
Next »