$$ \newcommand{\uex}{{u_{\small\mbox{e}}}} \newcommand{\half}{\frac{1}{2}} \newcommand{\tp}{\thinspace .} \newcommand{\Oof}[1]{\mathcal{O}(#1)} \newcommand{\x}{\boldsymbol{x}} \newcommand{\dfc}{\alpha} % diffusion coefficient \newcommand{\Ix}{\mathcal{I}_x} \newcommand{\Iy}{\mathcal{I}_y} \newcommand{\If}{\mathcal{I}_s} % for FEM \newcommand{\Ifd}{{I_d}} % for FEM \newcommand{\basphi}{\varphi} \newcommand{\baspsi}{\psi} \newcommand{\refphi}{\tilde\basphi} \newcommand{\xno}[1]{x_{#1}} \newcommand{\dX}{\, \mathrm{d}X} \newcommand{\dx}{\, \mathrm{d}x} \newcommand{\ds}{\, \mathrm{d}s} $$

« Previous
Next »

Newton's method; nonlinear equations at the end points

$$ \begin{align*} F_i &= -\frac{1}{2\Delta x^2} ((\dfc(u_i)+\dfc(u_{i+1}))(u_{i+1}-u_i) - (\dfc(u_{i-1})+\dfc(u_{i}))\times \\ &\qquad (u_{i}-u_{i-1})) + au_i - f(u_i) = 0 \end{align*} $$

At \( i=0 \), replace \( u_{-1} \) by formula from Neumann condition.

  1. Exclude Dirichlet condition as separate equation: replace \( u_i \), \( i=N_x \), by \( D \) in \( F_{i} \), \( i=N_x-1 \)
  2. Include Dirichlet condition as separate equation:
$$ F_{N_x}(u_0,\ldots,u_{N_x}) = u_{N_x} - D = 0\tp$$

Note: The size of the Jacobian depends on 1 or 2.

« Previous
Next »