Instead of the group finite element method and exact integration, use Trapezoidal rule in the nodes for \( \int_0^L \dfc(\sum_k u_k\basphi_k)\basphi_i^{\prime}\basphi_j^{\prime}\dx \).
Work at the cell level (most convenient with discontinuous \( \basphi_i' \)): $$ \begin{align*} & \int_{-1}^1 \alpha(\sum_t\tilde u_t\refphi_t)\refphi_r'\refphi_s'\frac{h}{2}dX = \int_{-1}^1 \dfc(\sum_{t=0}^1 \tilde u_t\refphi_t)\frac{2}{h}\frac{d\refphi_r}{dX} \frac{2}{h}\frac{d\refphi_s}{dX}\frac{h}{2}dX\\ &\quad = \frac{1}{2h}(-1)^r(-1)^s \int_{-1}^1 \dfc(\sum_{t=0}^1 u_t\refphi_t(X))dX \\ & \qquad \approx \frac{1}{2h}(-1)^r(-1)^s\dfc ( \sum_{t=0}^1\refphi_t(-1)\tilde u_t) + \dfc(\sum_{t=0}^1\refphi_t(1)\tilde u_t)\\ &\quad = \frac{1}{2h}(-1)^r(-1)^s(\dfc(\tilde u_0) + \dfc(\tilde u^{(1)})) \end{align*} $$