$$ \newcommand{\uex}{{u_{\small\mbox{e}}}} \newcommand{\half}{\frac{1}{2}} \newcommand{\tp}{\thinspace .} \newcommand{\Oof}[1]{\mathcal{O}(#1)} \newcommand{\x}{\boldsymbol{x}} \newcommand{\dfc}{\alpha} % diffusion coefficient \newcommand{\Ix}{\mathcal{I}_x} \newcommand{\Iy}{\mathcal{I}_y} \newcommand{\If}{\mathcal{I}_s} % for FEM \newcommand{\Ifd}{{I_d}} % for FEM \newcommand{\basphi}{\varphi} \newcommand{\baspsi}{\psi} \newcommand{\refphi}{\tilde\basphi} \newcommand{\xno}[1]{x_{#1}} \newcommand{\dX}{\, \mathrm{d}X} \newcommand{\dx}{\, \mathrm{d}x} \newcommand{\ds}{\, \mathrm{d}s} $$

« Previous
Next »

Application of the group finite element method

$$ \int_0^L f(u)\basphi_i\dx \approx \int_0^L (\sum_j \basphi_jf(u_j))\basphi_i\dx = \sum_j (\underbrace{\int_0^L \basphi_i\basphi_j\dx}_{\mbox{mass matrix }M_{i,j}}) f(u_j)$$

Corresponding part of difference equation for P1 elements: $$ \frac{h}{6}(f(u_{i-1}) + 4f(u_i) + f(u_{i+1}))$$

Rewrite as "finite difference form plus something": $$ \frac{h}{6}(f(u_{i-1}) + 4f(u_i) + f(u_{i+1})) = h[{\color{red}f(u)} - \frac{h^2}{6}D_xD_x f(u)]_i$$

This is like the finite difference discretization of \( -u'' = f(u) - \frac{h^2}{6}f''(u) \)

« Previous
Next »