$$ \newcommand{\uex}{{u_{\small\mbox{e}}}} \newcommand{\half}{\frac{1}{2}} \newcommand{\tp}{\thinspace .} \newcommand{\Oof}[1]{\mathcal{O}(#1)} \newcommand{\x}{\boldsymbol{x}} \newcommand{\dfc}{\alpha} % diffusion coefficient \newcommand{\Ix}{\mathcal{I}_x} \newcommand{\Iy}{\mathcal{I}_y} \newcommand{\If}{\mathcal{I}_s} % for FEM \newcommand{\Ifd}{{I_d}} % for FEM \newcommand{\basphi}{\varphi} \newcommand{\baspsi}{\psi} \newcommand{\refphi}{\tilde\basphi} \newcommand{\xno}[1]{x_{#1}} \newcommand{\dX}{\, \mathrm{d}X} \newcommand{\dx}{\, \mathrm{d}x} \newcommand{\ds}{\, \mathrm{d}s} $$

« Previous
Next »

Combined Picard-Newton algorithm

Idea:

Write a common Picard-Newton algorithm so we can trivially switch between the two methods (e.g., start with Picard, get faster convergence with Newton when \( u \) is closer to the solution)

Algorithm:

Given \( A(u) \), \( b(u) \), and an initial guess \( u^{-} \), iterate until convergence:

  1. solve \( (A + \gamma(A^{\prime}(u^{-})u^{-} + b^{\prime}(u^{-})))\delta u = -A(u^{-})u^{-} + b(u^{-}) \) with respect to \( \delta u \)
  2. \( u = u^{-} + \omega\delta u \)
  3. \( u^{-}\ \leftarrow\ u \)
Note:

« Previous
Next »