$$ \newcommand{\uex}{{u_{\small\mbox{e}}}} \newcommand{\half}{\frac{1}{2}} \newcommand{\tp}{\thinspace .} \newcommand{\Oof}[1]{\mathcal{O}(#1)} \newcommand{\x}{\boldsymbol{x}} \newcommand{\dfc}{\alpha} % diffusion coefficient \newcommand{\Ix}{\mathcal{I}_x} \newcommand{\Iy}{\mathcal{I}_y} \newcommand{\If}{\mathcal{I}_s} % for FEM \newcommand{\Ifd}{{I_d}} % for FEM \newcommand{\basphi}{\varphi} \newcommand{\baspsi}{\psi} \newcommand{\refphi}{\tilde\basphi} \newcommand{\xno}[1]{x_{#1}} \newcommand{\dX}{\, \mathrm{d}X} \newcommand{\dx}{\, \mathrm{d}x} \newcommand{\ds}{\, \mathrm{d}s} $$

« Previous
Next »

Relevance of this stationary 1D problem

1. As stationary limit of a diffusion PDE $$ u_t = (\alpha(u)u_x)_x + au + f(u) $$

(\( u_t\rightarrow 0 \))

2. The time-discrete problem at each time level arising from a Backward Euler scheme for a diffusion PDE $$ u_t = (\alpha(u)u_x)_x + f(u) $$

(\( au \) comes from \( u_t \), \( a\sim 1/\Delta t \), \( f(u) := f(u) - u^{n-1}/\Delta t \))

« Previous
Next »