$$ \newcommand{\tp}{\thinspace .} $$

 

 

 

Functions and branching

Hans Petter Langtangen [1, 2]

[1] Center for Biomedical Computing, Simula Research Laboratory
[2] Department of Informatics, University of Oslo

Jun 14, 2016


Table of contents

Functions
      Mathematical functions as Python functions
      Understanding the program flow
      Local and global variables
      Multiple arguments
      Function argument or global variable?
      Beyond mathematical functions
      Multiple return values
      Computing sums
      Functions with no return values
      Keyword arguments
      Doc strings
      Functions as arguments to functions
      The main program
      Lambda functions
Branching
      If-else blocks
      Inline if tests
Summary
      Chapter topics
      Example: Numerical integration
Exercises
      Exercise 1: Implement a simple mathematical function
      Exercise 2: Implement a simple mathematical function with a parameter
      Exercise 3: Explain how a program works
      Exercise 4: Write a Fahrenheit-Celsius conversion functions
      Exercise 5: Write a test function for Exercise 4: Write a Fahrenheit-Celsius conversion functions
      Exercise 6: Given a test function, write the function
      Exercise 7: Evaluate a sum and write a test function
      Exercise 8: Write a function for solving \( ax^2 + bx + c =0 \)
      Exercise 9: Implement the sum function
      Exercise 10: Compute a polynomial via a product
      Exercise 11: Integrate a function by the Trapezoidal rule
      Exercise 12: Derive the general Midpoint integration rule
      Exercise 13: Make an adaptive Trapezoidal rule
      Exercise 14: Simulate a program by hand
      Exercise 15: Debug a given test function
      Exercise 16: Compute the area of an arbitrary triangle
      Exercise 17: Compute the length of a path
      Exercise 18: Approximate \( \pi \)
      Exercise 19: Compute the area of a polygon
      Exercise 20: Write functions
      Exercise 21: Approximate a function by a sum of sines
      Exercise 22: Implement a Gaussian function
      Exercise 23: Wrap a formula in a function
      Exercise 24: Write a function for numerical differentiation
      Exercise 25: Implement the factorial function
      Exercise 26: Compute velocity and acceleration from 1D position data
      Exercise 27: Find the max and min values of a function
      Exercise 28: Find the max and min elements in a list
      Exercise 29: Implement the Heaviside function
      Exercise 30: Implement a smoothed Heaviside function
      Exercise 31: Implement an indicator function
      Exercise 32: Implement a piecewise constant function
      Exercise 33: Apply indicator functions
      Exercise 34: Test your understanding of branching
      Exercise 35: Simulate nested loops by hand
      Exercise 36: Rewrite a mathematical function
      Exercise 37: Make a table for approximations of \( \cos x \)
      Exercise 38: Use None in keyword arguments
      Exercise 39: Write a sort function for a list of 4-tuples
      Exercise 40: Find prime numbers
      Exercise 41: Resolve a problem with a function
      Exercise 42: Determine the types of some objects
      Exercise 43: Find an error in a program
References

This document introduces two fundamental and extremely useful concepts in programming: user-defined functions and branching of program flow, the latter often referred to as if tests. The programs associated with the document are found in the folder src/funcif.