$$ \newcommand{\half}{\frac{1}{2}} \newcommand{\halfi}{{1/2}} \newcommand{\tp}{\thinspace .} \newcommand{\x}{\boldsymbol{x}} \newcommand{\X}{\boldsymbol{X}} \renewcommand{\u}{\boldsymbol{u}} \renewcommand{\v}{\boldsymbol{v}} \newcommand{\w}{\boldsymbol{w}} \newcommand{\e}{\boldsymbol{e}} \newcommand{\f}{\boldsymbol{f}} \newcommand{\Ix}{\mathcal{I}_x} \newcommand{\Iy}{\mathcal{I}_y} \newcommand{\Iz}{\mathcal{I}_z} \newcommand{\If}{\mathcal{I}_s} % for FEM \newcommand{\Ifd}{{I_d}} % for FEM \newcommand{\sequencei}[1]{\left\{ {#1}_i \right\}_{i\in\If}} \newcommand{\sequencej}[1]{\left\{ {#1}_j \right\}_{j\in\If}} \newcommand{\basphi}{\varphi} \newcommand{\baspsi}{\psi} \newcommand{\refphi}{\tilde\basphi} \newcommand{\psib}{\boldsymbol{\psi}} \newcommand{\xno}[1]{x_{#1}} \newcommand{\Xno}[1]{X_{(#1)}} \newcommand{\xdno}[1]{\boldsymbol{x}_{#1}} \newcommand{\dX}{\, \mathrm{d}X} \newcommand{\dx}{\, \mathrm{d}x} \newcommand{\Real}{\mathbb{R}} \newcommand{\Integer}{\mathbb{Z}} $$

 

 

 

Bibliography

  1. M. G. Larson and F. Bengzon. The Finite Element Method: Theory, Implementation, and Applications, Texts in Computational Science and Engineering, Springer, 2013.