$$
\newcommand{\dt}{\Delta t}
\newcommand{\tp}{\thinspace .}
\newcommand{\uex}{{u_{\small\mbox{e}}}}
\newcommand{\x}{\boldsymbol{x}}
\renewcommand{\u}{\boldsymbol{u}}
\newcommand{\dx}{\, \mathrm{d}x}
\newcommand{\ds}{\, \mathrm{d}s}
\newcommand{\Real}{\mathbb{R}}
\newcommand{\ub}{u_{_\mathrm{D}}}
\newcommand{\GD}{\Gamma_{_\mathrm{D}}}
\newcommand{\GN}{\Gamma_{_\mathrm{N}}}
\newcommand{\GR}{\Gamma_{_\mathrm{R}}}
\newcommand{\inner}[2]{\langle #1, #2 \rangle}
\newcommand{\renni}[2]{\langle #2, #1 \rangle}
$$
Bibliography
- A. Logg, K.-A. Mardal and G. N. Wells.
Automated Solution of Partial Differential Equations by the Finite Element Method,
Springer,
2012.
- P. S. Foundation.
The Python Tutorial,
http://docs.python.org/2/tutorial.
- H. P. Langtangen and L. R. Hellevik.
Brief Tutorials on Scientific Python,
2016,
http://hplgit.github.io/bumpy/doc/web/index.html.
- M. Pilgrim.
Dive into Python,
Apress,
2004,
http://www.diveintopython.net.
- H. P. Langtangen.
Python Scripting for Computational Science,
third edition,
Springer,
2009.
- H. P. Langtangen.
A Primer on Scientific Programming With Python,
fifth edition,
Texts in Computational Science and Engineering,
Springer,
2016.
- J. M. Kinder and P. Nelson.
A Student's Guide to Python for Physical Modeling,
Princeton University Press,
2015.
- J. Kiusalaas.
Numerical Methods in Engineering With Python,
Cambridge University Press,
2005.
- R. H. Landau, M. J. Paez and C. C. Bordeianu.
Computational Physics: Problem Solving with Python,
third edition,
Wiley,
2015.
- H. P. Langtangen and K.-A. Mardal.
Introduction to Numerical Methods for Variational Problems,
2016,
http://hplgit.github.io/fem-book/doc/web/.
- M. G. Larson and F. Bengzon.
The Finite Element Method: Theory, Implementation, and Applications,
Texts in Computational Science and Engineering,
Springer,
2013.
- M. Gockenbach.
Understanding and Implementing the Finite Element Method,
SIAM,
2006.
- J. Donea and A. Huerta.
Finite Element Methods for Flow Problems,
Wiley Press,
2003.
- T. J. R. Hughes.
The Finite Element Method: Linear Static and Dynamic Finite Element Analysis,
Prentice-Hall,
1987.
- W. B. Bickford.
A First Course in the Finite Element Method,
2nd edition,
Irwin,
1994.
- K. Eriksson, D. Estep, P. Hansbo and C. Johnson.
Computational Differential Equations,
Cambridge University Press,
1996.
- S. C. Brenner and L. R. Scott.
The Mathematical Theory of Finite Element Methods,
third edition,
Texts in Applied Mathematics,
Springer,
2008.
- D. Braess.
Finite Elements,
third edition,
Cambridge University Press,
2007.
- A. Ern and J.-L. Guermond.
Theory and Practice of Finite Elements,
Springer,
2004.
- A. Quarteroni and A. Valli.
Numerical Approximation of Partial Differential Equations,
Springer Series in Computational Mathematics,
Springer,
1994.
- P. G. Ciarlet.
The Finite Element Method for Elliptic Problems,
Classics in Applied Mathematics,
SIAM,
2002,
Reprint of the 1978 original [North-Holland, Amsterdam; MR0520174 (58 \#25001)].
- D. N. Arnold and A. Logg.
Periodic Table of the Finite Elements,
SIAM News,
2014.
- M. S. Alnæs, A. Logg, K. B. Ølgaard, M. E. Rognes and G. N. Wells.
Unified Form Language: A domain-specific language for weak formulations of partial differential equations,
ACM Transactions on Mathematical Software,
40(2),
2014,
doi:10.1145/2566630, arXiv:1211.4047.
- A. H. Squillacote.
The ParaView Guide,
Kitware,
2007,
http://www.paraview.org/paraview-guide/.
- H. P. Langtangen and A. Logg.
Solving PDEs in Hours -- The FEniCS Tutorial Volume II,
Springer,
2016.
- A. J. Chorin.
Numerical solution of the Navier-Stokes equations,
Math. Comp.,
22,
pp. 745-762,
1968.
- R. Temam.
Sur l'approximation de la solution des \'equations de Navier-Stokes,
Arc. Ration. Mech. Anal.,
32,
pp. 377-385,
1969.
- K. Goda.
A multistep technique with implicit difference schemes for calculating two- or three-dimensional cavity flows,
Journal of Computational Physics,
30(1),
pp. 76-95,
1979.