$$ \newcommand{\dt}{\Delta t} \newcommand{\tp}{\thinspace .} \newcommand{\uex}{{u_{\small\mbox{e}}}} \newcommand{\x}{\boldsymbol{x}} \renewcommand{\u}{\boldsymbol{u}} \newcommand{\dx}{\, \mathrm{d}x} \newcommand{\ds}{\, \mathrm{d}s} \newcommand{\Real}{\mathbb{R}} \newcommand{\ub}{u_{_\mathrm{D}}} \newcommand{\GD}{\Gamma_{_\mathrm{D}}} \newcommand{\GN}{\Gamma_{_\mathrm{N}}} \newcommand{\GR}{\Gamma_{_\mathrm{R}}} \newcommand{\inner}[2]{\langle #1, #2 \rangle} \newcommand{\renni}[2]{\langle #2, #1 \rangle} $$

 

 

 

Bibliography

  1. A. Logg, K.-A. Mardal and G. N. Wells. Automated Solution of Partial Differential Equations by the Finite Element Method, Springer, 2012.
  2. P. S. Foundation. The Python Tutorial, http://docs.python.org/2/tutorial.
  3. H. P. Langtangen and L. R. Hellevik. Brief Tutorials on Scientific Python, 2016, http://hplgit.github.io/bumpy/doc/web/index.html.
  4. M. Pilgrim. Dive into Python, Apress, 2004, http://www.diveintopython.net.
  5. H. P. Langtangen. Python Scripting for Computational Science, third edition, Springer, 2009.
  6. H. P. Langtangen. A Primer on Scientific Programming With Python, fifth edition, Texts in Computational Science and Engineering, Springer, 2016.
  7. J. M. Kinder and P. Nelson. A Student's Guide to Python for Physical Modeling, Princeton University Press, 2015.
  8. J. Kiusalaas. Numerical Methods in Engineering With Python, Cambridge University Press, 2005.
  9. R. H. Landau, M. J. Paez and C. C. Bordeianu. Computational Physics: Problem Solving with Python, third edition, Wiley, 2015.
  10. H. P. Langtangen and K.-A. Mardal. Introduction to Numerical Methods for Variational Problems, 2016, http://hplgit.github.io/fem-book/doc/web/.
  11. M. G. Larson and F. Bengzon. The Finite Element Method: Theory, Implementation, and Applications, Texts in Computational Science and Engineering, Springer, 2013.
  12. M. Gockenbach. Understanding and Implementing the Finite Element Method, SIAM, 2006.
  13. J. Donea and A. Huerta. Finite Element Methods for Flow Problems, Wiley Press, 2003.
  14. T. J. R. Hughes. The Finite Element Method: Linear Static and Dynamic Finite Element Analysis, Prentice-Hall, 1987.
  15. W. B. Bickford. A First Course in the Finite Element Method, 2nd edition, Irwin, 1994.
  16. K. Eriksson, D. Estep, P. Hansbo and C. Johnson. Computational Differential Equations, Cambridge University Press, 1996.
  17. S. C. Brenner and L. R. Scott. The Mathematical Theory of Finite Element Methods, third edition, Texts in Applied Mathematics, Springer, 2008.
  18. D. Braess. Finite Elements, third edition, Cambridge University Press, 2007.
  19. A. Ern and J.-L. Guermond. Theory and Practice of Finite Elements, Springer, 2004.
  20. A. Quarteroni and A. Valli. Numerical Approximation of Partial Differential Equations, Springer Series in Computational Mathematics, Springer, 1994.
  21. P. G. Ciarlet. The Finite Element Method for Elliptic Problems, Classics in Applied Mathematics, SIAM, 2002, Reprint of the 1978 original [North-Holland, Amsterdam; MR0520174 (58 \#25001)].
  22. D. N. Arnold and A. Logg. Periodic Table of the Finite Elements, SIAM News, 2014.
  23. M. S. Alnæs, A. Logg, K. B. Ølgaard, M. E. Rognes and G. N. Wells. Unified Form Language: A domain-specific language for weak formulations of partial differential equations, ACM Transactions on Mathematical Software, 40(2), 2014, doi:10.1145/2566630, arXiv:1211.4047.
  24. A. H. Squillacote. The ParaView Guide, Kitware, 2007, http://www.paraview.org/paraview-guide/.
  25. H. P. Langtangen and A. Logg. Solving PDEs in Hours -- The FEniCS Tutorial Volume II, Springer, 2016.
  26. A. J. Chorin. Numerical solution of the Navier-Stokes equations, Math. Comp., 22, pp. 745-762, 1968.
  27. R. Temam. Sur l'approximation de la solution des \'equations de Navier-Stokes, Arc. Ration. Mech. Anal., 32, pp. 377-385, 1969.
  28. K. Goda. A multistep technique with implicit difference schemes for calculating two- or three-dimensional cavity flows, Journal of Computational Physics, 30(1), pp. 76-95, 1979.