$$ \newcommand{\uex}{{u_{\small\mbox{e}}}} \newcommand{\half}{\frac{1}{2}} \newcommand{\halfi}{{1/2}} \newcommand{\xpoint}{\boldsymbol{x}} \newcommand{\normalvec}{\boldsymbol{n}} \newcommand{\Oof}[1]{\mathcal{O}(#1)} \newcommand{\Ix}{\mathcal{I}_x} \newcommand{\Iy}{\mathcal{I}_y} \newcommand{\It}{\mathcal{I}_t} \newcommand{\setb}[1]{#1^0} % set begin \newcommand{\sete}[1]{#1^{-1}} % set end \newcommand{\setl}[1]{#1^-} \newcommand{\setr}[1]{#1^+} \newcommand{\seti}[1]{#1^i} \newcommand{\Real}{\mathbb{R}} $$

« Previous
Next »

Implementation of 2D/3D problems

$$ \begin{align} u_t &= c^2(u_{xx} + u_{yy}) + f(x,y,t),\quad &(x,y)\in \Omega,\ t\in (0,T]\\ u(x,y,0) &= I(x,y),\quad &(x,y)\in\Omega\\ u_t(x,y,0) &= V(x,y),\quad &(x,y)\in\Omega\\ u &= 0,\quad &(x,y)\in\partial\Omega,\ t\in (0,T] \end{align} $$

\( \Omega = [0,L_x]\times [0,L_y] \)

Discretization: $$ [D_t D_t u = c^2(D_xD_x u + D_yD_y u) + f]^n_{i,j}, $$

« Previous
Next »