Loading [MathJax]/extensions/TeX/boldsymbol.js
\newcommand{\uex}{{u_{\small\mbox{e}}}} \newcommand{\half}{\frac{1}{2}} \newcommand{\halfi}{{1/2}} \newcommand{\xpoint}{\boldsymbol{x}} \newcommand{\normalvec}{\boldsymbol{n}} \newcommand{\Oof}[1]{\mathcal{O}(#1)} \newcommand{\Ix}{\mathcal{I}_x} \newcommand{\Iy}{\mathcal{I}_y} \newcommand{\It}{\mathcal{I}_t} \newcommand{\setb}[1]{#1^0} % set begin \newcommand{\sete}[1]{#1^{-1}} % set end \newcommand{\setl}[1]{#1^-} \newcommand{\setr}[1]{#1^+} \newcommand{\seti}[1]{#1^i} \newcommand{\Real}{\mathbb{R}}

« Previous
Next »

Algorithm

  1. Set initial condition u^0_{i,j}=I(x_i,y_j)
  2. Compute u^1_{i,j} = \cdots for i\in\seti{\Ix} and j\in\seti{\Iy}
  3. Set u^1_{i,j}=0 for the boundaries i=0,N_x , j=0,N_y
  4. For n=1,2,\ldots,N_t :
    1. Find u^{n+1}_{i,j} = \cdots for i\in\seti{\Ix} and j\in\seti{\Iy}
    2. Set u^{n+1}_{i,j}=0 for the boundaries i=0,N_x , j=0,N_y

« Previous
Next »