Loading [MathJax]/extensions/TeX/boldsymbol.js
\newcommand{\uex}{{u_{\small\mbox{e}}}}
\newcommand{\half}{\frac{1}{2}}
\newcommand{\halfi}{{1/2}}
\newcommand{\xpoint}{\boldsymbol{x}}
\newcommand{\normalvec}{\boldsymbol{n}}
\newcommand{\Oof}[1]{\mathcal{O}(#1)}
\newcommand{\Ix}{\mathcal{I}_x}
\newcommand{\Iy}{\mathcal{I}_y}
\newcommand{\It}{\mathcal{I}_t}
\newcommand{\setb}[1]{#1^0} % set begin
\newcommand{\sete}[1]{#1^{-1}} % set end
\newcommand{\setl}[1]{#1^-}
\newcommand{\setr}[1]{#1^+}
\newcommand{\seti}[1]{#1^i}
\newcommand{\Real}{\mathbb{R}}
Neumann boundary condition in 2D
Use ideas from 1D! Example: \frac{\partial u}{\partial n} at y=0 ,
\frac{\partial u}{\partial n} = -\frac{\partial u}{\partial y}
Boundary condition discretization:
[-D_{2y} u = 0]^n_{i,0}\quad\Rightarrow\quad \frac{u^n_{i,1}-u^n_{i,-1}}{2\Delta y} = 0,\ i\in\Ix
Insert u^n_{i,-1}=u^n_{i,1} in the stencil for u^{n+1}_{i,j=0} to
obtain a modified stencil on the boundary.
Pattern: use interior stencil also on the bundary, but replace
j-1 by j+1
Alternative: use ghost cells and ghost values