Navigation

  • index
  • Introduction to finite element methods »

Index

A | C | D | E | F | G | H | I | K | L | M | N | P | Q | R | S | T | V | W

A

affine mapping, [1]
approximation
by sines
collocation
interpolation
of functions
of general vectors
of vectors in the plane
assembly

C

cell
cells list
chapeau function
Chebyshev nodes
collocation method (approximation)

D

degree of freedom
dof map
dof_map list

E

edges
element matrix
essential boundary condition

F

faces
finite element basis function
finite element expansion
reference element
finite element mesh
finite element, definition

G

Galerkin method
functions
vectors, [1]
Gauss-Legendre quadrature

H

hat function
Hermite polynomials

I

integration by parts
interpolation
isoparametric mapping

K

Kronecker delta, [1]

L

Lagrange (interpolating) polynomial
least squreas method
vectors
linear elements
lumped mass matrix, [1]

M

mapping of reference cells
affine mapping
isoparametric mapping
mass lumping, [1]
mass matrix, [1], [2]
mesh
finite elements
Midpoint rule
mixed finite elements

N

natural boundary condition
Newton-Cotes rules
numerical integration
Midpoint rule
Newton-Cotes formulas
Simpson's rule
Trapezoidal rule

P

P1 element
P2 element
projection
functions
vectors, [1]

Q

quadratic elements

R

reference cell
residual
Runge's phenomenon

S

simplex elements
simplices
Simpson's rule
sparse matrices
stiffness matrix
strong form

T

tensor product
test function
test space
Trapezoidal rule
trial function
trial space

V

variational formulation
vertex
vertices list

W

weak form

Logo

Quick search

Enter search terms or a module, class or function name.

Navigation

  • index
  • Introduction to finite element methods »