Navigation
index
Introduction to finite element methods
»
Index
A
|
C
|
D
|
E
|
F
|
G
|
H
|
I
|
K
|
L
|
M
|
N
|
P
|
Q
|
R
|
S
|
T
|
V
|
W
A
affine mapping
,
[1]
approximation
by sines
collocation
interpolation
of functions
of general vectors
of vectors in the plane
assembly
C
cell
cells list
chapeau function
Chebyshev nodes
collocation method (approximation)
D
degree of freedom
dof map
dof_map list
E
edges
element matrix
essential boundary condition
F
faces
finite element basis function
finite element expansion
reference element
finite element mesh
finite element, definition
G
Galerkin method
functions
vectors
,
[1]
Gauss-Legendre quadrature
H
hat function
Hermite polynomials
I
integration by parts
interpolation
isoparametric mapping
K
Kronecker delta
,
[1]
L
Lagrange (interpolating) polynomial
least squreas method
vectors
linear elements
lumped mass matrix
,
[1]
M
mapping of reference cells
affine mapping
isoparametric mapping
mass lumping
,
[1]
mass matrix
,
[1]
,
[2]
mesh
finite elements
Midpoint rule
mixed finite elements
N
natural boundary condition
Newton-Cotes rules
numerical integration
Midpoint rule
Newton-Cotes formulas
Simpson's rule
Trapezoidal rule
P
P1 element
P2 element
projection
functions
vectors
,
[1]
Q
quadratic elements
R
reference cell
residual
Runge's phenomenon
S
simplex elements
simplices
Simpson's rule
sparse matrices
stiffness matrix
strong form
T
tensor product
test function
test space
Trapezoidal rule
trial function
trial space
V
variational formulation
vertex
vertices list
W
weak form
Quick search
Enter search terms or a module, class or function name.
Navigation
index
Introduction to finite element methods
»