$$ \newcommand{\uex}{{u_{\small\mbox{e}}}} \newcommand{\Aex}{{A_{\small\mbox{e}}}} \newcommand{\half}{\frac{1}{2}} \newcommand{\tp}{\thinspace .} \newcommand{\Oof}[1]{\mathcal{O}(#1)} \newcommand{\dfc}{\alpha} % diffusion coefficient $$

« Previous
Next »

Table of contents

The 1D diffusion equation
      The initial-boundary value problem for 1D diffusion
      Step 1: Discretizing the domain
      The discrete solution
      Step 2: Fulfilling the equation at the mesh points
      Step 3: Replacing derivatives by finite differences
      Step 4: Formulating a recursive algorithm
      The mesh Fourier number
      The finite difference stencil
      The computational algorithm for the Forward Euler scheme
      The Python implementation of the computational algorithm
      Moving finite difference stencil
      Demo program
      Forward Euler applied to an initial plug profile
      Forward Euler applied to a Gaussian profile
      Backward Euler scheme
      Let's write out the equations for \( N_x=3 \)
      Two classes of discretization methods: explicit and implicit
      The linear system for a general \( N_x \)
      \( A \) is very sparse: a tridiagonal matrix
      Detailed expressions for the matrix entries
      The right-hand side
      Naive Python implementation with a dense \( (N_x+1)\times(N_x+1) \) matrix
      A sparse matrix representation will dramatically reduce the computational complexity
      Computing the sparse matrix
      Backward Euler applied to a plug profile
      Backward Euler applied to a Gaussian profile
      Crank-Nicolson scheme
      Averaging in time is necessary in the Crank-Nicolson scheme
      Crank-Nicolsoon scheme written out
      Crank-Nicolson applied to a plug profile
      Crank-Nicolson applied to a Gaussian profile
      The \( \theta \) rule
      The Laplace and Poisson equation
      We can solve 1D Poisson/Laplace equation by going to infinity in time-dependent diffusion equations
      Extensions
Analysis of schemes for the diffusion equation
      Properties of the solution
      Example
      High frequency components of the solution are very quickly damped
      Damping of a discontinuity; problem
      Damping of a discontinuity; model
      Damping of a discontinuity; Backward Euler scheme
      Damping of a discontinuity; Backward Euler simulation \( F=\half \)
      Damping of a discontinuity; Forward Euler scheme
      Damping of a discontinuity; Forward Euler simulation \( F=\half \)
      Damping of a discontinuity; Crank-Nicolson scheme
      Damping of a discontinuity; Crank-Nicolson simulation \( F=5 \)
      Fourier representation
      Analysis of the finite difference schemes
      Analysis of the Forward Euler scheme
      Results for stability
      Analysis of the Backward Euler scheme
      Analysis of the Crank-Nicolson scheme
      Summary of accuracy of amplification factors; large time steps
      Summary of accuracy of amplification factors; time steps around the Forward Euler stability limit
      Summary of accuracy of amplification factors; small time steps
      Observations

« Previous
Next »