Loading [MathJax]/extensions/TeX/boldsymbol.js
\newcommand{\uex}{{u_{\small\mbox{e}}}} \newcommand{\Aex}{{A_{\small\mbox{e}}}} \newcommand{\half}{\frac{1}{2}} \newcommand{\tp}{\thinspace .} \newcommand{\Oof}[1]{\mathcal{O}(#1)} \newcommand{\dfc}{\alpha} % diffusion coefficient

« Previous
Next »

Step 2: Fulfilling the equation at the mesh points

Require the PDE (1) to be fulfilled at an arbitrary interior mesh point (x_i,t_n) leads to \begin{equation} \frac{\partial}{\partial t} u(x_i, t_n) = \dfc\frac{\partial^2}{\partial x^2} u(x_i, t_n) \tag{5} \end{equation}

Applies to all interior mesh points: i=1,\ldots,N_x-1 and n=1,\ldots,N_t-1

For n=0 we have the initial conditions u=I(x) and u_t=0

At the boundaries i=0,N_x we have the boundary condition u=0 .

« Previous
Next »