Loading [MathJax]/extensions/TeX/boldsymbol.js
\newcommand{\uex}{{u_{\small\mbox{e}}}}
\newcommand{\Aex}{{A_{\small\mbox{e}}}}
\newcommand{\half}{\frac{1}{2}}
\newcommand{\tp}{\thinspace .}
\newcommand{\Oof}[1]{\mathcal{O}(#1)}
\newcommand{\dfc}{\alpha} % diffusion coefficient
Properties of the solution
The PDE
u_t = \dfc u_{xx}
admits solutions
u(x,t) = Qe^{-\dfc k^2 t}\sin\left( kx\right)
Observations from this solution:
- The initial shape I(x)=Q\sin kx
undergoes a damping \exp{(-\dfc k^2t)}
- The damping is very strong for short waves (large k )
- The damping is weak for long waves (small k )
- Consequence: u is smoothened with time