Navigation

  • index
  • Approximation of functions »

Index

A | B | C | D | E | F | G | H | I | K | L | M | N | P | Q | R | S | T | V

A

A^TA=A^Tb (normal equations)
affine mapping, [1]
approximation
by sines
collocation
interpolation
of functions
of general vectors
of vectors in the plane
assembly

B

basis vector

C

cell
cells list
chapeau function
Chebyshev nodes
collocation method (approximation)

D

degree of freedom
dof map
dof_map list

E

edges
element matrix

F

faces
finite element basis function
finite element expansion
reference element
finite element mesh
finite element, definition

G

Galerkin method
functions
vectors, [1]
Gauss-Legendre quadrature

H

hat function
Hermite polynomials

I

internal node
interpolation method (approximation)
isoparametric mapping

K

Kronecker delta, [1]

L

Lagrange (interpolating) polynomial
least squreas method
vectors
linear elements
lumped mass matrix

M

mapping of reference cells
affine mapping
isoparametric mapping
mass lumping
mass matrix
mesh
finite elements
Midpoint rule

N

Newton-Cotes rules
norm
normal equations
numerical integration
Midpoint rule
Newton-Cotes formulas
Simpson's rule
Trapezoidal rule

P

P1 element
P2 element
projection
functions
vectors, [1]

Q

quadratic elements

R

reference cell
Runge's phenomenon

S

shared node
simplex elements
simplices
Simpson's rule
sparse matrices

T

tensor product
Trapezoidal rule

V

vertex
vertices list

Logo

Quick search

Enter search terms or a module, class or function name.

Navigation

  • index
  • Approximation of functions »


©2016, Hans Petter Langtangen.