$$ \newcommand{\uex}{{u_{\small\mbox{e}}}} \newcommand{\half}{\frac{1}{2}} \newcommand{\halfi}{{1/2}} \newcommand{\xpoint}{\boldsymbol{x}} \newcommand{\normalvec}{\boldsymbol{n}} \newcommand{\Oof}[1]{\mathcal{O}(#1)} \newcommand{\Ix}{\mathcal{I}_x} \newcommand{\Iy}{\mathcal{I}_y} \newcommand{\It}{\mathcal{I}_t} \newcommand{\setb}[1]{#1^0} % set begin \newcommand{\sete}[1]{#1^{-1}} % set end \newcommand{\setl}[1]{#1^-} \newcommand{\setr}[1]{#1^+} \newcommand{\seti}[1]{#1^i} \newcommand{\Real}{\mathbb{R}} $$

« Previous
Next »

Generalization: damping

Why do waves die out?

Simplest damping model (for physical behavior, see demo): $$ \begin{equation} \frac{\partial^2 u}{\partial t^2} + \color{red}{b\frac{\partial u}{\partial t}} = c^2\frac{\partial^2 u}{\partial x^2} + f(x,t), \tag{32} \end{equation} $$

\( b \geq 0 \): prescribed damping coefficient.

Discretization via centered differences to ensure \( \Oof{\Delta t^2} \) error: $$ \begin{equation} [D_tD_t u + bD_{2t}u = c^2D_xD_x u + f]^n_i \tag{33} \end{equation} $$

Need special formula for \( u^1_i \) + special stencil (or ghost cells) for Neumann conditions.

« Previous
Next »