$$ \newcommand{\uex}{{u_{\small\mbox{e}}}} \newcommand{\half}{\frac{1}{2}} \newcommand{\halfi}{{1/2}} \newcommand{\xpoint}{\boldsymbol{x}} \newcommand{\normalvec}{\boldsymbol{n}} \newcommand{\Oof}[1]{\mathcal{O}(#1)} \newcommand{\Ix}{\mathcal{I}_x} \newcommand{\Iy}{\mathcal{I}_y} \newcommand{\It}{\mathcal{I}_t} \newcommand{\setb}[1]{#1^0} % set begin \newcommand{\sete}[1]{#1^{-1}} % set end \newcommand{\setl}[1]{#1^-} \newcommand{\setr}[1]{#1^+} \newcommand{\seti}[1]{#1^i} \newcommand{\Real}{\mathbb{R}} $$

« Previous
Next »

A more general model PDE with variable coefficients

$$ \begin{equation} \varrho(x)\frac{\partial^2 u}{\partial t^2} = \frac{\partial}{\partial x}\left( q(x) \frac{\partial u}{\partial x}\right) + f(x,t) \tag{31} \end{equation} $$

A natural scheme is $$ \begin{equation} [\varrho D_tD_t u = D_x\overline{q}^xD_x u + f]^n_i \end{equation} $$

Or $$ \begin{equation} [D_tD_t u = \varrho^{-1}D_x\overline{q}^xD_x u + f]^n_i \end{equation} $$

No need to average \( \varrho \), just sample at \( i \)

« Previous
Next »