Loading [MathJax]/extensions/TeX/boldsymbol.js
\newcommand{\uex}{{u_{\small\mbox{e}}}} \newcommand{\half}{\frac{1}{2}} \newcommand{\halfi}{{1/2}} \newcommand{\xpoint}{\boldsymbol{x}} \newcommand{\normalvec}{\boldsymbol{n}} \newcommand{\Oof}[1]{\mathcal{O}(#1)} \newcommand{\Ix}{\mathcal{I}_x} \newcommand{\Iy}{\mathcal{I}_y} \newcommand{\It}{\mathcal{I}_t} \newcommand{\setb}[1]{#1^0} % set begin \newcommand{\sete}[1]{#1^{-1}} % set end \newcommand{\setl}[1]{#1^-} \newcommand{\setr}[1]{#1^+} \newcommand{\seti}[1]{#1^i} \newcommand{\Real}{\mathbb{R}}

« Previous
Next »

Neumann condition and a variable coefficient

Consider \partial u/\partial x=0 at x=L=N_x\Delta x : \frac{u_{i+1}^{n} - u_{i-1}^n}{2\Delta x} = 0\quad u_{i+1}^n = u_{i-1}^n, \quad i=N_x

Insert u_{i+1}^n=u_{i-1}^n in the stencil (30) for i=N_x and obtain u^{n+1}_i \approx - u_i^{n-1} + 2u_i^n + \left(\frac{\Delta x}{\Delta t}\right)^2 2q_{i}(u_{i-1}^n - u_{i}^n) + \Delta t^2 f^n_i

(We have used q_{i+\half} + q_{i-\half}\approx 2q_i .)

Alternative: assume dq/dx=0 (simpler).

« Previous
Next »