$$ \newcommand{\uex}{{u_{\small\mbox{e}}}} \newcommand{\half}{\frac{1}{2}} \newcommand{\halfi}{{1/2}} \newcommand{\xpoint}{\boldsymbol{x}} \newcommand{\normalvec}{\boldsymbol{n}} \newcommand{\Oof}[1]{\mathcal{O}(#1)} \newcommand{\Ix}{\mathcal{I}_x} \newcommand{\Iy}{\mathcal{I}_y} \newcommand{\It}{\mathcal{I}_t} \newcommand{\setb}[1]{#1^0} % set begin \newcommand{\sete}[1]{#1^{-1}} % set end \newcommand{\setl}[1]{#1^-} \newcommand{\setr}[1]{#1^+} \newcommand{\seti}[1]{#1^i} \newcommand{\Real}{\mathbb{R}} $$

« Previous
Next »

Step 1: Discretizing the domain

Mesh in time: $$ \begin{equation} 0 = t_0 < t_1 < t_2 < \cdots < t_{N_t-1} < t_{N_t} = T \end{equation} $$

Mesh in space: $$ \begin{equation} 0 = x_0 < x_1 < x_2 < \cdots < x_{N_x-1} < x_{N_x} = L \end{equation} $$

Uniform mesh with constant mesh spacings \( \Delta t \) and \( \Delta x \): $$ \begin{equation} x_i = i\Delta x,\ i=0,\ldots,N_x,\quad t_i = n\Delta t,\ n=0,\ldots,N_t \end{equation} $$

« Previous
Next »