Loading [MathJax]/extensions/TeX/boldsymbol.js
\newcommand{\uex}{{u_{\small\mbox{e}}}} \newcommand{\vex}{{v_{\small\mbox{e}}}} \newcommand{\half}{\frac{1}{2}} \newcommand{\tp}{\thinspace .} \newcommand{\Oof}[1]{\mathcal{O}(#1)}

« Previous
Next »

The truncation error for quadratic damping (1)

Definition of R^n : \begin{equation} [mD_t D_t \uex]^n + \beta |[D_{t} \uex]^{n-\half}|[D_t \uex]^{n+\half} + s(\uex^n)-F^n = R^n\tp \end{equation}

Truncation error of the geometric mean, see (21)-(22), \begin{align*} |[D_{t} \uex]^{n-\half}|[D_t \uex]^{n+\half} &= [|D_t\uex|D_t\uex]^n - \frac{1}{4}u'(t_n)^2\Delta t^2 + \\ &\quad \frac{1}{4}u(t_n)u''(t_n)\Delta t^2 + \Oof{\Delta t^4}\tp \end{align*} Using (3)-(4) for the D_t\uex factors results in \begin{align*} [|D_t\uex|D_t\uex]^n &= |\uex' + \frac{1}{24}\uex'''(t_n)\Delta t^2 + \Oof{\Delta t^4}|\times\\ &\quad (\uex' + \frac{1}{24}\uex'''(t_n)\Delta t^2 + \Oof{\Delta t^4}) \end{align*}

« Previous
Next »