How To Generate APl Documentation with
Sphinx

Hans Petter Langtangen'-?

!Center for Biomedical Computing, Simula Research Laboratory
2Department of Informatics, University of Oslo

Nov 21, 2013

The current standard tool for documenting Python software is Sphinx. This
tool was created to support hand-written documentation files in the reStruc-
turedText (reST) format, but Sphinx also supports automatic generation of
module or package documentation based on parsing function headers and
extracting doc strings. We refer to such documentation as API documentation.
For an example, see the documentation of the numpy . polyfit function http:
//docs.scipy.org/doc/numpy/reference/generated/numpy.polyfit.html.

There are two principal steps in making APl documentation. First, write doc
strings in all key classes, methods, and functions using the formatting described
below. Second, copy the script make.py (view) to the directory where you have
the source code, adapt the script by changing a few lines in the top of it, and run
the code to generate the documentation (in the API subdirectory). The script
automates the various steps in running Sphinx and preparing Sphinx files as
described later.

We shall now briefly describe the reST format and show step by step how
to create API documentation of Python modules. We follow the documentation
rules of the numpy package. Sphinx version 1.1 or higher is then required. In
addition, the numpydoc Sphinx extension must be installed. Download the numpy
source tree, go to the top directory and perform

cd doc/sphinxext
sudo python setup.py install

0.0.1 Simple Formatting Rules

The reST format used by Sphinx and other popular tools in the Python commu-
nity is a lightly tagged markup language, much less tagged than IATEX and HTML.
There is a Quick Start Guide for reST that gives a much broader overview than
the brief description below. The Sphinx Quick Reference is also handy.
Paragraphs are separated by blank lines. Words in running text can be
emphasized. Furthermore, text in double backquotes is typeset as code:

http://docs.scipy.org/doc/numpy/reference/generated/numpy.polyfit.html
http://docs.scipy.org/doc/numpy/reference/generated/numpy.polyfit.html
src-sphinx_api/make.py
_static/make.py.html
https://github.com/numpy/numpy/blob/master/doc/example.py
http://docutils.sourceforge.net/docs/user/rst/quickstart.html
http://docutils.sourceforge.net/docs/user/rst/quickref.html

s = sin(r). Bullet lists start with a dash (-) and are indented, with a blank line
before and after:

* a is the first parameter.

* b is the second parameter. An item can
occupy multiple lines.

* ¢ is the third parameter.

In description lists, where each item starts with a keyword, an item starts with
the keyword, followed by a colon, and the text appears indented on the next
line:

the first parameter

the second parameter. An item can
occupy multiple
lines.

the third parameter.

To make a section heading, just write the heading and use equal signs, on
the line below the heading, for sections, and simple dashes for subsections
(other choices of characters are also possible).

Mathematics. Mathematical formulas are typeset in IKTEX style inline. For
example, ax? + bz + c is written like

:math: ‘ax™2 + bx + ¢
Two write an equation on a separate line, write

‘.. math:: ax™2 + bx + ¢ = 0
or

. math::

ax"2 + bx + ¢c =0

Remember to end the equation block with a blank line. Several equations can
be aligned below each other by using & as alignment character:

. math::

ax"2 + bx + ¢ &= 0,\\
dx + e &= O.

Code Snippets. To include a piece of code like

def roots(a, b, c):
q = b**2 - 4xaxc
rootl = (-b + sqrt(q))/float(2*a)
root2 = (-b - sqrt(q))/float(2*a)
return rootl, root2

you can write it as

Here is an example::

def roots(a, b, c):
q = bx*x2 - 4xaxc
rootl = -b + sqrt(q)/float(2x*a)
root2 = -b - sqrt(q)/float(2+*a)
return rootl, root2

The code block must be intented, and the preceding line must end with a double
colon. To specify the type of programming language and associated formatting
(via the Pygments package), write

code-block:: python

def roots(a, b, c):
q = b**2 - 4*axc
rootl = -b + sqrt(q)/float(2*a)
root2 = -b - sqrt(q)/float(2*a)
return rootl, root2

Interactive sessions and doctests can be inserted without colon and inden-
tation of the code, but a blank line is needed before and after the interactive

block.

Here is an example in an interactive Python shell.

>>> a
>>> b
>>> a

3

1
2
b

+ 0

Note: the result is correct.

How to Format Doc Strings. Here is a function with a typical doc string
formatted in numpy style.

This is Python code
from numpy.lib.scimath import sqrt # handles real and complex args

def roots(a, b, c, verbose=False):
nnn

Return the two roots in the quadratic equation::
axx*k*2 + bxx + ¢ = 0

or written with math typesetting
. math:: ax"2 + bx + ¢ = 0

The returned roots are real or complex numbers,
depending on the values of the arguments ‘a‘, ‘b,
‘ct.

and

Parameters
a: int, real, complex
coefficient of the quadratic term
b: int, real, complex
coefficient of the linear term
c: int, real, complex

coefficient of the constant term

verbose: bool, optional
prints the quantity °‘b**2 - 4xaxc‘‘ and if the
roots are real or complex

Returns
rootl, root2: real, complex
the roots of the quadratic polynomial.

Raises
ValueError:
when ‘a‘ is zero

See Also
:class: ‘Quadratic‘: which 1s a class for quadratlc polynomials
that also has a :func: ‘Quadratic.roots‘ method for com{utlng
the roots of a quadratlc polynomial. There 1s also a class
:class: ‘"linear.Linear‘ in the module :mod: ‘linear’
(i.e., :class: ‘linear.Linear‘).

The algorithm is a straightforward implementation of
a very well known formula [1]_

References

[1] Any textbook on mathematics or
‘Wikipedia <http://en.wikipedia.org/wiki/Quadratic_equation>‘_

>>> roots(-1, 10)

(-5. 3166247903553998 1.3166247903553998)
>>> roots(-1, 2, —10)

((-2-3j), (-2+3j))

Alternatively, we can in a doc string list the arguments and
return values in a table

Parameter Type Description

a float/complex coefficient for quadratic term
b float/complex coefficient for linear term

c float/complex coefficient for constant term
rl, r2 float/complex return: the two roots of

the quadratic polynomial

if abs(a) < 1E-14:
raise ValueError(’a=Jg is too close to zero’ % a)

q = b**x2 - 4xaxc
if verbose:
print ’qg=%g: %s roots’ % (q, ’real’ if g>0 else ’complex’)

rootl = (-b + sqrt(q))/float(2*a)

root2 = (-b - sqrt(q))/float(2*a)
return rootl, root2

Note the following:

1. Arguments to the functions and other variables are typeset in single back-
ticks (normally translated to an italic font by Sphinx).

2. The headings Parameters (for function arguments), Returns, etc., are
standard names and lead to a certain formatting of the doc string in HTML.
The text following these headings are description lists. Sometimes a
simpler formatting is convenient, e.g., a table or just running text explaining
what the arguments and return values are.

3. One can make links to the documentation of other classes and functions
as demonstrated under "See Also” (a tilde strips off the module prefix in
the output).

0.0.2 Running Sphinx

We have made a complete example on making APl documentation with Sphinx.
The module files quadratic.py (view) and linear.py (view) contain examples of
classes and a stand-alone functions with doc strings formatted as described
above. The file make.py (view) runs (automatically) all the steps described
below and creates HTML documentation of the two modules.

Make Sphinx Module Files. For each module file module. py you want include
in the documentation, prepare a file module.txt containing

:mod: ‘module

. automodule:: module
:members:
:undoc-members:
:special-members:
:inherited-members:
:show-inheritance:

This specifications imply that the documentation will contain all member func-
tions (not starting with an underscore) with doc strings (:members:), and those
without doc strings (: undoc-members:), as well as all special methods (: special-members:),
and all methods inherited from super classes (:inherited-members:). For
the worked example we need to make the module files src-sphinx_api/api/
quadratic.txt (view) and src-sphinx_api/api/linear.txt (vView).
The name of modules in a subpackages must be listed with the full package
path. For example, module mod in subpackage s2 of subpackage s1 is listed
as

:mod: ‘s1.s2.mod*

. automodule:: sl1.s2.mod

in the file mod.txt. The index. txt file has a corresponding line with mod (which
actually is the basename of the file mod.txt where the module s1.s2.mod is
defined). For each of the __init__.py files in the packages one will normally
make a .txt file with the package name, say s2.txt, where the first lines
are:

src-sphinx_api/quadratic.py
_static/quadratic.py.html
src-sphinx_api/linear.py
_static/linear.py.html
src-sphinx_api/make.py
_static/make.py.html
_static/api-example/index.html
src-sphinx_api/api/quadratic.txt
src-sphinx_api/api/quadratic.txt
_static/quadratic.txt.html
src-sphinx_api/api/linear.txt
_static/linear.txt.html

:mod: ‘s1.s2¢

. automodule:: sl1.s2

Create Sphinx Directory Tree. Sphinx needs a series of files that can be
automatically generated by running

sphinx-quickstart

and answering the questions. Specify a directory name as "rooth path for the
documentation”, say api, give the documentation a title, author, and version
number. Make sure the extension of sphinx files is .txt and not .rst. If you
make a fresh version of the documentation, remember to first delete the api
directory. Move all the module. txt files to the api directory.

Make Index File. In the recently generated api directory, you must make
an index file index.txt that lists the modules for which there exist .txt files
. The index.txt file is automatically generated by sphinx-quickstart, but
no modules are listed. Here is the typical look when it contains two modules
quadratic and linear:

. Docex Ezample documentation master file, created by
sphinz—-quickstart on Thu Feb 16 10:50:28 2022.

Welcome to Sphinx API Example’s documentation!

Contents:

. toctree::
:maxdepth: 2

quadratic
linear

Indices and tables

* :ref:‘genindex
* :ref:‘modindex‘
* :ref:‘search®

Recall that each module listed in this file must have a corresponding . txt file
as described above.

Edit the Configuration File. The api directory contains a file conf . py which
allows you to configure a lot of features. You need to find the line with

#sys.path.insert (0, os.path.abspath(’.’))

Uncomment this line and insert the directory where the modules reside, in this
case the parent directory

sys.path.append(os.path. join(os.path.abspath(os.pardir)))

We also recommend to make use of more Sphinx extension modules. Find the
line with extensions = and edit it to

extensions = [
’sphinx.ext.autodoc’,
’sphinx.ext.mathjax’,
’sphinx.ext.viewcode’,
’numpydoc’,
’sphinx.ext.autosummary’,
’sphinx.ext.doctest’,
’sphinx.ext.inheritance_diagram’]

If not the numpydoc Sphinx extension is enabled, headings like Parameters,
Returns, etc., are ignored and give rise to error messages ("Unexpected section
title”).

You may also want to add

extensions += [
’matplotlib.sphinxext.only_directives’,
’matplotlib.sphinxext.plot_directive’,
’matplotlib.sphinxext.ipython_directive’,
’matplotlib.sphinxext.ipython_console_highlighting’]

if matplotlib is installed.

Compile the Sphinx Document. You are now ready to compile an HTML
version of the Sphinx documentation:

make html

This command results in a directory _build/html with a file index.html that
can be loaded into a web browser for inspection.

The Python script make.py (view) automatically generates . txt index files for
each .py file, runs sphinx-quickstart, copies index files to the new generated
directory, edits conf . py, and runs make html to create the APl documentation
in HTML format. Examining the make . py script provides a complete recipe for
getting started with Sphinx for automatically generating module and package
documentation. The script can easily be applied to your own projects (it works
without modifications if you want to document all . py files in a directory). in a
directory)

To see the result of the generated documentation, invoke api/_build/html/
index.html. Click around to see the various features, like the index, for instance.
The layout and colors can be customized through different Sphinx themes, see
the api/conf.py file. Several examples are provided in the examples directory.

Our example with the quadratic and linear modules is minimalistic. An
excellent large-scale example on documenting a packing using Sphinx is found
in the Matplotlib source (subdirectory doc). SciTools also applies Sphinx for

src-sphinx_api/make.py
_static/make.py.html
_static/api-example/index.html
_static/api-example/index.html
_static/examples/index.html

documentation, and the file doc/api/sphinx-src/00README in the SciTools
source tree explains the necessary steps in detail. Before diving into the
documentation details of Matplotlib or SciTools, it will be advantageous to
have digested some of the official Sphinx documentation, reached from http:
//sphinx.pocoo.org/.

Examples

>> roots(-1, 2, 10)
(-5.21662470023553008, 1.3166247003553008)
>>> roots(-1, 2, -18)
((-2-33), (-2+33))

Alternatively, we can in a doc string list the arguments and return values in a table
Parameter Type Description

a float/complex coefficient for quadratic term

b float/complex coefficient for linear term

c float/complex coefficient for constant term

2 float/complex return: the two roots of the quadratic
polynomial

class quadratic. Quadratic(a, b, c) [source]
Representation of a quadratic polynomial:

az® +bz+c

Example:

>> q = Quadratic(azz, b=4, c=-16)

= g.roots()

>>:
2.8
>>> r2
4.8

>>> q(r1), g(rz) # check
(0.8, 0.8)

Figure 1: Snapshot of HTML documentation automatically generated by Sphinx.

0.0.3 Doconce Doc String Format

A disadvantage with the Sphinx format in doc strings is that it has quite some
tagging that can be annoying when reading the doc strings directly, as done
when invoking pydoc on the command line or help(...) or object.__doc__in
interactive Python sessions. By writing the doc strings in Doconce format, one
can transform the text both to Sphinx and to plain ASCII. That is, the doc strings
looks nice in pydoc and in HTML.

http://sphinx.pocoo.org/
http://sphinx.pocoo.org/
https://github.com/hplgit/doconce

	Simple Formatting Rules
	Running Sphinx
	Doconce Doc String Format

