Ch.9: Object-oriented programming

Hans Petter Langtangen?+?

Simula Research Laboratory?!

University of Oslo, Dept. of Informatics?

Aug 15, 2015

© Inheritance

Parents

P

Father Mother
(with hemophilia) (not a carrier)
XY XX

class Convertible {

/7 Key (private)

/7 Speed : 155 (miles / hour)
/7 Weight 1600 kg

// Engne: 3 2L 554 inline-6
}

¢ class Roadster :x*esds Convertible {
// Speed: 165 (miles / hour)
// Weight 1399 kg
Son Daughter Son Daughter
(Without hemaphilia) (carrier) (Withaut hemophilia) (carrier)
XY XX XY XX

Children

The chapter title Object-oriented programming (OO) may

mean two different things

© Programming with classes (better: object-based programming)
@ Programming with class hierarchies (class families) J

New concept: collect classes in families (hierarchies)

What is a class hierarchy?

o A family of closely related classes

@ A key concept is inheritance: child classes can inherit
attributes and methods from parent class(es) - this saves much
typing and code duplication

As usual, we shall learn through examples!

OO is a Norwegian invention by Ole-Johan Dahl and Kristen
Nygaard in the 1960s - one of the most important inventions in
computer science, because OO is used in all big computer systems
today!

Warning: OO is difficult and takes time to master

o Let ideas mature with time

@ Study many examples

@ OO is less important in Python than in C++, Java and C#,
so the benefits of OO are less obvious in Python

° Our examples here on OO employ numerical methods for
f f(x)dx, f'(x), u' = f(u, t) - make sure you understand the
S|mp|est of these numerical methods before you study the
combination of OO and numerics

@ Our goal: write general, reusable modules with lots of methods
for numerical computing off f(x)dx, f'(x), v’ = f(u,t)

A class for straight lines

A class for straight lines

Problem:
Make a class for evaluating lines y = ¢y + c1x.

A class for straight lines

Problem:

Make a class for evaluating lines y = ¢y + c1x.

class Line:
def init__(self, c0, cl):

self.c0, self.cl = c0, cl

def __call__(self, x):
return self.cO + self.cl*x

def table(self, L, R, n):
"""Beturn a table with m points for L <= x <= R."""
S:’,
for x in linspace(L, R, n):
y = self(x)
s += ’%12g %12g\n’ % (x, y)
return s

A class for parabolas

A class for parabolas

Problem:

Make a class for evaluating parabolas y = ¢ + c1x + cox?.

A class for parabolas

Problem:

Make a class for evaluating parabolas y = ¢ + c1x + cox?.

class Parabola:
def init__(self, c0, cl, c2):

self.c0, self.cl, self.c2 = c0, cl1, c2

def call__(self, x):

return self.c2*x**2 + self.cl*x + self.cO

def table(self, L, R, n):
"""Beturn a table with m points for L <= z <= R."""
s=’7
for x in linspace(L, R, n):
y = self(x)
s += ’/12g %12g\n’ % (x, y)
return s

A class for parabolas

Problem:

Make a class for evaluating parabolas y = ¢ + c1x + cox?.

class Parabola:
def init__(self, c0, cl, c2):

self.c0, self.cl, self.c2 = c0, cl1, c2

def call__(self, x):

return self.c2*x**2 + self.cl*x + self.cO

def table(self, L, R, n):
"""Beturn a table with m points for L <= z <= R."""

s = 2
for x in linspace(L, R, n):

y = self(x)

s += ’/12g %12g\n’ % (x, y)
return s

Observation:

This is almost the same code as class Line, except for the things
with c2

Class Parabola as a subclass of Line; principles

Class Parabola as a subclass of Line; principles

@ Parabola code = Line code + a little extra with the ¢, term
@ Can we utilize class Line code in class Parabola?
@ This is what inheritance is about!

Writing

class Parabola(Line):
pass

makes Parabola inherit all methods and attributes from Line, so
Parabola has attributes cO and c1 and three methods

Class Parabola as a subclass of Line; principles

@ Parabola code = Line code + a little extra with the ¢, term
@ Can we utilize class Line code in class Parabola?
@ This is what inheritance is about!

Writing

class Parabola(Line):
pass

makes Parabola inherit all methods and attributes from Line, so
Parabola has attributes cO and c1 and three methods

@ Line is a superclass, Parabola is a subclass
(parent class, base class; child class, derived class)

o Class Parabola must add code to Line's constructor (an
extra c2 attribute), __call__ (an extra term), but table can
be used unaltered

@ The principle is to reuse as much code in Line as possible and
avoid duplicating code

Class Parabola as a subclass of Line; code

A subclass method can call a superclass method in this way:

superclass_name.method(self, argl, arg2, ...)

Class Parabola as a subclass of Line:

class Parabola(Line):
def __init__(self, c0, cl, c2):
Line.__init__(self, c0, cl1) # Line stores c0, cl
self.c2 = c2

def call__(self, x):

return Line.__call__(self, x) + self.c2*xx**2

What is gained?

Class Parabola as a subclass of Line; code

A subclass method can call a superclass method in this way:

superclass_name.method(self, argl, arg2, ...)

Class Parabola as a subclass of Line:

class Parabola(Line):
def __init__(self, c0, cl, c2):
Line.__init__(self, c0, cl1) # Line stores c0, cl
self.c2 = c2

def call__(self, x):

return Line.__call__(self, x) + self.c2*xx**2
What is gained?

@ Class Parabola just adds code to the already existing code in
class Line - no duplication of storing cO and c1, and
computing ¢g + c1x

Class Parabola as a subclass of Line; code

A subclass method can call a superclass method in this way:

superclass_name.method(self, argl, arg2, ...)

Class Parabola as a subclass of Line:

class Parabola(Line):
def __init__(self, c0, cl, c2):
Line.__init__(self, c0, cl1) # Line stores c0, cl
self.c2 = c2

def call__(self, x):

return Line.__call__(self, x) + self.c2*xx**2
What is gained?

@ Class Parabola just adds code to the already existing code in
class Line - no duplication of storing cO and c1, and
computing ¢g + c1x

o Class Parabola also has a table method - it is inherited

Class Parabola as a subclass of Line; code

A subclass method can call a superclass method in this way:

superclass_name.method(self, argl, arg2, ...)

Class Parabola as a subclass of Line:

class Parabola(Line):
def __init__(self, c0, cl, c2):
Line.__init__(self, c0, cl1) # Line stores c0, cl
self.c2 = c2

def call__(self, x):

return Line.__call__(self, x) + self.c2*xx**2
What is gained?

@ Class Parabola just adds code to the already existing code in
class Line - no duplication of storing cO and c1, and
computing ¢g + c1x

o Class Parabola also has a table method - it is inherited

@ __init__ and __call__ are overridden or redefined in the

subclass

Class Parabola as a subclass of Line; demo

p = Parabola(l, -2, 2)
pl = p(2.5)

print pl

print p.table(0, 1, 3)

Output:
8.5

o
[l Ne)
o
= o

class Line:
def init__(self, c0, cl):

self.c0, self.cl = c0, cl

def __call__(self, x):
return self.cO + self.cl*x

def table(self, L, R, n):
"""Beturn a table with m points for L <= x <= R."""

s = 22
for x in linspace(L, R, n):

y = self(x)

s += ?12g J12g\n’ % (x, y)
return s

class Parabola(Line):
def __init__(self, c0, cl, c2):
Line.__init__(self, c0, cl) # Line stores c0, cl
self.c2 = c2

def call__(self, x):

return Line.__call__(self, x) + self.c2xx**2

p = Parabola(l, -2, 2)
print p(2.5)

(Visualize execution)

http://pythontutor.com/visualize.html#code=class+Line%3A%0A++++def+__init__%28self%2C+c0%2C+c1%29%3A%0A++++++++self.c0%2C+self.c1+%3D+c0%2C+c1%0A%0A++++def+__call__%28self%2C+x%29%3A%0A++++++++return+self.c0+%2B+self.c1%2Ax%0A%0A++++def+table%28self%2C+L%2C+R%2C+n%29%3A%0A++++++++%22%22%22Return+a+table+with+n+points+for+L+%3C%3D+x+%3C%3D+R.%22%22%22%0A++++++++s+%3D+%27%27%0A++++++++for+x+in+linspace%28L%2C+R%2C+n%29%3A%0A++++++++++++y+%3D+self%28x%29%0A++++++++++++s+%2B%3D+%27%2512g+%2512g%5Cn%27+%25+%28x%2C+y%29%0A++++++++return+s%0A%0Aclass+Parabola%28Line%29%3A%0A++++def+__init__%28self%2C+c0%2C+c1%2C+c2%29%3A%0A++++++++Line.__init__%28self%2C+c0%2C+c1%29++%23+Line+stores+c0%2C+c1%0A++++++++self.c2+%3D+c2%0A%0A++++def+__call__%28self%2C+x%29%3A%0A++++++++return+Line.__call__%28self%2C+x%29+%2B+self.c2%2Ax%2A%2A2%0A%0Ap+%3D+Parabola%281%2C+-2%2C+2%29%0Aprint+p%282.5%29&mode=display&cumulative=false&heapPrimitives=false&drawParentPointers=false&textReferences=false&py=2&curInstr=0

We can check class type and class relations with

isinstance(obj, type) and
issubclass (subclassname, superclassname)

>>> from Line_Parabola import Line, Parabola
>>> 1 = Line(-1, 1)

>>> isinstance(l, Line)

True

>>> isinstance(l, Parabola)

False

>>> p = Parabola(-1, 0, 10)
>>> isinstance(p, Parabola)
True

>>> isinstance(p, Line)
True

>>> issubclass(Parabola, Line)

True

>>> issubclass(Line, Parabola)

False

>>> p.__class__ == Parabola

True

>>> p.__class__.__name__ # string version of the class name

’Parabola’

Line as a subclass of Parabola

Subclasses are often special cases of a superclass
A line cg + ci1x is a special case of a parabola ¢y + c1x + x>
Can Line be a subclass of Parabola?

No problem - this is up to the programmer’s choice

e 6 6 o6 o

Many will prefer this relation between a line and a parabola

Code when Line is a subclass of Parabola

class Parabola:
def __init__(self, cO, cl, c2):
self.c0, self.cl, self.c2 = c0, cl1, c2

def __call__(self, x):
return self.c2*x**2 + self.cl*x + self.cO

def table(self, L, R, n):
"""Beturn a table with m points for L <= x <= R."""

g = 2
for x in linspace(L, R, n):

y = self(x)

s += ’/12g %12g\n’ 4 (x, y)
return s

class Line(Parabola):
def __init__(self, c0, cl):
Parabola.__init__(self, c0, cl, 0)

Note: __call__ and table can be reused in class Line!

Recall the class for numerical differentiation from Ch. 7

x + h) — f(x)
h

f'(x) ~ f(

class Derivative:
def __init__(self, f, h=1E-5):
f

self.f
self.h = float(h)

def __call__(self, x):
f, h = self.f, self.h # make short forms
return (f(x+h) - £(x))/h

def f(x):
return exp(-x)*cos(tanh(x))

from math import exp, cos, tanh
dfdx = Derivative(f)
print dfdx(2.0)

There are numerous formulas numerical differentiation

f(x) = (X+hh) 4 oh
F(x) = T = Z(X—h) ol
F(x) = (x+h)2hf(x — h) + O
F1(x) = ;Lf(x+h)2—hf(x—h) ;f(x+2h);7f(x_2h) o)
f,(x)zgf(erh)z—hf(x—h) _2f(x+2h)£;7f(x—2h)+
1 flx+3h) — f(x—3h) o)

10 6h
F(x) = = <—éf(x +2R) + F(x+ h) — %f(x) - %f(x - h)) +O(H)

How can we make a module that offers all these formulas?

class Forwardl:

def __init__(self, f, h=1E-5):
self.f = f
self.h = float(h)

def __call__(self, x):
f, h = self.f, self.h
return (f(x+h) - £f(x))/h

class Backwardl:
def __init__(self, f, h=1E-5):
self.f f
self.h f

loat (h)

def __call__(self, x):
f, h = self.f, self.h
return (£(x) - f(x-h))/h

class Central2:
same constructor

put relevant formula in __call__

What is the problem with this type of code?

All the constructors are identical so we duplicate a lot of code.)

@ A general OO idea: place code common to many classes in a
superclass and inherit that code

@ Here: inhert constructor from superclass,
let subclasses for different differentiation formulas implement
their version of __call_

Class hierarchy for numerical differentiation

class Diff:
def __init__(self, f, h=1E-5):
self.f = f
self.h = float(h)

Subclass for simple 1st-order forward formula:

class Forwardl (Diff):
def __call__(self, x):
f, h = self.f, self.h
return (£f(x+h) - f(x))/h

Subclass for 4-th order central formula:

class Centrald (Diff):
def __call__(self, x):
f, h = self.f, self.h
return (4./3)*(f(x+h) - f(x-h)) /(2*%h) - \
(1./3)*(f(x+2xh) - f(x-2%h))/(4*h)

Use of the differentiation classes

Interactive example: f(x) = sin x, compute f/(x) for x =7

>>> from Diff import =*
>>> from math import sin
>>> mycos = Central4(sin)
>>> # compute sin’(pi):
>>> mycos (pi)
-1.000000082740371

Centrald(sin) calls inherited constructor in superclass, while
mycos(pi) calls __call__ in the subclass Centrald

class Diff:
def __init__(self, f, h=1E-5):
f

self.f
self.h = float(h)

class Forwardl (Diff):
def __call__(self, x):

f, h = self.f, self.h
return (f(x+h) - f(x))/h

dfdx = Diff(lambda x: x**2)
print dfdx(0.5)

(Visualize execution)

http://pythontutor.com/visualize.html#code=class+Diff%3A%0A++++def+__init__%28self%2C+f%2C+h%3D1E-5%29%3A%0A++++++++self.f+%3D+f%0A++++++++self.h+%3D+float%28h%29%0A%0Aclass+Forward1%28Diff%29%3A%0A++++def+__call__%28self%2C+x%29%3A%0A++++++++f%2C+h+%3D+self.f%2C+self.h%0A++++++++return+%28f%28x%2Bh%29+-+f%28x%29%29%2Fh%0A%0Adfdx+%3D+Diff%28lambda+x%3A+x%2A%2A2%29%0Aprint+dfdx%280.5%29&mode=display&cumulative=false&heapPrimitives=false&drawParentPointers=false&textReferences=false&py=2&curInstr=0

A flexible main program for numerical differentiation

Suppose we want to differentiate function expressions from the
command line:

Terminal> python df.py ’exp(sin(x))’ Central 2 3.1
-1.04155573055
Terminal> python df.py ’f(x)’
£ (x)

difftype difforder x

With eval and the Diff class hierarchy this main program can be
realized in a few lines (many lines in C# and Java!):

import sys

from Diff import *

from math import *

from scitools.StringFunction import StringFunction

f = StringFunction(sys.argv[1])
difftype = sys.argv[2]

difforder = sys.argv[3]
classname = difftype + difforder
df = eval(classname + ’(f)’)

x = float(sys.argv[4])

print df(x)

numerical differentiation formulas

@ Sample function: f(x) = exp (—10x)

@ See the book for a little program that computes the errors:

h
.25E-02
.12E-02
.56E-02
.81E-03
.91E-03
.95E-03

-2.
-1.
-7.
-3.
-1.
-9.

R W WO

Observations:

@ Halving h from row to row reduces the errors by a factor of 2,

Forwardl
56418286E+00
41170013E+00
42100948E-01
80648092E-01
92794011E-01
70235594E-02

ONEE PR PO

Central2

.63876231E-01
.63556996E-01
.07398036E-02
.01756309E-02
.54332554E-03
.35795004E-04

Investigating numerical approximation errors

@ We can empirically investigate the accuracy of our family of 6

Centrald

.32825724E-02
.21608292E-03
.99260429E-04
.24266603E-05
.76243120E-07
.85085874E-08

4 and 16, i.e, the errors go like h, h?, and h*

@ Central4 has really superior accuracy compared with
Forwardil

Alternative implementations (in the book)

@ Pure Python functions
downside: more arguments to transfer, cannot apply formulas
twice to get 2nd-order derivatives etc.

e Functional programming
gives the same flexibility as the OO solution

@ One class and one common math formula
applies math notation instead of programming techniques to
generalize code

These techniques are beyond scope in the course, but place OO into
a bigger perspective. Might better clarify what OO is - for some.

Formulas for numerical integration

There are numerous formulas for numerical integration and all of
them can be put into a common notation:

b n—1
/ F(x)dx =~ Y wif(x)
e i=0

w;: weights, x;: points (specific to a certain formula)

The Trapezoidal rule has h = (b —a)/(n—1) and
h .

> wi=nh(i#0,n—1)
The Midpoint rule has h = (b — a)/n and

xXi=a-+ih, wy=w,_1=

h
x;:a+§+ih, W,':h

More formulas

Simpson's rule has

xi=a-+ih, h=

Wo = Wp—1 = =

6

2h
w; = — for / even, w; = — for j odd
3 3

Other rules have more complicated formulas for w; and x;

Why should these formulas be implemented in a class
hierarchy?

Why should these formulas be implemented in a class

hierarchy?

@ A numerical integration formula can be implemented as a
class: a, b and n are attributes and an integrate method
evaluates the formula

Why should these formulas be implemented in a class

hierarchy?

@ A numerical integration formula can be implemented as a
class: a, b and n are attributes and an integrate method
evaluates the formula

o All such classes are quite similar: the evaluation of - w;f(x;)

is the same, only the definition of the points and weights differ
among the classes

Why should these formulas be implemented in a class

hierarchy?

@ A numerical integration formula can be implemented as a
class: a, b and n are attributes and an integrate method
evaluates the formula

o All such classes are quite similar: the evaluation of - w;f(x;)
is the same, only the definition of the points and weights differ
among the classes

@ Recall: code duplication is a bad thing!

Why should these formulas be implemented in a class

hierarchy?

A numerical integration formula can be implemented as a
class: a, b and n are attributes and an integrate method
evaluates the formula

All such classes are quite similar: the evaluation of 3_: w;f (x;)
is the same, only the definition of the points and weights differ
among the classes

Recall: code duplication is a bad thing!

The general OO idea: place code common to many classes in
a superclass and inherit that code

Why should these formulas be implemented in a class

hierarchy?

A numerical integration formula can be implemented as a
class: a, b and n are attributes and an integrate method
evaluates the formula

o All such classes are quite similar: the evaluation of - w;f(x;)
is the same, only the definition of the points and weights differ
among the classes

@ Recall: code duplication is a bad thing!

@ The general OO idea: place code common to many classes in
a superclass and inherit that code

o Here we put > ; w;f(X;) in a superclass (method integrate)

Why should these formulas be implemented in a class

hierarchy?

A numerical integration formula can be implemented as a

class: a, b and n are attributes and an integrate method

evaluates the formula

o All such classes are quite similar: the evaluation of - w;f(x;)
is the same, only the definition of the points and weights differ
among the classes

@ Recall: code duplication is a bad thing!

@ The general OO idea: place code common to many classes in
a superclass and inherit that code

o Here we put > ; w;f(X;) in a superclass (method integrate)

@ Subclasses extend the superclass with code specific to a math
formula, i.e., w; and x; in a class method construct_rule

The superclass for integration

class Integrator:
def __init__(self, a, b, n):

self.a, self.b, self.n = a, b, n
self .points, self.weights = self.construct_method()

def construct_method(self):

raise NotImplementedError(’no rule in class %s’ % \

self.__class__.__name__)

def integrate(self, f):

s =0

for i in range(len(self.weights)):

s += self.weights[i]*f (self.points[i])
return s

def vectorized_integrate(self, f):
f must be vectorized for this to work
return dot(self.weights, f(self.points))

A subclass: the Trapezoidal rule

class Trapezoidal (Integrator) :
def construct_method(self):

h = (self.b - self.a)/float(self.n - 1)
x = linspace(self.a, self.b, self.n)
w = zeros(len(x))

wl[i:-1] +=h
wl0] = h/2; w[-1] = h/2
return x, w

Another subclass: Simpson's rule

@ Simpson’s rule is more tricky to implement because of different
formulas for odd and even points

@ Don't bother with the details of w; and x; in Simpson’s rule
now - focus on the class design!

class Simpson(Integrator):

def construct_method(self):
if self.n % 2 !'= 1:
print ’n=/d must be odd, 1 is added’ 7 self.n
self.n += 1

<code for computing x and w>
return x, w

About the program flow

Let us integrate f02 x2dx using 101 points:

def f(x):
return x*x

method = Simpson(0, 2, 101)
print method.integrate (f)

Important:
@ method = Simpson(...): this invokes the superclass

constructor, which calls construct_method in class Simpson

@ method.integrate(f) invokes the inherited integrate
method, defined in class Integrator

class Integrator:
def __init__(self, a, b, n):
self.a, self.b, self.n = a, b, n
self.points, self.weights = self.construct_method()

def construct_method(self):

raise NotImplementedError(’no rule in class %s’ % \

self.__class__.__name__)

def integrate(self, f):

s =0

for i in range(len(self.weights)):

s += self.weights[i]*f (self.points[i])
return s

class Trapezoidal (Integrator):
def construct_method(self):

h = (self.b - self.a)/float(self.n - 1)
x = linspace(self.a, self.b, self.n)
w = zeros(len(x))

w[i:-1] +=h
w[0] = h/2; w[-1] = h/2
return x, w

def f(x):
return x*x

method = Trapezoidal(0, 2, 101)
print method.integrate(f)

http://pythontutor.com/visualize.html#code=class+Integrator%3A%0A++++def+__init__%28self%2C+a%2C+b%2C+n%29%3A%0A++++++++self.a%2C+self.b%2C+self.n+%3D+a%2C+b%2C+n%0A++++++++self.points%2C+self.weights+%3D+self.construct_method%28%29%0A%0A++++def+construct_method%28self%29%3A%0A++++++++raise+NotImplementedError%28%27no+rule+in+class+%25s%27+%25+%5C%0A++++++++++++++++++++++++++++++++++self.__class__.__name__%29%0A%0A++++def+integrate%28self%2C+f%29%3A%0A++++++++s+%3D+0%0A++++++++for+i+in+range%28len%28self.weights%29%29%3A%0A++++++++++++s+%2B%3D+self.weights%5Bi%5D%2Af%28self.points%5Bi%5D%29%0A++++++++return+s%0A%0Aclass+Trapezoidal%28Integrator%29%3A%0A++++def+construct_method%28self%29%3A%0A++++++++h+%3D+%28self.b+-+self.a%29%2Ffloat%28self.n+-+1%29%0A++++++++x+%3D+linspace%28self.a%2C+self.b%2C+self.n%29%0A++++++++w+%3D+zeros%28len%28x%29%29%0A++++++++w%5B1%3A-1%5D+%2B%3D+h%0A++++++++w%5B0%5D+%3D+h%2F2%3B++w%5B-1%5D+%3D+h%2F2%0A++++++++return+x%2C+w%0A%0Adef+f%28x%29%3A%0A++++return+x%2Ax%0A%0Amethod+%3D+Trapezoidal%280%2C+2%2C+101%29%0Aprint+method.integrate%28f%29&mode=display&cumulative=false&heapPrimitives=false&drawParentPointers=false&textReferences=false&py=2&curInstr=0

Applications of the family of integration classes

We can empirically test out the accuracy of different integration
methods Midpoint, Trapezoidal, Simpson, GaussLegendre?, ...

applied to, e.g.,
1
/ () tmdt =1
0

@ This integral is “difficult” numerically for m > 1.

@ Key problem: the error in numerical integration formulas is of
the form Cn™", mathematical theory can predict r (the
“order”), but we can estimate r empirically too

@ See the book for computational details

@ Here we focus on the conclusions

Convergence rates for m < 1 (easy case)

Simpson and Gauss-Legendre reduce the error faster than Midpoint
and Trapezoidal (plot has In(error) versus In n) }

m=0.25
0 T T T . T
Midpoint
Trapezoidal --------
Simpson -------
GaussLegendre2 ——---
5L
S0 |-
g
& 15 T
£
20 | i
25 - TR A
30 I I I I I I I I
2 25 3 3.5 4 4.5 5 55 6 6.5

Convergence rates for m > 1 (problematic case)

Simpson and Gauss-Legendre, which are theoretically “smarter”
than Midpoint and Trapezoidal do not show superior behavior!
m=2
-4 T T
Midpoint
- Trapezoidal --------
S5 T Simpson ------—- B
GausslLegendre2 ——--
ol
2l
sl
h -10 -
al
el
P |
14 ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘
2 25 3 35 4 45 5 55 6 6.5

Summary of object-orientation principles

A subclass inherits everything from the superclass

When to use a subclass/superclass?

e if code common to several classes can be placed in a superclass
o if the problem has a natural child-parent concept

The program flow jumps between super- and sub-classes

It takes time to master when and how to use OO

Study examples!

Recall the class hierarchy for differentiation

Mathematical principles:

Collection of difference formulas for f'(x). For example,

f h) —f(x—h
iy PO B) = Flx = 1)
2h
Superclass Diff contains common code (constructor), subclasses implement
various difference formulas.)

Implementation example (superclass and one subclass)

class Diff:
def __init__(self, f, h=1E-5):
self.f = f
self.h = float(h)

class Central2(Diff):
def __call__(self, x):
f, h = self.f, self.h
return (£(x+h) - £(x-h))/(2*h)

Recall the class hierarchy for integration (1)

Mathematical principles:
General integration formula for numerical integration:

b n—1
/ Fx)dx = > wif (x7)
a =0

Superclass Integrator contains common code (constructor,
>_j wif(xi)), subclasses implement definition of w; and x;.

Recall the class hierarchy for integration (2)

Implementation example (superclass and one subclass):

class Integrator:
def __init__(self, a, b, n):
self.a, self.b, self.n = a, b, n
self.points, self.weights = self.construct_method()

def integrate(self, f):
s =0
for i in range(len(self.weights)):
s += self.weights[i]*f (self.points[i])
return s

class Trapezoidal (Integrator):
def construct_method(self):
x = linspace(self.a, self.b, self.n)
h = (self.b - self.a)/float(self.n - 1)
= zeros(len(x)) + h
W[O] /= 2; wl-11 /= 2 # adjust end weights
return x, w

A summarizing example: Generalized reading of input data

Write a table of x € [a, b] and f(x) to file:

outfile = open(filename, ’w’)

from numpy import linspace

for x in linspace(a, b, n):
outfile.write(’%12g %12g\n’ % (x, £(x)))

outfile.close()

We want flexible input:

Read a, b, n, filename and a formula for £ from...

@ the command line
@ interactive commands like a=0, b=2, filename=mydat.dat
@ questions and answers in the terminal window
@ a graphical user interface
@ a file of the form
a=0

b=2
filename = mydat.dat

Graphical user interface

a 1}
formula [x+1

b [1o
filename |tmp.dat
n 4

Run program |

First we write the application code

from ReadInput import *

define all input parameters as name-value pairs in a dict:
p = dict(formula=’x+1’, a=0, b=1, n=2, filename=’tmp.dat’)

read from some input medium:
inp = ReadCommandLine (p)

or

inp = PromptUser (p) # questions in the terminal window
or

inp = ReadInputFile(p) # read file or interactive commands
or

inp = GUI(p) # read from a GUI

load input data into separate wariables (alphabetic order)
a, b, filename, formula, n = inp.get_all()

go!

About the implementation

@ A superclass ReadInput stores the dict and provides methods
for getting input into program variables (get, get_all)

@ Subclasses read from different input sources
@ ReadCommandlLine, PromptUser, ReadInputFile, GUI
@ See the book or ReadInput.py for implementation details

@ For now the ideas and principles are more important than code
details!

	Inheritance

