
App.E: Programming of di�erential equations

Hans Petter Langtangen1,2

Simula Research Laboratory1

University of Oslo, Dept. of Informatics2

Aug 21, 2016

How to solve any ordinary scalar di�erential equation

u′(t) = αu(t)(1− R−1u(t))

u(0) = U0

0 5 10 15 20 25 30 35 40 45
t

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

u

Logistic growth: alpha=0.2, R=1, dt=0.1

Examples on scalar di�erential equations (ODEs)

Terminology:

Scalar ODE: a single ODE, one unknown function

Vector ODE or systems of ODEs: several ODEs, several
unknown functions

Examples:

u′ = αu exponential growth

u′ = αu
(
1− u

R

)
logistic growth

u′ + b|u|u = g falling body in �uid

We shall write an ODE in a generic form: u′ = f (u, t)

Our methods and software should be applicable to any ODE

Therefore we need an abstract notation for an arbitrary ODE

u′(t) = f (u(t), t)

The three ODEs on the last slide correspond to

f (u, t) = αu, exponential growth

f (u, t) = αu
(
1− u

R

)
, logistic growth

f (u, t) = −b|u|u + g , body in �uid

Our task: write functions and classes that take f as input and
produce u as output

What is the f (u, t)?

Problem:

Given an ODE,

√
uu′ − α(t)u3/2(1− u

R(t)
) = 0,

what is the f (u, t)?

Solution:

The target form is u′ = f (u, t), so we need to isolate u′ on the
left-hand side:

u′ = α(t)u(1− u

R(t)
)

︸ ︷︷ ︸
f (u,t)

Such abstract f functions are widely used in mathematics

We can make generic software for:

Numerical di�erentiation: f ′(x)

Numerical integration:
∫ b
a f (x)dx

Numerical solution of algebraic equations: f (x) = 0

Applications:

1
d
dx x

a sin(wx): f (x) = xa sin(wx)

2

∫ 1

−1(x2 tanh−1 x − (1 + x2)−1)dx :

f (x) = x2 tanh−1 x − (1 + x2)−1, a = −1, b = 1

3 Solve x4 sin x = tan x : f (x) = x4 sin x − tan x

We use �nite di�erence approximations to derivatives to
turn an ODE into a di�erence equation

u′ = f (u, t)

Assume we have computed u at discrete time points t0, t1, . . . , tk .
At tk we have the ODE

u′(tk) = f (u(tk), tk)

Approximate u′(tk) by a forward �nite di�erence,

u′(tk) ≈ u(tk+1)− u(tk)

∆t

Insert in the ODE at t = tk :

u(tk+1)− u(tk)

∆t
= f (u(tk), tk)

Terms with u(tk) are known, and this is an algebraic (di�erence)
equation for u(tk+1)

The Forward Euler (or Euler's) method; idea

The Forward Euler (or Euler's) method; idea The Forward Euler (or Euler's) method; mathematics

Solving with respect to u(tk+1)

u(tk+1) = u(tk) + ∆tf (u(tk), tk)

This is a very simple formula that we can use repeatedly for u(t1),
u(t2), u(t3) and so forth.

Di�erence equation notation:

Let uk denote the numerical approximation to the exact solution
u(t) at t = tk .

uk+1 = uk + ∆tf (uk , tk)

This is an ordinary di�erence equation we can solve!

Illustration of the forward �nite di�erence

forward

u(t)

tntn−1 tn+1

Let's apply the method!

Problem: The world's simplest ODE

u′ = u, t ∈ (0,T]

Solve for u at t = tk = k∆t, k = 0, 1, 2, . . . , tn, t0 = 0, tn = T

Forward Euler method:

uk+1 = uk + ∆t f (uk , tk)

Solution by hand:

What is f ? f (u, t) = u

uk+1 = uk + ∆tf (uk , tk) = uk + ∆tuk = (1 + ∆t)uk

First step:
u1 = (1 + ∆t)u0

but what is u0?

An ODE needs an initial condition: u(0) = U0

Numerics:

Any ODE u′ = f (u, t) must have an initial condition u(0) = U0,
with known U0, otherwise we cannot start the method!

Mathematics:

In mathematics: u(0) = U0 must be speci�ed to get a unique
solution.

Example:

u′ = u

Solution: u = Cet for any constant C . Say u(0) = U0: u = U0e
t .

We continue solution by hand

Say U0 = 2:

u1 = (1 + ∆t)u0 = (1 + ∆t)U0 = (1 + ∆t)2

u2 = (1 + ∆t)u1 = (1 + ∆t)(1 + ∆t)2 = 2(1 + ∆t)2

u3 = (1 + ∆t)u2 = (1 + ∆t)2(1 + ∆t)2 = 2(1 + ∆t)3

u4 = (1 + ∆t)u3 = (1 + ∆t)2(1 + ∆t)3 = 2(1 + ∆t)4

u5 = (1 + ∆t)u4 = (1 + ∆t)2(1 + ∆t)4 = 2(1 + ∆t)5

... =
...

uk = 2(1 + ∆t)k

Actually, we found a formula for uk ! No need to program...

How accurate is our numerical method?

Exact solution: u(t) = 2et , u(tk) = 2ek∆t = 2(e∆t)k

Numerical solution: uk = 2(1 + ∆t)k

When going from tk to tk+1, the solution is ampli�ed by a factor:

Exact: u(tk+1) = e∆tu(tk)

Numerical: uk+1 = (1 + ∆t)uk

Using Taylor series for ex we see that

e∆t−(1+∆t) = 1+∆t+
∆t2

2
+frac∆t36+· · ·−(1+∆t) = frac∆t36+O(∆t4)

This error approaches 0 as ∆t → 0.

What about the general case u′ = f (u, t)?

Given any U0:

u1 = u0 + ∆tf (u0, t0)

u2 = u1 + ∆tf (u1, t1)

u3 = u2 + ∆tf (u2, t2)

u4 = u3 + ∆tf (u3, t3)

...

No general formula in this case...

Rule of thumb:

When hand calculations get boring, let's program!

We start with a specialized program for u′ = u, u(0) = U0

Algorithm:

Given ∆t (dt) and n

Create arrays t and u of length n + 1

Set initial condition: u[0] = U0, t[0]=0

For k = 0, 1, 2, . . . , n − 1:

t[k+1] = t[k] + dt

u[k+1] = (1 + dt)*u[k]

We start with a specialized program for u′ = u, u(0) = U0

Program:

import numpy as np
import sys

dt = float(sys.argv[1])
U0 = 1
T = 4
n = int(T/dt)

t = np.zeros(n+1)
u = np.zeros(n+1)

t[0] = 0
u[0] = U0
for k in range(n):

t[k+1] = t[k] + dt
u[k+1] = (1 + dt)*u[k]

plot u against t

The solution if we plot u against t

∆t = 0.4 and ∆t = 0.2:

 0

 10

 20

 30

 40

 50

 60

 0 0.5 1 1.5 2 2.5 3 3.5 4

u

t

Solution of the ODE u’=u, u(0)=1

numerical
exact

 0

 10

 20

 30

 40

 50

 60

 0 0.5 1 1.5 2 2.5 3 3.5 4

u

t

Solution of the ODE u’=u, u(0)=1

numerical
exact

The algorithm for the general ODE u′ = f (u, t)

Algorithm:

Given ∆t (dt) and n

Create arrays t and u of length n + 1

Create array u to hold uk and

Set initial condition: u[0] = U0, t[0]=0

For k = 0, 1, 2, . . . , n − 1:

u[k+1] = u[k] + dt*f(u[k], t[k]) (the only change!)
t[k+1] = t[k] + dt

Implementation of the general algorithm for u′ = f (u, t)

General function:

def ForwardEuler(f, U0, T, n):
"""Solve u'=f(u,t), u(0)=U0, with n steps until t=T."""
import numpy as np
t = np.zeros(n+1)
u = np.zeros(n+1) # u[k] is the solution at time t[k]

u[0] = U0
t[0] = 0
dt = T/float(n)

for k in range(n):
t[k+1] = t[k] + dt
u[k+1] = u[k] + dt*f(u[k], t[k])

return u, t

Magic:

This simple function can solve any ODE (!)

Example on using the function

Mathematical problem:

Solve u′ = u, u(0) = 1, for t ∈ [0, 4], with ∆t = 0.4
Exact solution: u(t) = et .

Basic code:

def f(u, t):
return u

U0 = 1
T = 3
n = 30
u, t = ForwardEuler(f, U0, T, n)

Compare exact and numerical solution:

from scitools.std import plot, exp
u_exact = exp(t)
plot(t, u, 'r-', t, u_exact, 'b-',

xlabel='t', ylabel='u', legend=('numerical', 'exact'),
title="Solution of the ODE u'=u, u(0)=1")

Now you can solve any ODE!

Recipe:

Identify f (u, t) in your ODE

Make sure you have an initial condition U0

Implement the f (u, t) formula in a Python function f(u, t)

Choose ∆t or no of steps n

Call u, t = ForwardEuler(f, U0, T, n)

plot(t, u)

Warning:

The Forward Euler method may give very inaccurate solutions if ∆t
is not su�ciently small. For some problems (like u′′ + u = 0) other
methods should be used.

Let us make a class instead of a function for solving ODEs

Usage of the class:

method = ForwardEuler(f, dt)
method.set_initial_condition(U0, t0)
u, t = method.solve(T)
plot(t, u)

How?

Store f , ∆t, and the sequences uk , tk as attributes

Split the steps in the ForwardEuler function into four
methods:

the constructor (__init__)
set_initial_condition for u(0) = U0

solve for running the numerical time stepping
advance for isolating the numerical updating formula
(new numerical methods just need a di�erent advance
method, the rest is the same)

The code for a class for solving ODEs (part 1)

import numpy as np

class ForwardEuler_v1:
def __init__(self, f, dt):

self.f, self.dt = f, dt

def set_initial_condition(self, U0):
self.U0 = float(U0)

The code for a class for solving ODEs (part 2)

class ForwardEuler_v1:
...
def solve(self, T):

"""Compute solution for 0 <= t <= T."""
n = int(round(T/self.dt)) # no of intervals
self.u = np.zeros(n+1)
self.t = np.zeros(n+1)
self.u[0] = float(self.U0)
self.t[0] = float(0)

for k in range(self.n):
self.k = k
self.t[k+1] = self.t[k] + self.dt
self.u[k+1] = self.advance()

return self.u, self.t

def advance(self):
"""Advance the solution one time step."""
Create local variables to get rid of "self." in
the numerical formula
u, dt, f, k, t = self.u, self.dt, self.f, self.k, self.t

unew = u[k] + dt*f(u[k], t[k])
return unew

Alternative class code for solving ODEs (part 1)

Idea: drop dt in the constructor.
Let the user provide all time points (in solve).

class ForwardEuler:
def __init__(self, f):

test that f is a function
if not callable(f):

raise TypeError('f is %s, not a function' % type(f))
self.f = f

def set_initial_condition(self, U0):
self.U0 = float(U0)

def solve(self, time_points):
...

Alternative class code for solving ODEs (part 2)

class ForwardEuler:
...
def solve(self, time_points):

"""Compute u for t values in time_points list."""
self.t = np.asarray(time_points)
self.u = np.zeros(len(time_points))

self.u[0] = self.U0

for k in range(len(self.t)-1):
self.k = k
self.u[k+1] = self.advance()

return self.u, self.t

def advance(self):
"""Advance the solution one time step."""
u, f, k, t = self.u, self.f, self.k, self.t

dt = t[k+1] - t[k]
unew = u[k] + dt*f(u[k], t[k])
return unew

Verifying the class implementation; mathematics

Mathematical problem:

Important result: the numerical method (and most others) will
exactly reproduce u if it is linear in t (!):

u(t) = at + b = 0.2t + 3

h(t) = u(t)

u′(t) = 0.2 + (u − h(t))4, u(0) = 3, t ∈ [0, 3]

This u should be reproduced to machine precision for any ∆t.

Verifying the class implementation; implementation

Code:

def test_ForwardEuler_against_linear_solution():
def f(u, t):

return 0.2 + (u - h(t))**4

def h(t):
return 0.2*t + 3

solver = ForwardEuler(f)
solver.set_initial_condition(U0=3)
dt = 0.4; T = 3; n = int(round(float(T)/dt))
time_points = np.linspace(0, T, n+1)
u, t = solver.solve(time_points)
u_exact = h(t)
diff = np.abs(u_exact - u).max()
tol = 1E-14
success = diff < tol
assert success

Using a class to hold the right-hand side f (u, t)

Mathematical problem:

u′(t) = αu(t)

(
1− u(t)

R

)
, u(0) = U0, t ∈ [0, 40]

Class for right-hand side f (u, t):

class Logistic:
def __init__(self, alpha, R, U0):

self.alpha, self.R, self.U0 = alpha, float(R), U0

def __call__(self, u, t): # f(u,t)
return self.alpha*u*(1 - u/self.R)

Main program:

problem = Logistic(0.2, 1, 0.1)
time_points = np.linspace(0, 40, 401)
method = ForwardEuler(problem)
method.set_initial_condition(problem.U0)
u, t = method.solve(time_points)

Figure of the solution

0 5 10 15 20 25 30 35 40 45
t

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

u

Logistic growth: alpha=0.2, R=1, dt=0.1

Numerical methods for ordinary di�erential equations

Forward Euler method:

uk+1 = uk + ∆t f (uk , tk)

4th-order Runge-Kutta method:

uk+1 = uk +
1

6
(K1 + 2K2 + 2K3 + K4)

K1 = ∆t f (uk , tk)

K2 = ∆t f (uk +
1

2
K1, tk +

1

2
∆t)

K3 = ∆t f (uk +
1

2
K2, tk +

1

2
∆t)

K4 = ∆t f (uk + K3, tk + ∆t)

And lots of other methods! How to program a wide collection of
methods? Use object-oriented programming!

A superclass for ODE methods

Common tasks for ODE solvers:

Store the solution uk and the corresponding time levels tk ,
k = 0, 1, 2, . . . , n

Store the right-hand side function f (u, t)

Set and store the initial condition

Run the loop over all time steps

Principles:

Common data and functionality are placed in superclass
ODESolver

Isolate the numerical updating formula in a method advance

Subclasses, e.g., ForwardEuler, just implement the speci�c
numerical formula in advance

The superclass code

class ODESolver:
def __init__(self, f):

self.f = f

def advance(self):
"""Advance solution one time step."""
raise NotImplementedError # implement in subclass

def set_initial_condition(self, U0):
self.U0 = float(U0)

def solve(self, time_points):
self.t = np.asarray(time_points)
self.u = np.zeros(len(self.t))
Assume that self.t[0] corresponds to self.U0
self.u[0] = self.U0

Time loop
for k in range(n-1):

self.k = k
self.u[k+1] = self.advance()

return self.u, self.t

def advance(self):
raise NotImplemtedError # to be impl. in subclasses

Implementation of the Forward Euler method

Subclass code:

class ForwardEuler(ODESolver):
def advance(self):

u, f, k, t = self.u, self.f, self.k, self.t

dt = t[k+1] - t[k]
unew = u[k] + dt*f(u[k], t)
return unew

Application code for u′ − u = 0, u(0) = 1, t ∈ [0, 3], ∆t = 0.1:

from ODESolver import ForwardEuler
def test1(u, t):

return u

method = ForwardEuler(test1)
method.set_initial_condition(U0=1)
u, t = method.solve(time_points=np.linspace(0, 3, 31))
plot(t, u)

The implementation of a Runge-Kutta method

Subclass code:

class RungeKutta4(ODESolver):
def advance(self):

u, f, k, t = self.u, self.f, self.k, self.t

dt = t[k+1] - t[k]
dt2 = dt/2.0
K1 = dt*f(u[k], t)
K2 = dt*f(u[k] + 0.5*K1, t + dt2)
K3 = dt*f(u[k] + 0.5*K2, t + dt2)
K4 = dt*f(u[k] + K3, t + dt)
unew = u[k] + (1/6.0)*(K1 + 2*K2 + 2*K3 + K4)
return unew

Application code (same as for ForwardEuler):

from ODESolver import RungeKutta4
def test1(u, t):

return u

method = RungeKutta4(test1)
method.set_initial_condition(U0=1)
u, t = method.solve(time_points=np.linspace(0, 3, 31))
plot(t, u)

The user should be able to check intermediate solutions and
terminate the time stepping

Sometimes a property of the solution determines when to stop
the solution process: e.g., when u < 10−7 ≈ 0.

Extension: solve(time_points, terminate)

terminate(u, t, step_no) is called at every time step, is
user-de�ned, and returns True when the time stepping should
be terminated

Last computed solution is u[step_no] at time t[step_no]

def terminate(u, t, step_no):
eps = 1.0E-6 # small number
return abs(u[step_no,0]) < eps # close enough to zero?

Systems of di�erential equations (vector ODE)

u′ = v

v ′ = −u
u(0) = 1

v(0) = 0

0 2 4 6 8 10 12 14
1.0

0.5

0.0

0.5

1.0

u
v

Example on a system of ODEs (vector ODE)

Two ODEs with two unknowns u(t) and v(t):

u′(t) = v(t)

v ′(t) = −u(t)

Each unknown must have an initial condition, say

u(0) = 0, v(0) = 1

In this case, one can derive the exact solution to be

u(t) = sin(t), v(t) = cos(t)

Systems of ODEs appear frequently in physics, biology, �nance, ...

The ODE system that is the �nal project in the course

Model for spreading of a disease in a population:

S ′ = −βSI
I ′ = βSI − νR
R ′ = νI

Initial conditions:

S(0) = S0

I (0) = I0

R(0) = 0

Another example on a system of ODEs (vector ODE)

Second-order ordinary di�erential equation, for a spring-mass
system (from Newton's second law):

mu′′ + βu′ + ku = 0, u(0) = U0, u
′(0) = 0

We can rewrite this as a system of two �rst-order equations, by
introducing two new unknowns

u(0)(t) ≡ u(t), u(1)(t) ≡ u′(t)

The �rst-order system is then

d

dt
u(0)(t) = u(1)(t)

d

dt
u(1)(t) = −m−1βu(1) −m−1ku(0)

Initial conditions: u(0)(0) = U0, u
(1)(0) = 0

Making a �exible toolbox for solving ODEs

For scalar ODEs we could make one general class hierarchy to
solve �all� problems with a range of methods

Can we easily extend class hierarchy to systems of ODEs?

Yes!

The example here can easily be extended to professional code
(Odespy)

Vector notation for systems of ODEs: unknowns and
equations

General software for any vector/scalar ODE demands a general
mathematical notation. We introduce n unknowns

u(0)(t), u(1)(t), . . . , u(n−1)(t)

in a system of n ODEs:

d

dt
u(0) = f (0)(u(0), u(1), . . . , u(n−1), t)

d

dt
u(1) = f (1)(u(0), u(1), . . . , u(n−1), t)

... =
...

d

dt
u(n−1) = f (n−1)(u(0), u(1), . . . , u(n−1), t)

Vector notation for systems of ODEs: vectors

We can collect the u(i)(t) functions and right-hand side functions
f (i) in vectors:

u = (u(0), u(1), . . . , u(n−1))

f = (f (0), f (1), . . . , f (n−1))

The �rst-order system can then be written

u′ = f (u, t), u(0) = U0

where u and f are vectors and U0 is a vector of initial conditions

The magic of this notation:

Observe that the notation makes a scalar ODE and a system look
the same, and we can easily make Python code that can handle
both cases within the same lines of code (!)

How to make class ODESolver work for systems of ODEs

Recall: ODESolver was written for a scalar ODE

Now we want it to work for a system u′ = f , u(0) = U0,
where u, f and U0 are vectors (arrays)

What are the problems?

Forward Euler applied to a system:

uk+1︸︷︷︸
vector

= uk︸︷︷︸
vector

+∆t f (uk , tk)︸ ︷︷ ︸
vector

In Python code:

unew = u[k] + dt*f(u[k], t)

where

u is a two-dim. array (u[k] is a row)

f is a function returning an array (all the right-hand sides
f (0), . . . , f (n−1))

The adjusted superclass code (part 1)

To make ODESolver work for systems:

Ensure that f(u,t) returns an array.
This can be done be a general adjustment in the superclass!

Inspect U0 to see if it is a number or list/tuple and make
corresponding u 1-dim or 2-dim array

class ODESolver:
def __init__(self, f):

Wrap user's f in a new function that always
converts list/tuple to array (or let array be array)
self.f = lambda u, t: np.asarray(f(u, t), float)

def set_initial_condition(self, U0):
if isinstance(U0, (float,int)): # scalar ODE

self.neq = 1 # no of equations
U0 = float(U0)

else: # system of ODEs
U0 = np.asarray(U0)
self.neq = U0.size # no of equations

self.U0 = U0

The superclass code (part 2)

class ODESolver:
...
def solve(self, time_points, terminate=None):

if terminate is None:
terminate = lambda u, t, step_no: False

self.t = np.asarray(time_points)
n = self.t.size
if self.neq == 1: # scalar ODEs

self.u = np.zeros(n)
else: # systems of ODEs

self.u = np.zeros((n,self.neq))

Assume that self.t[0] corresponds to self.U0
self.u[0] = self.U0

Time loop
for k in range(n-1):

self.k = k
self.u[k+1] = self.advance()
if terminate(self.u, self.t, self.k+1):

break # terminate loop over k
return self.u[:k+2], self.t[:k+2]

All subclasses from the scalar ODE works for systems as well

Example on how to use the general class hierarchy

Spring-mass system formulated as a system of ODEs:

mu′′ + βu′ + ku = 0, u(0), u′(0) known

u(0) = u, u(1) = u′

u(t) = (u(0)(t), u(1)(t))

f (u, t) = (u(1)(t),−m−1βu(1) −m−1ku(0))

u′(t) = f (u, t)

Code de�ning the right-hand side:

def myf(u, t):
u is array with two components u[0] and u[1]:
return [u[1],

-beta*u[1]/m - k*u[0]/m]

Alternative implementation of the f function via a class

Better (no global variables):

class MyF:
def __init__(self, m, k, beta):

self.m, self.k, self.beta = m, k, beta

def __call__(self, u, t):
m, k, beta = self.m, self.k, self.beta
return [u[1], -beta*u[1]/m - k*u[0]/m]

Main program:

from ODESolver import ForwardEuler
initial condition:
U0 = [1.0, 0]
f = MyF(1.0, 1.0, 0.0) # u'' + u = 0 => u(t)=cos(t)
solver = ForwardEuler(f)
solver.set_initial_condition(U0)

T = 4*pi; dt = pi/20; n = int(round(T/dt))
time_points = np.linspace(0, T, n+1)
u, t = solver.solve(time_points)

u is an array of [u0,u1] arrays, plot all u0 values:
u0_values = u[:,0]
u0_exact = cos(t)
plot(t, u0_values, 'r-', t, u0_exact, 'b-')

Throwing a ball; ODE model

Newton's 2nd law for a ball's trajectory through air leads to

dx

dt
= vx

dvx
dt

= 0

dy

dt
= vy

dvy
dt

= −g

Air resistance is neglected but can easily be added!

4 ODEs with 4 unknowns:

the ball's position x(t), y(t)
the velocity vx(t), vy (t)

Throwing a ball; code

De�ne the right-hand side:

def f(u, t):
x, vx, y, vy = u
g = 9.81
return [vx, 0, vy, -g]

Main program:

from ODESolver import ForwardEuler
t=0: prescribe x, y, vx, vy
x = y = 0 # start at the origin
v0 = 5; theta = 80*pi/180 # velocity magnitude and angle
vx = v0*cos(theta)
vy = v0*sin(theta)
Initial condition:
U0 = [x, vx, y, vy]

solver= ForwardEuler(f)
solver.set_initial_condition(u0)
time_points = np.linspace(0, 1.2, 101)
u, t = solver.solve(time_points)

u is an array of [x,vx,y,vy] arrays, plot y vs x:
x = u[:,0]; y = u[:,2]
plot(x, y)

Throwing a ball; results

Comparison of exact and Forward Euler solutions

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

dt=0.01

numerical

exact

Logistic growth model; ODE and code overview

Model:

u′ = αu(1− u/R(t)), u(0) = U0

R is the maximum population size, which can vary with changes in
the environment over time

Implementation features:

Class Problem holds �all physics�: α, R(t), U0, T (end time),
f (u, t) in ODE

Class Solver holds �all numerics�: ∆t, solution method; solves
the problem and plots the solution

Solve for t ∈ [0,T] but terminate when |u − R| < tol

Logistic growth model; class Problem (f)

class Problem:
def __init__(self, alpha, R, U0, T):

self.alpha, self.R, self.U0, self.T = alpha, R, U0, T

def __call__(self, u, t):
"""Return f(u, t)."""
return self.alpha*u*(1 - u/self.R(t))

def terminate(self, u, t, step_no):
"""Terminate when u is close to R."""
tol = self.R*0.01
return abs(u[step_no] - self.R) < tol

problem = Problem(alpha=0.1, R=500, U0=2, T=130)

Logistic growth model; class Solver

class Solver:
def __init__(self, problem, dt,

method=ODESolver.ForwardEuler):
self.problem, self.dt = problem, dt
self.method = method

def solve(self):
solver = self.method(self.problem)
solver.set_initial_condition(self.problem.U0)
n = int(round(self.problem.T/self.dt))
t_points = np.linspace(0, self.problem.T, n+1)
self.u, self.t = solver.solve(t_points,

self.problem.terminate)

def plot(self):
plot(self.t, self.u)

problem = Problem(alpha=0.1, U0=2, T=130,
R=lambda t: 500 if t < 60 else 100)

solver = Solver(problem, dt=1.)
solver.solve()
solver.plot()
print 'max u:', solver.u.max()

Logistic growth model; results

 0

 50

 100

 150

 200

 250

 300

 350

 0 20 40 60 80 100 120

alpha=0.1, U0=2, dt=0.0253906

