App.E: Programming of differential equations

Hans Petter Langtangen!2

Simula Research Laboratory®

University of Oslo, Dept. of Informatics?

Aug 21, 2016

‘ Examples on scalar differential equations (ODEs)

Terminology:
@ Scalar ODE: a single ODE, one unknown function

o Vector ODE or systems of ODEs: several ODEs, several
unknown functions

Examples:

v = au exponential growth

v =au (1 - %) logistic growth

u' + blulu =g falling body in fluid

What is the f(u, t)?

Given an ODE,
;o 3/200 _ Y y_
Vil — a(i3(1 - i) =0,

what is the f(u, t)?

Solution:

The target form is v’ = f(u, t), so we need to isolate v’ on the
left-hand side:

o = a(t)u(l — %)
f(u,t)

How to solve any ordinary scalar differential equation

Logistic growth: alpha=02, R=1, dt=0.1

We shall write an ODE in a generic form: v’ = f(u, t)

@ Our methods and software should be applicable to any ODE
o Therefore we need an abstract notation for an arbitrary ODE

u'(t) = f(u(t), t)

The three ODEs on the last slide correspond to

f(u,t) = au, exponential growth

u -
f(u,t) =au (1 - E) , logistic growth
f(u,t) = —blulu+ g, body in fluid

Our task: write functions and classes that take f as input and
produce u as output

A —

‘ Such abstract f functions are widely used in mathematics

We can make generic software for:

o Numerical differentiation: /(x)
o Numerical integration: f: f(x)dx
o Numerical solution of algebraic equations: f(x) =0

O Lx?sin(wx): f(x) = x?sin(wx)
(2] f_ll(x2 tanh ™t x — (1 4+ x?)1)dx:
f(x)=x2tanh ' x — (1 +x%)"1, a=-1,b=1

O Solve x*sinx = tanx: f(x) = x*sinx — tan x

We use finite difference approximations to derivatives to

turn an ODE into a difference equation

u' = f(u,t)

Assume we have computed u at discrete time points to, t1, . . . , tk-
At t, we have the ODE

u'(t) = f(u(t), te)
Approximate u'(tx) by a forward finite difference,

/ u(tira) — u(ti)
u(t) = —— A
Insert in the ODE at t = t;:
U(l‘k+1)A; u(ti) _ Fu(te), te)
Terms with u(tx) are known, and this is an algebraic (difference)
equation for u(txs1)

TUST REDUCE THE TIME STEP
TO MAKE MORE ACCURATE
PREDICTIONS!

HERE WE KNOW THE SLOPE:

o = fu,t):

LET THE SOLUTION CONTINVE
ALONG THAT SLOPE.

EXACT SOLOTION

THIS IS THE NEXT
PREDICTED POINT

Illus on of the forward finite difference

The Forward Euler Euler’

method; idea

DIFFERENTIAL EQUATIONS u'=f(u.t)
ARE HARD TO SOLVE.
BUT NOT WITH PROGRAMMING!

HERE WE KNOW THE SLOPE:
o' = flu,t)t

LET THE SOLUTION CONTINVE
ALONG THAT SLOPE.

EXACT SOLUTION

THIS IS THE NEXT
PREDICTED POINT

‘ The Forward Euler (or Euler's) method; mathematics

Solving with respect to u(tx41)
u(tks1) = ute) + Atf(u(t), tx)

This is a very simple formula that we can use repeatedly for u(t1),
u(t2), u(ts) and so forth.

Difference equation notatiol

Let uy denote the numerical approximation to the exact solution
u(t) at t = t.

U1 = g + Atf (ug, te)

This is an ordinary difference equation we can solve!

‘ Let's apply the method!

Problem: The world’s simplest ODE

J=u te(0,T]

Solve for u at t =ty = kAt, k=0,1,2,...,ty, to =0, t, =T

Forward Euler method:

U1 = ug + At f(uk, tk)

Solution by hand:

What is f? f(u,t) =u

U1 = Uy + Atf(uk, te) = ux + Atug = (1 + At)uk

First step:
up = (1+ At)ug

but what is up?

An ODE needs an initial condition: u(0

Any ODE v’ = f(u, t) must have an initial condition u(0) = Up,
with known Up, otherwise we cannot start the method!

Mathematics:

In mathematics: u(0) = Up must be specified to get a unique
solution.

u=u

Solution: u = Ce' for any constant C. Say u(0) = Up: u= Upe'.

‘ How accurate is our numerical method?

o Exact solution: u(t) = 2et, u(ty) = 2ekAt = 2(eAt)k
o Numerical solution: uy = 2(1 + At)k
When going from ty to tx+1, the solution is amplified by a factor:
o Exact: u(tyi1) = ePtu(ty)
o Numerical: ug1 = (14 At)ug

Using Taylor series for X we see that

2
At (14+At) = 1+At+ATt+fracAt36+- -—(1+At) = fracAt36-+O(4

This error approaches 0 as At — 0.

We start with a specialized program for u' = u, u(

‘ We continue solution by hand

Say Up = 2:

u = (1+ At)ug = (1 + At)Up = (1 + At)2

up = (L+ At)uy = (1 + At)(1+ At)2 = 2(1 + At)?
u3 = (1+ At)wp = (1 + Ar)2(1 + At)? = 2(1 + At)?
up = (1+ At)uz = (1 + At)2(1 + At)® = 2(1 + At)*
us = (1+ At)us = (1 + At)2(1 + At)* = 2(1 + At)®

ug = 2(1 + At)*

Actually, we found a formula for u,! No need to program...

‘ What about the general case v’

Given any Up:

u = ug + Atf(ug, to)
up = up + Atf(uy, tr)
u3 = up + Atf(u;, tz)
ug = uz + Atf(us, t3)

No general formula in this case...

Rule of thumb:
When hand calculations get boring, let's program!

Algorithm:

Given At (dt) and n

o Create arrays t and u of length n+1
@ Set initial condition: u[0] = Up, t[0]1=0
e For k=0,1,2,...,n—1:

o t[k+1] = t[k] + dt

o ulk+1] = (1 + dt)*ulk]

We start with a specialized program for v/ = u, u

import numpy as np
import sys

dt

float(sys.argv[1])
U =1

=4
n = int(T/dt)

np.zeros(n+1)
np.zeros(n+1)

0

uf0] = U0

for k in range(n):
tlk+1] = t[k] + dt
ulk+1] = (1 + dt)*ulk]

plot u against t

‘ The solution if we plot u against t

At =0.4 and At =0.2:

Soluion of the ODE u'=u, u(0)=1 ‘Soluton of the ODE u'=u, u0)<1

Pumerical ——
exact — - -

numercal
‘oxact - -

‘ Implementation of the general algorithm for v’ = f(u, t)

General function:

def ForwardEuler(f, U0, T, n):
nnnSolue uw’=f(u,t), u(0)=U0, with n steps until t=T."""
import numpy as np
t = np.zeros(n+1)
u = np.zeros(n+1l) # u[k] is the solution at time t[k]

u[0] = Uo
t[0] =0
dt = T/float(n)

for k in range(n):
tlk+1] = t[k] + dt
ulk+1] = ul[k] + dt+f(ulk]l, t[k])

return u, t

This simple function can solve any ODE (!)

‘ \el can solve any ODE!

o Identify f(u,t) in your ODE
@ Make sure you have an initial condition Up
Implement the f(u, t) formula in a Python function £ (u, t)
Choose At or no of steps n
Call u, t = ForwardEuler(f, UO, T, n)
plot(t, u)

The Forward Euler method may give very inaccurate solutions if At

is not sufficiently small. For some problems (like u” + u = 0) other
methods should be used.

‘ The algorithm for the general ODE ' = f(u,

Given At (dt) and n

o Create arrays t and u of length n+1

o Create array u to hold ux and

@ Set initial condition: u[0] = Up, t [0]=0

e For k=0,1,2,...,n—1:
o ulk+1] = ulk] + dt*f(ulk], t[k]) (the only change!)
o tlk+1] = t[k] + dt

‘ Example on using the function

Mathematical problem:
Solve v’ = u, u(0) =1, for t € [0,4], with At =0.4
Exact solution: u(t) = e’.

Basic code:

def f£(u, t):
return u

U0 =1
T=3

n = 30
u, t = ForwardEuler(f, U0, T, n)

Compare exact and numerical solution:

from scitools.std import plot, exp
u_exact = exp(t)
plot(t, u, ’r-’, t, u_exact, ’b-’,
xlabel=’t’, ylabel='u’, legend=(’numerical’, ’exact’),
title="Solution of the ODE u’=u, u(0)=1")

‘ Let us make a class instead of a function for solving ODEs

Usage of the class:

method = ForwardEuler(f, dt)
method.set_initial_condition (U0, t0)
u, t = method.solve(T)

plot(t, u)

o Store f, At, and the sequences uy, tx as attributes

o Split the steps in the ForwardEuler function into four
methods:

the constructor (__init__)

set_initial_condition for u(0) = Up

solve for running the numerical time stepping

advance for isolating the numerical updating formula

(new numerical methods just need a different advance

method, the rest is the same)

import numpy as np

class ForwardEuler_vi:
def __init__(self, f, dt):
self.f, self.dt = f, dt

def set_initial_condition(self, UO0):
self.U0 = float (UO)

‘ Alternative class code for solving ODEs (

Idea: drop dt in the comstructor.
Let the user provide all time points (in solve).

class ForwardEuler:
def __init__(self, f£):

test that f is a function
if not callable(f):

raise TypeError(’f is s, not a function’ J type(f))
self.f = f

def set_initial_condition(self, UO0):
self.U0 = float(UO)

def solve(self, time_points):

Verifying the class implementation; mathematics

Mathematical problem:

Important result: the numerical method (and most others) will
exactly reproduce u if it is linear in t (!):

u(t) =at+b=02t+3
h(t) = u(t)
d(t) =02+ (u—h(t))*, u(0)=3, te[o,3]

This u should be reproduced to machine precision for any At.

‘ The code for a class for solving ODEs

class ForwardEuler_vi:

def solve(self, T):
"""Compute solution for 0 <= t <= T."""
n = int(round(T/self.dt)) # no of intervals
self.u = np.zeros(n+1)
self.t = np.zeros(n+1)
self.ul0] = float(self.U0)
self.t[0] = float(0)

for k in range(self.n):
self .k = k
self.t[k+1] = self.t[k] + self.dt
self.u[k+1] = self.advance()
return self.u, self.t

def advance(self):
"""jdvance the solution one time step.
Create local variables to get rid of "self." in
the numerical formula
u, dt, f, k, t = self.u, self.dt, self.f, self.k, self.t

unew = uflk] + dt*f(ulk], t[k])
return unew

‘ Alternative class code for solvi DEs (part

class ForwardEuler:

def solve(self, time_points):
"""Compute u for t values in time_points list."""
self.t = np.asarray(time_points)
self.u = np.zeros(len(time_points))

self.u[0] = self.U0

for k in range(len(self.t)-1):
self.k = k
self.u[k+1] = self.advance()
return self.u, self.t

def advance(self):
"""jdvance the solution one time step."""
u, f, k, t = self.u, self.f, self.k, self.t

dt = t[k+1] - t[k]
unew = ulk] + dt*f(ulk], t[k])
return unew

implementati

‘ Verifying the class implementation;

def test_ForwardEuler_against_linear_solution():
def f(u, t):
return 0.2 + (u - h(t))**4

def h(t):
return 0.2%t + 3

solver = ForwardEuler (f)
solver.set_initial_condition(U0=3)

dt = 0.4; T = 3; n = int(round(float(T)/dt))
time_points = np.linspace(0, T, n+1)

u, t = solver.solve(time_points)

u_exact = h(t)

diff - np.abs(u_exact - u).max()

tol = 1E-14

success = diff < tol

assert success

Using a class to hold the r Figure of the soluti

Mathematical problem:
Logistic growth: alpha=0.2, R=1, dt=0.1
t
J'(t) = au(t) (1 - %) , u(0)=Uo, tel0,40]

Class for right-hand side f(u, t): o8

class Logistic: 0.7
def __init__(self, alpha, R, UO):
self.alpha, self.R, self.UO = alpha, float(R), UO 0.6
B
def __call__(self, u, t): # f(u,t) 05
return self.alpha*u*(1 - u/self.R)
0.4

Main program:
03

problem = Logistic(0.2, 1, 0.1)
time_points = np.linspace(0, 40, 401) 0.2
method = ForwardEuler (problem) :
method.set_initial_condition(problem.U0)
u, t = method.solve(time_points) : 5 10 15 20 25 30 35 40 45

‘ Numerical methods for ordinary differential equations ‘ A superclass for ODE methods
Forward Euler method:
Common tasks for ODE solvers:

o Store the solution uy and the corresponding time levels t,

Ups1 = ug + Dt F(uk,)

4th-order R Kutta method k=012...,n
-order Runge-Kutta method:
g q @ Store the right-hand side function f(u, t)
U1 = uk + = (Ki + 2Kz + 2Kz + Ky) o Set and store the initial condition

6
@ Run the loop over all time steps

= bt

1 1
Ky = At f(ug + EKI' te + EAt) o Common data and functionality are placed in superclass
ODESolver

1 1
Ks = At f(ug+ EKZ’ b+ EAt) o Isolate the numerical updating formula in a method advance

Ky = At f(ux + K3, t + At) o Subclasses, e.g., ForwardEuler, just implement the specific
numerical formula in advance

And lots of other methods! How to program a wide collection of
methods? Use object-oriented programming!

Euler method

‘ The superclass code ‘ Implementation of the Forw

class ODESolver:

def __init__(self, £):
self.f = f Subclass code:

class ForwardEuler (ODESolver) :
def advance(self):
u, £, k, t = self.u, self.f, self.k, self.t

def advance(self):
"""Jdvance solution one time step.
raise NotImplementedError # implement in subclass

def set_initial_condition(self, U0): el - Ee ®

self.U0 = float(U0) return unew

def solve(self, time_points):
self.t = np.asarray(time_points)
self.u = np.zeros(len(self.t))

Assume that self.t[0] corresponds to self.U0 from ODESolver import ForwardEuler
self.u[0] = self.U0 def testl(u, t):
return u

Time loop
for k in range(n-1): method = ForwardEuler (test1)

self.k = k method.set_initial_condition(U0=1)

self.u[k+1] = self.advance() u, t = method.solve(time_points=np.linspace(0, 3, 31))
return self.u, self.t plot(t, u)

def advance(self):
raise NotImplemtedError # to be impl. in subclasses

-Kutta method

‘ The implementation of a Ru

Subclass code:

class RungeKuttad (ODESolver) :
def advance(self):
u, f, k, t = self.u, self.f, self.k, self.t

dt = t[k+1] - t[k]
dt2 = dt/2.0
K1 = dt*f(ulk], t)

K2 = dt*f(u[k] + 0.5+K1, t + dt2)
K3 = dt*f(u[k] + 0.5%K2, t + dt2)
K4 = dt*f(u[k] + K3, t + dt)

unew = ulk] + (1/6.0)*(K1 + 2#K2 + 2+K3 + K4)
return unew

Application code (same as for ForwardEuler):

from ODESolver import RungeKuttad
def testl(u, t):
return u

method = RungeKuttad(testl)
method.set_initial_condition(U0=1)

u, t = method.solve(time_points=np.linspace(0, 3, 31))
plot(t, u)

Systems of differential e

v ; —u
u(0) =1
v(0)=0

‘ The ODE system

at is the final project in the course

Model for spreading of a disease in a population:

S’ =-BSI
I"=BSI —vR
R =vl

Initial conditions:
5(0) = So

1(0) =l
R(0)=0

The user should be able to check intermediate solutions

terminate the time stepping

o Sometimes a property of the solution determines when to stop
the solution process: e.g., when u < 10~ ~ 0.

o Extension: solve(time_points, terminate)

o terminate(u, t, step_no) is called at every time step, is
user-defined, and returns True when the time stepping should
be terminated

@ Last computed solution is u[step_no] at time t [step_no]

def terminate(u, t, step_no):
eps = 1.0E-6 # small number
return abs(ul[step_no,0]) < eps # close enough to zero?

| Example on a system of ODEs (vector ODE)

Two ODEs with two unknowns u(t) and v(t):

u'(t) = v(t)
V/(t) = —u(t)

Each unknown must have an initial condition, say
u(0)=0, v(0)=1
In this case, one can derive the exact solution to be

u(t) =sin(t), v(t) = cos(t)

Systems of ODEs appear frequently in physics, biology, finance, ...

‘ Another example on a system of ODEs (vector ODE)

Second-order ordinary differential equation, for a spring-mass
system (from Newton's second law):

mu” + Bu’ + ku=0, u(0)= Up, u'(0)=0

We can rewrite this as a system of two first-order equations, by
introducing two new unknowns

uO(t) = u(t), uD(t) = d(t)
The first-order system is then
d
L0 = @
L0 (t) = u(t)
%u(l)(t) = —m 1 8u® — mku®

Initial conditions: u(®)(0) = Uy, u™(0) = 0

‘ Making a flexible toolbox for solving ODEs

o For scalar ODEs we could make one general class hierarchy to
solve “all” problems with a range of methods

o Can we easily extend class hierarchy to systems of ODEs?
o Yes!

@ The example here can easily be extended to professional code
(Odespy)

‘ Vector notation for systems of ODEs: vectors

We can collect the u()(t) functions and right-hand side functions
) in vectors:

u= (u(u), oD u("’l))

f=(FO,F0 1)
The first-order system can then be written
U =f(ut), u(0)="Uo
where u and f are vectors and Up is a vector of initial conditions

The magic of this notation:

Observe that the notation makes a scalar ODE and a system look
the same, and we can easily make Python code that can handle
both cases within the same lines of code (!)

| The adjusted superclass code (part 1)

To make ODESolver work for systems:

o Ensure that £(u,t) returns an array.
This can be done be a general adjustment in the superclass!
o Inspect Up to see if it is a number or list/tuple and make
corresponding u 1-dim or 2-dim array

class ODESolver:
def __init__(self, f):
Wrap user’s f in a new function that always
converts list/tuple to array (or let array be array)
self.f = lambda u, t: np.asarray(f(u, t), float)

def set_initial_condition(self, UO0):
if isinstance(U0, (float,int)): scalar ODE
self.neq = 1 # no of equations
U0 = float (UO)

=

o
[
0
o
=

system of ODEs
UO = np.asarray(U0)

self.neq = UO.size
self.U0 = UO

=

no of equations

Vector notation for systems of ODEs: unknowns and

equations

General software for any vector/scalar ODE demands a general
mathematical notation. We introduce n unknowns

u®(e), u(e), .., ul"D(t)

in a system of n ODEs:
90— (O (4@ @) -1 gy
7 @, :
90— f0 @)) gy

dt

d
G (n=1) — f(n=1)(,(0) (1) (n-1)
i {7 (M ,t)

‘ How to make class ODESolver work for systems of ODEs

o Recall: ODESolver was written for a scalar ODE

o Now we want it to work for a system v’ = f, u(0) = Up,
where u, f and Uy are vectors (arrays)

o What are the problems?

Forward Euler applied to a system:

Uy = uk At Fug, ti)
N ~— ———
vector vector vector
In Python code:
unew = uf[k] + dt*f(ulk], t)
where
o uis a two-dim. array (u[k] is a row)

o f is a function returning an array (all the right-hand sides
O, ... fln=1))

| The superclass code (part 2)

class ODESolver:

def solve(self, time_points, terminate=None):
if terminate is None:
terminate = lambda u, t, step_no: False

self.t = np.asarray(time_points)

n = self.t.size

if self.neq == 1: # scalar ODEs
self.u = np.zeros(n)

else: # systems of ODEs
self.u = np.zeros((n,self.neq))

Assume that self.t[0] corresponds to self.U0
self.u[0] = self.U0

Time loop
for k in range(n-1):
self.k = k
self.ulk+1] = self.advance()
if terminate(self.u, self.t, self.k+1):
break # terminate loop over k
return self.ul:k+2], self.t[:k+2]

All subclasses from the scalar ODE works for systems as well

of the f function via a class

‘ Example on how to use the general class hierarchy ‘ Alternative implementati
Better (no global variables):

Spring-mass system formulated as a system of ODEs: class MyF:
def __init__(self, m, k, beta):

self.m, self.k, self.beta = m, k, beta
mu” + Bu’ + ku=0, u(0), u'(0) known
def __call__(self, u, t):
m, k, beta = self.m, self.k, self.beta
return [u[1], -beta*u[1]/m - k*u[0]/m]

MO =y, W=y

u(t) = (1), uV(2))

Main program:

from ODESolver import ForwardEuler

f(u, t) = (u(l)(t), —m'Bu® — m’lku(o)) Iﬁolrﬁfé,cgild”wm
u’(t) — f(u L’) £ = MyF(1.0, 1.0, 0.0) #u’’ +u =20 =>u(t)=cos(t)
’ solver = ForwardEuler (f)

solver.set_initial condition(U0)

Code defining the right-hand side: T = 4%pi; dt = pi/20; n = int(round(T/dt))

def myf(u, t): time_points = np.linspace(0, T, n+l1)

u is array with two components u[0] and u[1]: u, t = solver.solve(time_points)
return [u[1],

“betarul1]/m - k+u[0]/m] # u is an array of [u0,ul] arrays, plot all u0 values:

u0_values = u[:,0
u0_exact = cos(t)
plot(t, u0_values, ’r-’, t, uO_exact, ’b-’)

‘ Throwing a ball; ODE model ‘ Throwing a ball; code

Define the right-hand side:

Newton's 2nd law for a ball’s trajectory through air leads to def £(u, t):
X, VX, ¥, Vy = u
g = 9.8l

dx return [vx, 0, vy, -gl
Z_y
dt i
:
dt =0 from ODESolver import ForwardEuler
d # t=0: prescribe z, y, vz, vy
l — v x=y=0 # start at the origin
dt v0 = 5; theta = 80%pi/180 # velocity magnitude and angle
i vx = v0*cos(theta)
Yy _ _ vy = vO*sin(theta)
dt g # Initial condition:

Uo = [x, vx, y, vyl

. . . . |
Air resistance is neglected but can easily be added! T
g 5 solver.set_initial_condition(u0)
© 4 ODEs with 4 unknowns: time_points = np.linspace(0, 1.2, 101)
o the ball’s position x(t), y(t) u, t = solver.solve(time_points)

o the velocity vy(t), vy(t)

u is an array of [z,vz,y,vy] arrays, plot y vs @:
x = ul:,0]; y=ul:,
plot(x, y)

d code overview

‘ Throwing a ball; resul ‘ Logistic growth model; ODE
Comparison of exact and Forward Euler solutions)

dt=0.01 u' = au(l —u/R(t)), u(0)= Uy

T
numerical

exact - - - | R is the maximum population size, which can vary with changes in

the environment over time

1 1 .
Implementation features:

0.8 1 o Class Problem holds “all physics™: «, R(t), Up, T (end time),
06] f(u,t) in ODE

o Class Solver holds “all numerics™: At, solution method; solves
0.4 1 the problem and plots the solution
0.2 4 @ Solve for t € [0, T] but terminate when |u — R| < tol

‘ Logist

def

def

problem

wth model; class Problem

class Problem:

__init__(self, alpha, R, U0, T):
self.alpha, self.R, self.U0, self.T = alpha, R, UO, T

__call__(self, u, t):
WiiReturn f(u, t). """
return self.alpha*u*(1 - u/self.R(t))

terminate(self, u, t, step_no):
"U"Terminate when u is close to R."""
tol = self.R*0.01

return abs(ulstep no] - self.R) < tol

= Problem(alpha=0.1, R=500, U0=2, T=130)

wth model; result:

alpha=0.1, U0=2, dt=0.0253906

350

300 [

250

150

100

20 40 60 80 100 120

‘ Logistic growth model; class Solver

class Solver:
def __init__(self, problem, dt,
method=0DESolver.ForwardEuler) :
self.problem, self.dt - problem, dt
self .method = method

def solve(self):
solver = self.method(self.problem)
solver.set_initial_condition(self.problem.U0)
n = int(round(self.problem.T/self.dt))
t_points = np.linspace(0, self.problem.T, n+1)
self.u, self.t = solver.solve(t_points,
self.problem.terminate)

def plot(self):
plot(self.t, self.u)

problem = Problem(alpha=0.1, U0=2, T=130,
R=lambda t: 500 if t < 60 else 100)
solver = Solver(problem, dt=1.)
solver.solve()
solver.plot ()
print ’max u:’, solver.u.max()

