App.E: Programming of differential equations

Hans Petter Langtangen 1,2

Simula Research Laboratory ¹

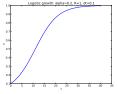
University of Oslo, Dept. of Informatics ²

Aug 21, 2016

How to solve any ordinary scalar differential equation

$$u'(t) = \alpha u(t)(1 - R^{-1}u(t))$$

 $u(0) = U_0$



Examples on scalar differential equations (ODEs)

Terminolog

- Scalar ODE: a single ODE, one unknown function
- Vector ODE or systems of ODEs: several ODEs, several unknown functions

Examples:

$$u'=\alpha u$$
 exponential growth $u'=\alpha u\left(1-rac{u}{R}
ight)$ logistic growth $u'+b|u|u=g$ falling body in fluid

We shall write an ODE in a generic form: u' = f(u, t)

- Our methods and software should be applicable to any ODE
- Therefore we need an abstract notation for an arbitrary ODE

$$u'(t) = f(u(t), t)$$

The three ODEs on the last slide correspond to

$$\begin{split} f(u,t) &= \alpha u, \quad \text{exponential growth} \\ f(u,t) &= \alpha u \left(1 - \frac{u}{R}\right), \quad \text{logistic growth} \\ f(u,t) &= -b|u|u + g, \quad \text{body in fluid} \end{split}$$

Our task: write functions and classes that take f as input and produce u as output

What is the f(u, t)?

Proble

Given an ODE,

$$\sqrt{u}u' - \alpha(t)u^{3/2}(1 - \frac{u}{R(t)}) = 0,$$

what is the f(u, t)?

Solution

The target form is u'=f(u,t), so we need to isolate u' on the left-hand side:

$$u' = \underbrace{\alpha(t)u(1 - \frac{u}{R(t)})}_{f(u,t)}$$

Such abstract f functions are widely used in mathematics

We can make generic software for:

- Numerical differentiation: f'(x)
- Numerical integration: $\int_a^b f(x) dx$
- Numerical solution of algebraic equations: f(x) = 0

Applications:

- $\int_{-1}^{1} (x^2 \tanh^{-1} x (1+x^2)^{-1}) dx:$ $f(x) = x^2 \tanh^{-1} x (1+x^2)^{-1}, \ a = -1, \ b = 1$
- Solve $x^4 \sin x = \tan x$: $f(x) = x^4 \sin x \tan x$

We use finite difference approximations to derivatives to turn an ODE into a difference equation

u'=f(u,t)

Assume we have computed u at discrete time points $t_0,\,t_1,\,\ldots,\,t_k.$ At t_k we have the ODE

$$u'(t_k) = f(u(t_k), t_k)$$

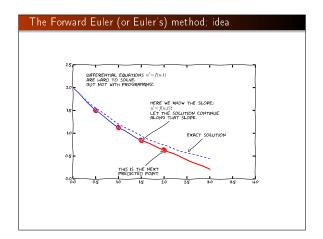
Approximate $u'(t_k)$ by a forward finite difference,

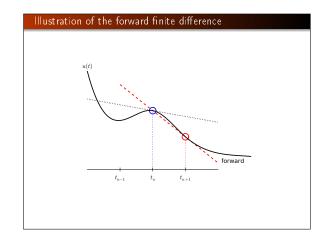
$$u'(t_k) \approx \frac{u(t_{k+1}) - u(t_k)}{\Delta t}$$

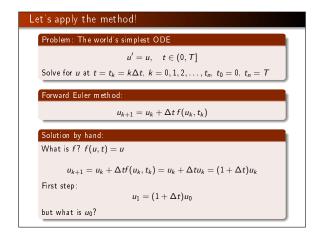
Insert in the ODE at $t = t_k$:

$$\frac{u(t_{k+1})-u(t_k)}{\Delta t}=f(u(t_k),t_k)$$

Terms with $u(t_k)$ are known, and this is an algebraic (difference) equation for $u(t_{k+1})$







An ODE needs an initial condition: $u(0) = U_0$

Numerics:

Any ODE u' = f(u, t) must have an initial condition $u(0) = U_0$, with known U_0 , otherwise we cannot start the method!

Mathematics

In mathematics: $u(0)=U_0$ must be specified to get a unique solution.

Example:

$$u' = u$$

Solution: $u = Ce^t$ for any constant C. Say $u(0) = U_0$: $u = U_0e^t$.

We continue solution by hand

Say
$$U_0=2$$
:
$$u_1=(1+\Delta t)u_0=(1+\Delta t)U_0=(1+\Delta t)2$$

$$u_2=(1+\Delta t)u_1=(1+\Delta t)(1+\Delta t)2=2(1+\Delta t)^2$$

$$u_3=(1+\Delta t)u_2=(1+\Delta t)2(1+\Delta t)^2=2(1+\Delta t)^3$$

$$u_4=(1+\Delta t)u_3=(1+\Delta t)2(1+\Delta t)^3=2(1+\Delta t)^4$$

$$u_5=(1+\Delta t)u_4=(1+\Delta t)2(1+\Delta t)^4=2(1+\Delta t)^5$$

$$\vdots=\vdots$$

$$u_k=2(1+\Delta t)^k$$
 Actually, we found a formula for u_k ! No need to program...

How accurate is our numerical method?

- Exact solution: $u(t) = 2e^t$, $u(t_k) = 2e^{k\Delta t} = 2(e^{\Delta t})^k$
- Numerical solution: $u_k = 2(1 + \Delta t)^k$

When going from t_k to t_{k+1} , the solution is amplified by a factor:

- Exact: $u(t_{k+1}) = e^{\Delta t}u(t_k)$
- Numerical: $u_{k+1} = (1 + \Delta t)u_k$

Using Taylor series for e^x we see that

$$e^{\Delta t} - (1 + \Delta t) = 1 + \Delta t + \frac{\Delta t^2}{2} + \operatorname{frac}\Delta t^3 6 + \dots - (1 + \Delta t) = \operatorname{frac}\Delta t^3 6 + \mathcal{O}(\Delta t)$$

This error approaches 0 as $\Delta t
ightarrow 0$.

What about the general case u' = f(u, t)?

Given any U_0 :

$$u_1 = u_0 + \Delta t f(u_0, t_0)$$

 $u_2 = u_1 + \Delta t f(u_1, t_1)$

$$u_3 = u_2 + \Delta t f(u_2, t_2)$$

$$u_4 = u_3 + \Delta t f(u_3, t_3)$$

- 1

No general formula in this case...

Rule of thumb:

When hand calculations get boring, let's program!

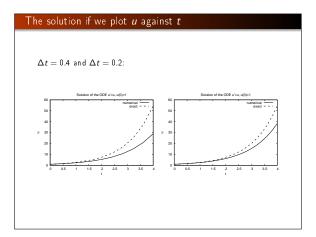
We start with a specialized program for u'=u, $u(0)=U_0$

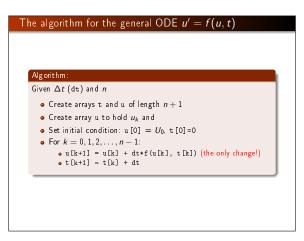
Algorithm:

Given Δt (dt) and n

- ullet Create arrays ${ t t}$ and ${ t u}$ of length n+1
- Set initial condition: $u[0] = U_0$, t[0] = 0
- For k = 0, 1, 2, ..., n 1:
 - t[k+1] = t[k] + dt
 - u[k+1] = (1 + dt)*u[k]

Program: import numpy as np import sys dt = float(sys.argv[i]) U0 = 1 T = 4 n = int(T/dt) t = np.zeros(n+1) u = np.zeros(n+1) t = [0] = 0 u[0] = U0 for k in range(n): t [k+i] = t [k] + dt u [k+i] = (i + dt)*u[k] # plot u against t





| Implementation of the general algorithm for u' = f(u, t) | General function: | def ForwardEuler(f, U0, T, n): | """Solve $u^2 = f(u, t)$, u(0) = U0, with n steps until t = T.""" | import numpy as np | t = np.zeros(n+1) | u = np.zeros(n+1) | u = np.zeros(n+1) | su[k] is the solution at time t[k] | | u[0] = U0 | t[0] = 0 | dt = T/float(n) | | for k in range(n): | t[x+1] = t[k] + dt | u[k] + dt*f(u[k], t[k]) | | return u, t | | Magic: | This simple function can solve any ODE (!)

```
Recipe:

• Identify f(u,t) in your ODE

• Make sure you have an initial condition U_0

• Implement the f(u,t) formula in a Python function f(u,t)

• Choose \Delta t or no of steps n

• Call u,t= ForwardEuler(f,U0,T,n)

• plot(t,u)

Warning:

The Forward Euler method may give very inaccurate solutions if \Delta t is not sufficiently small. For some problems (like u''+u=0) other methods should be used.
```

import numpy as np class ForwardEuler_v1: def __init__(self, f, dt): self.f, self.dt = f, dt def set_initial_condition(self, U0): self.U0 = float(U0)

```
The code for a class for solving ODEs (part 2)

class ForwardEuler_vi:

...

def solve(self, T):

"""Compute solution for 0 <= t <= T."""

n = int(round(T)self.dt))  # no of intervals

self.u = np.zeros(n*i)

self.t = np.zeros(n*i)

self.u(0] = float(self.U0)

self.t[0] = float(0)

for k in range(self.n):
 self.k = k

self.t[k*i] = self.t[k] + self.dt

self.u[k*i] = self.advance()

return self.u, self.t

def advance(self):

"""dwance the solution one time step."""

# Create local variables to get rid of "self." in
 # the numerical formula

u, dt, f, k, t = self.u, self.dt, self.f, self.k, self.t

unew = u[k] + dt*f(u[k], t[k])

return unew
```

```
# Idea: drop dt in the constructor.
# Let the user provide all time points (in solve).

class ForwardEuler:
    def __init__(self, f):
        # test that f is a function
        if not callable(f):
            raise TypeError('f is %s, not a function' % type(f))
        self. f = f

def set_initial_condition(self, U0):
        self.U0 = float(U0)

def solve(self, time_points):
```

```
class ForwardEuler:

def solve(self, time_points):
    """Compute u for t values in time_points list."""
    self. t = np.saarray(time_points)
    self. u = np.zeros(len(time_points))

self.u[0] = self.U0

for k in range(len(self.t)-1):
    self.k = k
        self.u[k!] = self.advance()
    return self.u, self.t

def advance(self):
    """Idvance the solution one time step."""
    u, f, k, t = self.u, self.f, self.k, self.t

dt = t[k+1] - t[k]
    unew = u[k] + dt*f(u[k], t[k])
    return unew
```

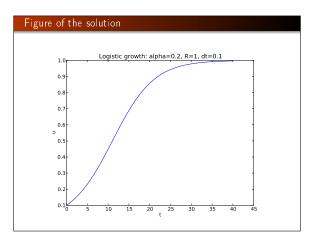
```
Code:

def test_ForwardEuler_against_linear_solution():
    def f(u, t):
        return 0.2 + (u - h(t)) **4

def h(t):
        return 0.2*t + 3

    solver = ForwardEuler(f)
    solver.set_initial_condition(U0=3)
    dt = 0.4; T = 3; n = int(round(float(T)/dt))
    time_points = np.linspace(0, T, n+1)
    u, t = solver.solve(time_points)
    u_exact = h(t)
    diff = np. abs(u_exact - u).max()
    tol = 1E-14
    success = diff < tol
    assert success</pre>
```

Using a class to hold the right-hand side f(u,t)Mathematical problem: $u'(t) = \alpha u(t) \left(1 - \frac{u(t)}{R}\right), \quad u(0) = U_0, \quad t \in [0,40]$ Class for right-hand side f(u,t): $\text{class Logistic:} \quad \text{def __init_}(\text{self, alpha, R, U0):} \quad \text{self.alpha, self.R, self.U0 = alpha, float(R), U0}$ $\text{def __call__(\text{self, u, t}): \quad \text{if } f(u,t) \quad \text{return self.alpha+u+(1 - u/\text{self.R})}$ Main program: $\text{problem = Logistic(0.2, 1, 0.1)} \quad \text{time_points = np linepace(0, 40, 401)} \quad \text{method = ForwardBuler(problem)} \quad \text{method -set initial.condition(problem.U0)} \quad \text{u, t = method.solve(time_points)}$



```
Numerical methods for ordinary differential equations u_{k+1} = u_k + \Delta t \, f(u_k, t_k) 4 \text{th-order Runge-Kutta method:} u_{k+1} = u_k + \frac{1}{6} \left( K_1 + 2K_2 + 2K_3 + K_4 \right) K_1 = \Delta t \, f(u_k, t_k) K_2 = \Delta t \, f(u_k + \frac{1}{2}K_1, t_k + \frac{1}{2}\Delta t) K_3 = \Delta t \, f(u_k + \frac{1}{2}K_2, t_k + \frac{1}{2}\Delta t) K_4 = \Delta t \, f(u_k + K_3, t_k + \Delta t) And lots of other methods! How to program a wide collection of methods? Use object-oriented programming!
```

```
A superclass for ODE methods

Common tasks for ODE solvers:

• Store the solution u_k and the corresponding time levels t_k, k=0,1,2,\ldots,n

• Store the right-hand side function f(u,t)

• Set and store the initial condition

• Run the loop over all time steps

Principles:

• Common data and functionality are placed in superclass ODESolver

• Isolate the numerical updating formula in a method advance

• Sub classes, e.g., ForwardEuler, just implement the specific numerical formula in advance
```

```
class ODESolver:
    def __init__(self, f):
        self.f = f

def advance(self):
    """ddvance solution one time step."""
        raise NotImplementedError # implement in subclass

def set.initial_condition(self, U0):
        self.U0 = float(U0)

def solve(self, time.points):
        self.t = np. saarray(time.points)
        self.u = np. zeros(len(self.t))
        # Assume that self.t[0] corresponds to self.U0

# Time loop
    for k in range(n-1):
        self.uk+l] = self.advance()
        return self.u, self.t

def advance(self):
        raise NotImplentedError # to be impl. in subclasses
```

```
Subclass code:

class ForwardEuler(ODESolver):
    def advance(self):
        u, f, k, t = self.u, self.f, self.k, self.t

    dt = t[k+i] - t[k]
    unew = u[k] + d + f(u[k], t)
    return unew

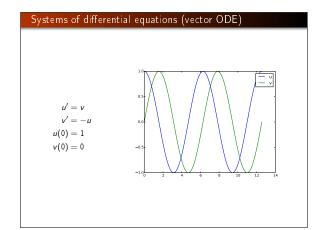
Application code for u' − u = 0, u(0) = 1, t ∈ [0,3]. Δt = 0.1:

from ODESolver import ForwardEuler
def testl(u, t):
    return u

method = ForwardEuler(test1)
method.set_initial_condition(U0=1)
u, t = method.solve(time_points=np.linspace(0, 3, 31))
plot(t, u)
```

The implementation of a Runge-Kutta method Subclass code: class RungeKutta4(DDESolver): def advance(self): u, f, k, t = self.u, self.f, self.k, self.t dt = t[k+1] - t[k] dt 2 = dt/2.0 K1 = dt *f(u[k] + 0.5*K1, t + dt2) K3 = dt *f(u[k] + 0.5*K1, t + dt2) K4 = dt *f(u[k] + 0.5*X + dt2) K4 = dt *f(u[k] + 0.5*X + t+ dt2) unew = u[k] + (1/6.0)*(K1 + 2*K2 + 2*K3 + K4) Application code (same as for ForwardEuler): from ODESolver import RungeKutta4 def test1(u, t): return u method = RungeKutta4(test1) method set_initial_condition(U0=1) u, t = method.solve(time_points-np.linspace(0, 3, 31)) plot(t, u)

The user should be able to check intermediate solutions and terminate the time stepping • Sometimes a property of the solution determines when to stop the solution process: e.g., when u < 10⁻⁷ ≈ 0. • Extension: solve(time_points, terminate) • terminate(u, t, step_no) is called at every time step, is user-defined, and returns True when the time stepping should be terminated • Last computed solution is u[step_no] at time t[step_no] def terminate(u, t, step_no): eps = 1.0E-6 return abs(u[step_no,0]) < eps # small number return abs(u[step_no,0]) < eps # close enough to zero?



Example on a system of ODEs (vector ODE)

Two ODEs with two unknowns u(t) and v(t):

$$u'(t) = v(t)$$
$$v'(t) = -u(t)$$

Each unknown must have an initial condition, say

$$u(0) = 0, \quad v(0) = 1$$

In this case, one can derive the exact solution to be

$$u(t) = \sin(t), \quad v(t) = \cos(t)$$

Systems of ODEs appear frequently in physics, biology, finance, ...

The ODE system that is the final project in the course

Model for spreading of a disease in a population:

$$S' = -\beta SI$$

$$I' = \beta SI - \nu R$$

$$R' = \nu I$$

Initial conditions:

$$S(0) = S_0$$

 $I(0) = I_0$
 $R(0) = 0$

Another example on a system of ODEs (vector ODE)

Second-order ordinary differential equation, for a spring-mass system (from Newton's second law):

$$mu'' + \beta u' + ku = 0$$
, $u(0) = U_0$, $u'(0) = 0$

We can rewrite this as a system of two *first-order* equations, by introducing two new unknowns

$$u^{(0)}(t) \equiv u(t), \quad u^{(1)}(t) \equiv u'(t)$$

The first-order system is then

$$\frac{d}{dt}u^{(0)}(t) = u^{(1)}(t)$$
$$\frac{d}{dt}u^{(1)}(t) = -m^{-1}\beta u^{(1)} - m^{-1}ku^{(0)}$$

Initial conditions: $u^{(0)}(0) = U_0$, $u^{(1)}(0) = 0$

Making a flexible toolbox for solving ODEs

- For scalar ODEs we could make one general class hierarchy to solve "all" problems with a range of methods
- Can we easily extend class hierarchy to systems of ODEs?
- The example here can easily be extended to professional code (Odespy)

Vector notation for systems of ODEs: unknowns and

General software for any vector/scalar ODE demands a general mathematical notation. We introduce n unknowns

$$u^{(0)}(t), u^{(1)}(t), \ldots, u^{(n-1)}(t)$$

in a system of n ODEs:

$$\frac{d}{dt}u^{(0)} = f^{(0)}(u^{(0)}, u^{(1)}, \dots, u^{(n-1)}, t)$$

$$\frac{d}{dt}u^{(1)} = f^{(1)}(u^{(0)}, u^{(1)}, \dots, u^{(n-1)}, t)$$

$$\vdots$$

 $\frac{d}{dt}u^{(n-1)}=f^{(n-1)}(u^{(0)},u^{(1)},\ldots,u^{(n-1)},t)$

Vector notation for systems of ODEs: vectors

We can collect the $u^{(i)}(t)$ functions and right-hand side functions $f^{(i)}$ in vectors:

$$u = (u^{(0)}, u^{(1)}, \dots, u^{(n-1)})$$

$$f = (f^{(0)}, f^{(1)}, \dots, f^{(n-1)})$$

The first-order system can then be written

$$u' = f(u, t), \quad u(0) = U_0$$

where u and f are vectors and U_0 is a vector of initial conditions

The magic of this notation:

Observe that the notation makes a scalar ODE and a system look the same, and we can easily make Python code that can handle both cases within the same lines of code (!)

How to make class ODESolver work for systems of ODEs

- Recall: ODESolver was written for a scalar ODE
- Now we want it to work for a system u' = f. $u(0) = U_0$. where u, f and U_0 are vectors (arrays)
- What are the problems?

Forward Euler applied to a system:

$$\underbrace{u_{k+1}}_{\text{vector}} = \underbrace{u_k}_{\text{vector}} + \Delta t \underbrace{f(u_k, t_k)}_{\text{vector}}$$

In Python code:

```
unew = u[k] + dt*f(u[k], t)
```

where

- u is a two-dim. array (u[k] is a row)
- f is a function returning an array (all the right-hand sides $f^{(0)}, \ldots, f^{(n-1)}$

The adjusted superclass code (part 1)

To make ODESolver work for systems:

- Ensure that f(u,t) returns an array.
- This can be done be a general adjustment in the superclass!
- Inspect U_0 to see if it is a number or list/tuple and make corresponding u 1-dim or 2-dim array

```
class ODESolver:
    def __init__(self, f):
         # Wrap user's f in a new function that always
# converts list/tuple to array (or let array be array)
         self f = lambda u, t: np.asarray(f(u, t), float)
    def set_initial_condition(self, U0):
          if isinstance(UO, (float,int)): # scalar ODE
                                                # no of equations
             self.neq = 1
U0 = float(U0)
         else:
UO = np.asarray(UO)
                                                # system of ODEs
         self.neq = U0.size
self.U0 = U0
                                                # no of equations
```

The superclass code (part 2) class ODESolver:

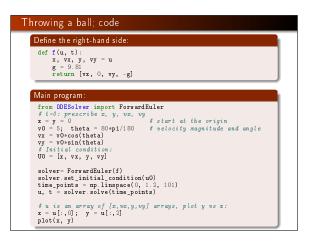
```
def solve(self, time_points, terminate=None):
    if terminate is None:
        terminate = lambda u, t, step_no: False
          self.t = np.asarray(time_points)
         self.t.size
if self.neq == 1: # scalar ODEs
self.u = np.zeros(n)
else: # systems of ODEs
self.u = np.zeros((n, self.neq))
         # Assume that self.t[0] corresponds to self.U0 self.u[0] = self.U0
          # Time loop
         for k in range(n-1):
        sof k in range(n-1):
    self. k = k
    self. u[k+1] = self.advance()
    if terminate(self.u, self.t, self.k+1):
        break # terminate loop over k
    return self.u[k+2], self.t[k+2]
```

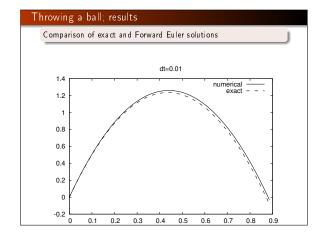
All subclasses from the scalar ODE works for systems as well

Example on how to use the general class hierarchy $\begin{aligned} &\text{Spring-mass system formulated as a system of ODEs:} \\ &mu'' + \beta u' + ku = 0, \quad u(0), \quad u'(0) \text{ kn own} \end{aligned}$ $u^{(0)} = u, \quad u^{(1)} = u' \\ u(t) = (u^{(0)}(t), u^{(1)}(t)) \\ f(u,t) = (u^{(1)}(t), -m^{-1}\beta u^{(1)} - m^{-1}ku^{(0)}) \\ u'(t) = f(u,t) \end{aligned}$ $\begin{aligned} &\text{Code defining the right-hand side:} \\ &\text{def myf}(u, t): \\ & f \text{ u is array with two components u[0] and u[1]:} \\ &\text{return [u[1], -beta*u[1]/m - k*u[0]/m]} \end{aligned}$

Alternative implementation of the f function via a class Better (no global variables): class MyF: def __init__(self, m, k, beta): self.m, self.k, self.beta = m, k, beta def __call__(self, u, t): m, k, beta = self.m, self.k, self.beta return [u[i1], -beta*u[i]/m - k*u[0]/m] Main program: from ODESolver import ForwardEuler # initial condition: U0 = [1 0, 0] f = MyF(1:0, 1:0, 0.0) # u'' + u = 0 => u(t) = cos(t) solver = ForwardEuler(f) solver.set_initial_condition(U0) T = 4*pl; dt = pl/20; n = int(round(T/dt)) time_points = mp_linspace(0, T, n+i) u, t = solver.solve(time_points) # u is an array of [u0, u1] arrays, plot all u0 values: u0_values = u[:,0] u0_exact = cos(t) plot(t, u0_values, 'r-', t, u0_exact, 'b-')

Throwing a ball; ODE model Newton's 2nd law for a ball's trajectory through air leads to $\frac{dx}{dt} = v_x$ $\frac{dv_x}{dt} = 0$ $\frac{dy}{dt} = v_y$ $\frac{dv_y}{dt} = -g$ Air resistance is neglected but can easily be added! • 4 ODEs with 4 unknowns: • the ball's position x(t), y(t)• the velocity $v_x(t)$, $v_y(t)$



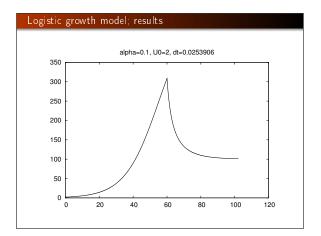


```
class Problem:
    def __init__(self, alpha, R, U0, T):
        self.alpha, self R, self.U0, self.T = alpha, R, U0, T

    def __call__(self, u, t):
        """Return f(u, t)."""
        return self.alphaeve(i - u/self.R(t))

def terminate(self, u, t, step_no):
        """Terminate when u is close to R. """
        tol = self.R*0.01
        return abs(u(step_no) - self.R) < tol

problem = Problem(alpha=0.1, R=500, U0=2, T=130)
```



###