Ch.3: Functions and branching

Hans Petter Langtangen1,2

Simula Research Laboratory1
University of Oslo, Dept. of Informatics2

Aug 15, 2015
Mathematical functions:

```python
from math import *
y = sin(x)*log(x)
```

Other functions:

```python
n = len(somelist)
integers = range(5, n, 2)
```

Functions used with the dot syntax (called *methods*):

```python
C = [5, 10, 40, 45]
i = C.index(10)  # result: i=1
C.append(50)
C.insert(2, 20)
```

What is a function? So far we have seen that we put some objects in and sometimes get an object (result) out of functions. Now it is time to write our own functions!
We have used many Python functions

Mathematical functions:

```
from math import *
y = sin(x)*log(x)
```

Other functions:

```
n = len(somelist)
integers = range(5, n, 2)
```

Functions used with the dot syntax (called methods):

```
C = [5, 10, 40, 45]
i = C.index(10)  # result: i=1
C.append(50)
C.insert(2, 20)
```

What is a function? So far we have seen that we put some objects in and sometimes get an object (result) out of functions. Now it is time to write our own functions!
Functions are one of the most important tools in programming.

- Function = a collection of statements we can execute wherever and whenever we want.
- Function can take *input objects* (arguments) and produce output objects (returned results).
- Functions help to organize programs, make them more understandable, shorter, reusable, and easier to extend.
The mathematical function

\[F(C) = \frac{9}{5}C + 32 \]

can be implemented in Python as follows:

```python
def F(C):
    return (9.0/5)*C + 32
```

Note:

- Functions start with `def`, then the name of the function, then a list of arguments (here `C`) - the function header
- Inside the function: statements - the function body
- Wherever we want, inside the function, we can "stop the function" and return as many values/variables we want
A function does not do anything before it is called

```python
def F(C):
    return (9.0/5)*C + 32

a = 10
F1 = F(a)                  # call
temp = F(15.5)             # call
print F(a+1)               # call
sum_temp = F(10) + F(20)   # two calls
Fdegrees = [F(C) for C in [0, 20, 40]] # multiple calls

(Visualize execution)
```

Note:
The call $F(C)$ produces (returns) a float object, which means that $F(C)$ is replaced by this float object. We can therefore make the call $F(C)$ everywhere a float can be used.
Functions can have as many arguments as you like.

Make a Python function of the mathematical function:

\[y(t) = v_0 t - \frac{1}{2}gt^2 \]

```python
def yfunc(t, v0):
g = 9.81
return v0*t - 0.5*g*t**2

# sample calls:
y = yfunc(0.1, 6)
y = yfunc(0.1, v0=6)
y = yfunc(t=0.1, v0=6)
y = yfunc(v0=6, t=0.1)
```

(Visualize execution)
```python
def yfunc(t, v0):
    g = 9.81
    return v0*t - 0.5*g*t**2

v0 = 5
T = 0.6
y = yfunc(t, 3)
```

(Visualize execution)

Local vs global variables

When calling `yfunc(t, 3)`, all these statements are in fact executed:

```
t = 0.6  # arguments get values as in standard assignments
v0 = 3
g = 9.81
return v0*t - 0.5*g*t**2
```

Inside `yfunc`, `t`, `v0`, and `g` are *local variables*, not visible outside `yfunc` and destroyed after `return`. Outside `yfunc` (in the main program), `t`, `v0`, and `y` are *global variables*, visible everywhere.
The `yfunc(t,v0)` function took two arguments. Could implement $y(t)$ as a function of t only:

```python
>>> def yfunc(t):
...     g = 9.81
...     return v0*t - 0.5*g*t**2
...
>>> t = 0.6
>>> yfunc(t)
NameError: global name 'v0' is not defined
```

Problem: $v0$ must be defined in the calling program program before we call `yfunc`!

```python
>>> v0 = 5
>>> yfunc(0.6)
1.2342
```

Note: $v0$ and t (in the main program) are global variables, while the t in `yfunc` is a local variable.
Test this:

```python
def yfunc(t):
    print '1. local t inside yfunc:', t
    g = 9.81
    t = 0.1
    print '2. local t inside yfunc:', t
    return v0*t - 0.5*g*t**2

    t = 0.6
    v0 = 2
    print yfunc(t)
    print '1. global t:', t
    print yfunc(0.3)
    print '2. global t:', t
```

(Visualize execution)

Question

What gets printed?
Global variables can be changed if declared global

```python
def yfunc(t):
g = 9.81
global v0  # now v0 can be changed inside this function
v0 = 9
return v0*t - 0.5*g*t**2

v0 = 2  # global variable
print '1. v0:', v0
print yfunc(0.8)
print '2. v0:', v0
```

(Visualize execution)

What gets printed?

1. v0: 2
2. v0: 9
2. v0: 9
4.0608

What happens if we comment out global v0?

1. v0: 2
2. v0: 2
2. v0: 2
4.0608

v0 in yfunc becomes a local variable (i.e., we have two v0)
Say we want to compute \(y(t) \) and \(y'(t) = v_0 - gt \):

```python
def yfunc(t, v0):
g = 9.81
y = v0*t - 0.5*g*t**2
dydt = v0 - g*t
return y, dydt
```

call:
position, velocity = yfunc(0.6, 3)

Separate the objects to be returned by comma, assign to variables separated by comma. Actually, a tuple is returned:

```python
>>> def f(x):
...     return x, x**2, x**4
...    
>>> s = f(2)
>>> s
(2, 4, 16)
```

```python
>>> type(s)
<type 'tuple'>
```

```python
>>> x, x2, x4 = f(2)  # same syntax as x, y = (obj1, obj2)
```
Example: Compute a function defined as a sum

The function

\[L(x; n) = \sum_{i=1}^{n} \frac{1}{i} \left(\frac{x}{1+x} \right)^i \]

is an approximation to \(\ln(1 + x) \) for a finite \(n \) and \(x \geq 1 \).

Corresponding Python function for \(L(x; n) \):

```python
def L(x, n):
    x = float(x)  # ensure float division below
    s = 0
    for i in range(1, n+1):
        s += (1.0/i)*(x/(1+x))**i
    return s

x = 5
from math import log as ln
print L(x, 10), L(x, 100), ln(1+x)
```
Returning errors as well from the \(L(x, n) \) function

We can return more: 1) the first neglected term in the sum and 2) the error \((\ln(1 + x) - L(x; n))\):

```python
def L2(x, n):
    x = float(x)
    s = 0
    for i in range(1, n+1):
        s += (1.0/i)*(x/(1+x))**i
    value_of_sum = s
    first_neglected_term = (1.0/(n+1))*(x/(1+x))**(n+1)
    from math import log
    exact_error = log(1+x) - value_of_sum
    return value_of_sum, first_neglected_term, exact_error
```

typical call:
x = 1.2; n = 100
value, approximate_error, exact_error = L2(x, n)
def somefunc(obj):
 print obj

return_value = somefunc(3.4)

Here, return_value becomes None because if we do not explicitly return something, Python will insert return None.
Example on a function without return value

Make a table of $L(x; n)$ vs. $\ln(1 + x)$:

```python
def table(x):
    print '\nx=\%g, ln\(1+x\)=\%g' % (x, log(1+x))
for n in [1, 2, 10, 100, 500]:
    value, next, error = L2(x, n)
    print 'n=\%-4d %-10g (next term: %8.2e ' \n      'error: %8.2e)' % (n, value, next, error)
```

No need to return anything here - the purpose is to print.

```
x=10, ln(1+x)=2.3979
n=1  0.909091 (next term: 4.13e-01  error: 1.49e+00)
n=2  1.32231 (next term: 2.50e-01  error: 1.08e+00)
n=10 2.17907 (next term: 3.19e-02  error: 2.19e-01)
n=100 2.39789 (next term: 6.53e-07  error: 6.59e-06)
n=500 2.3979 (next term: 3.65e-24  error: 6.22e-15)
```
Keyword arguments are useful to simplify function calls and help document the arguments.

Functions can have arguments of the form name=value, called *keyword arguments*:

```python
def somefunc(arg1, arg2, kwarg1=True, kwarg2=0):
    print arg1, arg2, kwarg1, kwarg2
```
Examples on calling functions with keyword arguments

```python
>>> def somefunc(arg1, arg2, kwarg1=True, kwarg2=0):
    print arg1, arg2, kwarg1, kwarg2

>>> somefunc('Hello', [1,2])  # drop kwarg1 and kwarg2
Hello [1, 2] True 0  # default values are used

>>> somefunc('Hello', [1,2], kwarg1='Hi')
Hello [1, 2] Hi 0  # kwarg2 has default value

>>> somefunc('Hello', [1,2], kwarg2='Hi')
Hello [1, 2] True Hi  # kwarg1 has default value

>>> somefunc('Hello', [1,2], kwarg2='Hi', kwarg1=6)
Hello [1, 2] 6 Hi  # specify all args
```

If we use name=value for all arguments in the call, their sequence can in fact be arbitrary:

```python
>>> somefunc(kwarg2='Hello', arg1='Hi', kwarg1=6, arg2=[2])
Hi [2] 6 Hello
```
How to implement a mathematical function of one variable, but with additional parameters?

Consider a function of t, with parameters A, a, and ω:

$$f(t; A, a, \omega) = Ae^{-at} \sin(\omega t)$$

Possible implementation

Python function with t as positional argument, and A, a, and ω as keyword arguments:

```python
from math import pi, exp, sin

def f(t, A=1, a=1, omega=2*pi):
    return A*exp(-a*t)*sin(omega*t)

v1 = f(0.2)
v2 = f(0.2, omega=1)
v2 = f(0.2, 1, 3)  # same as f(0.2, A=1, a=3)
v3 = f(0.2, omega=1, A=2.5)
v4 = f(A=5, a=0.1, omega=1, t=1.3)
v5 = f(t=0.2, A=9)
v6 = f(t=0.2, 9)  # illegal: keyword arg before positional
```
Doc strings are used to document the usage of a function

Important Python convention:

Document the purpose of a function, its arguments, and its return values in a *doc string* - a (triple-quoted) string written right after the function header.

```python
def C2F(C):
    """Convert Celsius degrees (C) to Fahrenheit."""
    return (9.0/5)*C + 32

def line(x0, y0, x1, y1):
    """
    Compute the coefficients a and b in the mathematical expression for a straight line \( y = a \times x + b \) that goes through two points \( (x_0, y_0) \) and \( (x_1, y_1) \).
    """
    x0, y0: a point on the line (floats).
    x1, y1: another point on the line (floats).
    return: a, b (floats) for the line \( y=a \times x+b \).
    """
    a = (y1 - y0)/(x1 - x0)
    b = y0 - a*x0
    return a, b
```
A function can have three types of input and output data:

- input data specified through positional/keyword arguments
- input/output data given as positional/keyword arguments that will be modified and returned
- output data created inside the function

All output data are returned, all input data are arguments

def somefunc(i1, i2, i3, io4, io5, i6=value1, io7=value2):
 # modify io4, io5, io7; compute o1, o2, o3
 return o1, o2, o3, io4, io5, io7

The function arguments are

- pure input: i1, i2, i3, i6
- input and output: io4, io5, io7
A function can have three types of input and output data:
- input data specified through positional/keyword arguments
- input/output data given as positional/keyword arguments that will be modified and returned
- output data created inside the function

All output data are returned, all input data are arguments

def somefunc(i1, i2, i3, io4, io5, i6=value1, io7=value2):
 # modify io4, io5, io7; compute o1, o2, o3
 return o1, o2, o3, io4, io5, io7

The function arguments are
- pure input: i1, i2, i3, i6
- input and output: io4, io5, io7
A function can have three types of input and output data:
- input data specified through positional/keyword arguments
- input/output data given as positional/keyword arguments that will be modified and returned
- output data created inside the function

All output data are returned, all input data are arguments

```python
def somefunc(i1, i2, i3, io4, io5, i6=value1, io7=value2):
    # modify io4, io5, io7; compute o1, o2, o3
    return o1, o2, o3, io4, io5, io7
```

The function arguments are
- pure input: i1, i2, i3, i6
- input and output: io4, io5, io7
from math import * # in main

def f(x): # in main
 e = exp(-0.1*x)
 s = sin(6*pi*x)
 return e*s

x = 2 # in main
y = f(x) # in main
print 'f(%g)=%g' % (x, y) # in main

The execution starts with the first statement in the main program and proceeds line by line, top to bottom. def statements define a function, but the statements inside the function are not executed before the function is called.
Python functions as arguments to Python functions

- Programs doing calculus frequently need to have functions as arguments in other functions, e.g.,
 - numerical integration: \(\int_a^b f(x) \, dx \)
 - numerical differentiation: \(f'(x) \)
 - numerical root finding: \(f(x) = 0 \)
- All three cases need \(f \) as a Python function \(f(x) \)

Example: numerical computation of \(f''(x) \)

\[
f''(x) \approx \frac{f(x - h) - 2f(x) + f(x + h)}{h^2}
\]

```python
def diff2(f, x, h=1E-6):
    r = (f(x-h) - 2*f(x) + f(x+h))/float(h*h)
    return r
```

No difficulty with \(f \) being a function (more complicated in Matlab, C, C++, Fortran, Java, ...).
Application of the `diff2` function (read the output!)

Code:

```python
def g(t):
    return t**(-6)

# make table of g''(t) for 13 h values:
for k in range(1,14):
    h = 10**(-k)
    print 'h=%.0e: %.5f' % (h, diff2(g, 1, h))
```

Output (g''(1) = 42):

```
h=1e-01: 44.61504
h=1e-02: 42.02521
h=1e-03: 42.00025
h=1e-04: 42.00000
h=1e-05: 41.99999
h=1e-06: 42.00074
h=1e-07: 41.94423
h=1e-08: 47.73959
h=1e-09: -666.13381
h=1e-10: 0.00000
h=1e-11: 0.00000
h=1e-12: -666133814.77509
h=1e-13: 66613381477.50939
```
For $h < 10^{-8}$ the results are totally wrong!

We would expect better approximations as h gets smaller

Problem 1: for small h we subtract numbers of approx equal size and this gives rise to round-off errors

Problem 2: for small h the round-off errors are multiplied by a big number

Remedy: use float variables with more digits

Python has a (slow) float variable (decimal.Decimal) with arbitrary number of digits

Using 25 digits gives accurate results for $h \leq 10^{-13}$

Is this really a problem? Quite seldom - other uncertainties in input data to a mathematical computation makes it usual to have (e.g.) $10^{-2} \leq h \leq 10^{-6}$
def f(x):
 return x**2 - 1

The lambda construction can define this function in one line:

f = lambda x: x**2 - 1

In general,

somefunc = lambda a1, a2, ...: some_expression

is equivalent to

def somefunc(a1, a2, ...):
 return some_expression

Lambda functions can be used directly as arguments in function calls:

value = someotherfunc(lambda x, y, z: x+y+3*z, 4)
Example on using a lambda function to save typing

Verbose standard code:

```python
def g(t):
    return t**(-6)

dgdt = diff2(g, 2)
print dgdt
```

More compact code with lambda:

```python
dgdt = diff2(lambda t: t**(-6), 2)
print dgdt
```
Sometimes we want to perform different actions depending on a condition. Example:

\[f(x) = \begin{cases} \sin x, & 0 \leq x \leq \pi \\ 0, & \text{otherwise} \end{cases} \]

A Python implementation of \(f \) needs to test on the value of \(x \) and branch into two computations:

```python
from math import sin, pi

def f(x):
    if 0 <= x <= pi:
        return sin(x)
    else:
        return 0

print f(0.5)
print f(5*pi)
```

(Visualize execution)
The general form of if tests

if-else (the else block can be skipped):

```python
if condition:
    <block of statements, executed if condition is True>
else:
    <block of statements, executed if condition is False>
```

Multiple if-else

```python
if condition1:
    <block of statements>
elif condition2:
    <block of statements>
elif condition3:
    <block of statements>
else:
    <block of statements>
<next statement>
```
Example on multiple branching

A piecewisely defined function

\[N(x) = \begin{cases}
0, & x < 0 \\
x, & 0 \leq x < 1 \\
2 - x, & 1 \leq x < 2 \\
0, & x \geq 2
\end{cases} \]

Python implementation with multiple if-else-branching

```python
def N(x):
    if x < 0:
        return 0
    elif 0 <= x < 1:
        return x
    elif 1 <= x < 2:
        return 2 - x
    elif x >= 2:
        return 0
```
Inline if tests for shorter code

Common construction:

```python
if condition:
    variable = value1
else:
    variable = value2
```

More compact syntax with one-line if-else:

```python
variable = (value1 if condition else value2)
```

Example:

```python
def f(x):
    return (sin(x) if 0 <= x <= 2*pi else 0)
```
We shall write special *test functions* to verify functions

def double(x): # some function
 return 2*x

def test_double(): # associated test function
 '''Call double(x) to check that it works.'''
 x = 4 # some chosen x value
 expected = 8 # expected result from double(x)
 computed = double(x)
 success = computed == expected # boolean value: test passed?
 msg = 'computed %s, expected %s' % (computed, expected)
 assert success, msg

Rules for test functions:

- name begins with `test_`
- no arguments
- must have an `assert success` statement, where success is True if the test passed and False otherwise (assert success, msg prints msg on failure)

The optional msg parameter writes a message if the test fails.
def double(x): # some function
 return 2*x

def test_double(): # associated test function
 tol = 1E-14 # tolerance for float comparison
 x_values = [3, 7, -2, 0, 4.5, 'hello']
 expected_values = [6, 14, -4, 0, 9, 'hellohello']
 for x, expected in zip(x_values, expected_values):
 computed = double(x)
 msg = '%s != %s' % (computed, expected)
 assert abs(expected - computed) < tol, msg

A test function will run silently if all tests pass. If one test above fails, assert will raise an AssertionError.
Why write test functions according to these rules?

- Easy to recognize where functions are verified
- Test frameworks, like nose and pytest, can automatically run all your test functions (in a folder tree) and report if any bugs have sneaked in
- This is a very well established standard

Terminal> py.test -s .
Terminal> nosetests -s .

We recommend py.test - it has superior output.

Unit tests

A test function as test_double() is often referred to as a unit test since it tests a small unit (function) of a program. When all unit tests work, the whole program is supposed to work.
Many find test functions to be a difficult topic

The idea *is* simple: make a problem where you know the answer, call the function, compare with the known answer

Just write some test functions and it will be easy

The fact that a successful test function runs silently is annoying - can (during development) be convenient to insert some print statements so you realize that the statements are run
If tests:

```python
if x < 0:
    value = -1
elif x >= 0 and x <= 1:
    value = x
else:
    value = 1
```

User-defined functions:

```python
def quadratic_polynomial(x, a, b, c):
    value = a*x*x + b*x + c
    derivative = 2*a*x + b
    return value, derivative
```

function call:
x = 1
p, dp = quadratic_polynomial(x, 2, 0.5, 1)
p, dp = quadratic_polynomial(x=x, a=-4, b=0.5, c=0)

Positional arguments must appear before keyword arguments:

```python
def f(x, A=1, a=1, w=pi):
    return A*exp(-a*x)*sin(w*x)
```
An integral

\[\int_{a}^{b} f(x) \, dx \]

can be approximated by *Simpson’s rule*:

\[
\int_{a}^{b} f(x) \, dx \approx \frac{b - a}{3n} \left(f(a) + f(b) + 4 \sum_{i=1}^{n/2} f(a + (2i - 1)h) + 2 \sum_{i=1}^{n/2-1} f(a + 2ih) \right)
\]

Problem: make a function `Simpson(f, a, b, n=500)` for computing an integral of \(f(x) \) by Simpson’s rule. Call `Simpson(...)` for \(\frac{3}{2} \int_{0}^{\pi} \sin^3 x \, dx \) (exact value: 2) for \(n = 2, 6, 12, 100, 500 \).
def Simpson(f, a, b, n=500):
 """
 Return the approximation of the integral of f
 from a to b using Simpson’s rule with n intervals.
 """
 h = (b - a)/float(n)
 sum1 = 0
 for i in range(1, n/2 + 1):
 sum1 += f(a + (2*i-1)*h)
 sum2 = 0
 for i in range(1, n/2):
 sum2 += f(a + 2*i*h)
 integral = (b-a)/(3*n)*(f(a) + f(b) + 4*sum1 + 2*sum2)
 return integral
def Simpson(f, a, b, n=500):
 if a > b:
 print 'Error: a=%g > b=%g' % (a, b)
 return None

 # Check that n is even
 if n % 2 != 0:
 print 'Error: n=%d is not an even integer!' % n
 n = n+1 # make n even

 # as before...
 ...
 return integral
def h(x):
 return (3./2)*sin(x)**3

from math import sin, pi

def application():
 print 'Integral of 1.5*sin^3 from 0 to pi:'
 for n in 2, 6, 12, 100, 500:
 approx = Simpson(h, 0, pi, n)
 print 'n=%3d, approx=%18.15f, error=%9.2E' %
 (n, approx, 2-approx)

application()
Property of Simpson’s rule: 2nd degree polynomials are integrated exactly!

```python
def test_Simpson():  # rule: no arguments
    """Check that quadratic functions are integrated exactly."""
    a = 1.5
    b = 2.0
    n = 8
    g = lambda x: 3*x**2 - 7*x + 2.5  # test integrand
    G = lambda x: x**3 - 3.5*x**2 + 2.5*x  # integral of g
    exact = G(b) - G(a)
    approx = Simpson(g, a, b, n)
    success = abs(exact - approx) < 1E-14  # tolerance for floats
    msg = 'exact=%g, approx=%g' % (exact, approx)
    assert success, msg
```

Can either call `test_Simpson()` or run nose or pytest:

```
Terminal> nosetests -s Simpson.py
Terminal> py.test -s Simpson.py
... Ran 1 test in 0.005s
```

OK