
Ch.1: Computing with formulas

Hans Petter Langtangen1,2

Simula Research Laboratory1

University of Oslo, Dept. of Informatics2

Aug 21, 2016

Why program?

Everybody in this country should learn how to program a

computer... because it teaches you how to think. Steve

Jobs, 1955-2011.

The teaching strategy is example-based

Present a case (example)

Present the complete program

Dissect and discuss every line

Simulate programs by hand (be the computer!)

The learning strategy is about doing exercises

Study and try to understand examples

Program a lot!

This course has many compulsory exercises

The course curriculum is de�ned through exercises

Chapter 1 is about evaluating formulas

Why?

Everybody understands the problem

Many fundamental concepts are introduced

variables
arithmetic expressions
objects
printing text and numbers

Formulas and arithmetics are fundamental...

A physicist, a biologist and a mathematician were at a cafe when
across the street two people entered a house. Moments later three
people came out. The physicist said, �Hmm, that must be a
measurement error.� The biologist wondered, �It must be
reproduction!� And the mathematician said, �If someone goes into
the house, it will be empty again.�

Evaluating a mathematical formula

Height of a ball in vertical motion

y(t) = v0t −
1

2
gt2

where

y is the height (position) as function of time t

v0 is the initial velocity at t = 0

g is the acceleration of gravity

Task: given v0, g and t, compute y .

Use a calculator? A program is much more powerful!

What is a program?

A sequence of instructions to the computer, written in a
programming language, somewhat like English, but very much
simpler - and very much stricter.

This course teaches the Python language.

Our �rst example program:

Evaluate y(t) = v0t − 1
2
gt2 for v0 = 5, g = 9.81 and t = 0.6:

y = 5 · 0.6− 1

2
· 9.81 · 0.62

The complete Python program:

hilsen = 'Kjære Åsmund!' # er æ og Å lov i en streng?
print hilsen

leads to an error:

SyntaxError: Non-ASCII character ...

Remedy: put this special comment line as the �rst line in your
program

-*- coding: utf-8 -*-

Or stick to English everywhere in a programThe printf syntax gives great �exibility in formatting text
with numbers

Output from calculations often contain text and numbers, e.g.,

At t=0.6 s, y is 1.23 m.

We want to control the formatting of numbers: no of decimals,
style: 0.6 vs 6E-01 or 6.0e-01. So-called printf formatting is
useful for this purpose:

t = 0.6; y = 1.2342
print 'At t=%g s, y is %.2f m.' % (t, y)

The printf format has �slots� where the variables listed at the end
are put: %g ← t, %.2f ← y

Examples on di�erent printf formats

%g most compact formatting of a real number
%f decimal notation (-34.674)
%10.3f decimal notation, 3 decimals, field width 10
%.3f decimal notation, 3 decimals, minimum width
%e or %E scientific notation (1.42e-02 or 1.42E-02)
%9.2e scientific notation, 2 decimals, field width 9
%d integer
%5d integer in a field of width 5 characters
%s string (text)
%-20s string, field width 20, left-adjusted
%% the percentage sign % itself

(See the the book for more explanation and overview)

Using printf formatting in our program

Triple-quoted strings (""") can be used for multi-line output, and
here we combine such a string with printf formatting:

v0 = 5
g = 9.81
t = 0.6
y = v0*t - 0.5*g*t**2

print """
At t=%f s, a ball with
initial velocity v0=%.3E m/s
is located at the height %.2f m.
""" % (t, v0, y)

Running the program:

Terminal> python ball_print2.py

At t=0.600000 s, a ball with
initial velocity v0=5.000E+00 m/s
is located at the height 1.23 m.

Some frequently used computer science terms

Program or code or application

Source code (program text)

Code/program snippet

Execute or run a program

Algorithm (recipe for a program)

Implementation (writing the program)

Veri�cation (does the program work correctly?)

Bugs (errors) and debugging

Computer science meaning of terms is often di�erent from the
human language meaning

A program consists of statements

a = 1 # 1st statement (assignment statement)
b = 2 # 2nd statement (assignment statement)
c = a + b # 3rd statement (assignment statement)
print c # 4th statement (print statement)

Normal rule: one statement per line, but multiple statements per
line is possible with a semicolon in between the statements:

a = 1; b = 2; c = a + b; print c

Assignment statements evaluate right-hand side and assign
the result to the variable on the left-hand side

myvar = 10
myvar = 3*myvar # = 30

Syntax is the exact speci�cation of instructions to the
computer

Programs must have correct syntax, i.e., correct use of the
computer language grammar rules, and no misprints!

This is a program with two syntax errors:

myvar = 5.2
prinnt Myvar

prinnt Myvar
^

SyntaxError: invalid syntax

Only the �rst encountered error is reported and the program is
stopped (correct the error and continue with next error)

Programming demands signi�cantly higher standard of

accuracy. Things don't simply have to make sense to

another human being, they must make sense to a

computer. Donald Knuth, computer scientist, 1938-

Blanks (whitespace) can be used to nicely format the
program text

Blanks may or may not be important in Python programs. These
statements are equivalent (blanks do not matter):

v0=3
v0 = 3
v0= 3
v0 = 3

Here blanks do matter:

counter = 1
while counter <= 4:

counter = counter + 1 # correct (4 leading blanks)

while counter <= 4:
counter = counter + 1 # invalid syntax

(more about this in Ch. 2)

A program takes some known input data and computes
some output data

v0 = 3; g = 9.81; t = 0.6
position = v0*t - 0.5*g*t*t
velocity = v0 - g*t
print 'position:', position, 'velocity:', velocity

Input: v0, g, and t

Output: position and velocity

An operating system (OS) is a set of programs managing
hardware and software resources on a computer

Linux, Unix (Ubuntu, RedHat, Suse, Solaris)

Windows (95, 98, NT, ME, 2000, XP, Vista, 7, 8)

Macintosh (old Mac OS, Mac OS X)

Mac OS X ≈ Unix ≈ Linux 6= Windows

Typical OS commands are quite similar:

Linux/Unix: mkdir folder; cd folder; ls

Windows: mkdir folder; cd folder; dir

Python supports cross-platform programming, i.e., a program
is independent of which OS we run the program on

Evaluating a formula for temperature conversion

Given C as a temperature in Celsius degrees, compute the
corresponding Fahrenheit degrees F :

F =
9

5
C + 32

Program:

C = 21
F = (9/5)*C + 32
print F

Execution:

Terminal> python c2f_v1.py
53

We must always check that a new program calculates the
right answer

Using a calculator:

9/5 times 21 plus 32 is 69.8, not 53.

The error is caused by (unintended) integer division

9/5 is not 1.8 but 1 in most computer languages (!)

If a and b are integers, a/b implies integer division: the largest
integer c such that cb ≤ a

Examples: 1/5 = 0, 2/5 = 0, 7/5 = 1, 12/5 = 2

In mathematics, 9/5 is a real number (1.8) - this is called �oat
division in Python and is the division we want

One of the operands (a or b) in a/b must be a real number
("�oat") to get �oat division

A �oat in Python has a dot (or decimals): 9.0 or 9. is �oat

No dot implies integer: 9 is an integer

9.0/5 yields 1.8, 9/5. yields 1.8, 9/5 yields 1

Corrected program (with correct output 69.8):

C = 21
F = (9.0/5)*C + 32
print F

Everything in Python is an object

Variables refer to objects:

a = 5 # a refers to an integer (int) object
b = 9 # b refers to an integer (int) object
c = 9.0 # c refers to a real number (float) object
d = b/a # d refers to an int/int => int object
e = c/a # e refers to float/int => float object
s = 'b/a=%g' % (b/a) # s is a string/text (str) object

We can convert between object types:

a = 3 # a is int
b = float(a) # b is float 3.0
c = 3.9 # c is float
d = int(c) # d is int 3
d = round(c) # d is float 4.0
d = int(round(c)) # d is int 4
d = str(c) # d is str '3.9'
e = '-4.2' # e is str
f = float(e) # f is float -4.2

Arithmetic expressions are evaluated as you have learned in
mathematics

Example: 5
9
+ 2a4/2, in Python written as 5/9 + 2*a**4/2

Same rules as in mathematics: proceed term by term
(additions/subtractions) from the left, compute powers �rst,
then multiplication and division, in each term

r1 = 5/9 (=0)

r2 = a**4

r3 = 2*r2

r4 = r3/2

r5 = r1 + r4

Use parenthesis to override these default rules - or use
parenthesis to explicitly tell how the rules work:
(5/9) + (2*(a**4))/2

Standard mathematical functions are found in the math
module

What if we need to compute sin x , cos x , ln x , etc. in a
program?

Such functions are available in Python's math module

In general: lots of useful functionality in Python is available in
modules - but modules must be imported in our programs

Compute
√
2 using the sqrt function in the math module:

import math
r = math.sqrt(2)
or
from math import sqrt
r = sqrt(2)
or
from math import * # import everything in math
r = sqrt(2)

Another example on computing with functions from math

Evaluate

Q = sin x cos x + 4 ln x

for x = 1.2.

from math import sin, cos, log
x = 1.2
Q = sin(x)*cos(x) + 4*log(x) # log is ln (base e)
print Q

Computers have inexact arithmetics because of rounding
errors

Let us compute 1/49 · 49 and 1/51 · 51:
v1 = 1/49.0*49
v2 = 1/51.0*51
print '%.16f %.16f' % (v1, v2)

Output with 16 decimals becomes

0.9999999999999999 1.0000000000000000

Most real numbers are represented inexactly on a computer
(17 digits)

Neither 1/49 nor 1/51 is represented exactly, the error is
typically 10−16

Sometimes such small errors propagate to the �nal answer,
sometimes not, and somtimes the small errors accumulate
through many mathematical operations

Lesson learned: real numbers on a computer and the results of
mathematical computations are only approximate

Test that a calculation is correct

What is printed?

a = 1; b = 2;
computed = a + b
expected = 3
correct = computed == expected
print 'Correct:', correct

Change to a = 0.1 and b = 0.2 (expected = 0.3). What is
now printed? Why? How can the comparison be performed?

Answer to exercise on previous slide: use equality test with
tolerance!

>>> a = 0.1; b = 0.2; expected = 0.3
>>> a + b == expected
False

>>> print '%.17f\n%.17f\n%.17f\n%.17f' % (0.1, 0.2, 0.1 + 0.2, 0.3)
0.10000000000000001
0.20000000000000001
0.30000000000000004
0.29999999999999999

>>> a = 0.1; b = 0.2; expected = 0.3
>>> computed = a + b
>>> diff = abs(expected - computed)
>>> tol = 1E-15
>>> diff < tol

Another example involving math functions

The sinh x function is de�ned as

sinh(x) =
1

2

(
ex − e−x

)

We can evaluate this function in three ways:

1 math.sinh

2 combination of two math.exp

3 combination of two powers of math.e

from math import sinh, exp, e, pi
x = 2*pi
r1 = sinh(x)
r2 = 0.5*(exp(x) - exp(-x))
r3 = 0.5*(e**x - e**(-x))
print '%.16f %.16f %.16f' % (r1,r2,r3)

Output: r1 is 267.7448940410164369, r2 is
267.7448940410164369, r3 is 267.7448940410163232 (!)

Python can be used interactively as a calculator and to test
statements

So far we have performed calculations in Python programs

Python can also be used interactively in what is known as a
shell

Type python, ipython, or idle in the terminal window

A Python shell is entered where you can write statements after
�> (IPython has a di�erent prompt)

Terminal> python
Python 2.7.6 (r25:409, Feb 27 2014, 19:35:40)
...
>>> C = 41
>>> F = (9.0/5)*C + 32
>>> print F
105.8
>>> F
105.8

Previous commands can be recalled and edited

Python has full support for complex numbers

2+ 3i in mathematics is written as 2 + 3j in Python

>>> a = -2
>>> b = 0.5
>>> s = complex(a, b) # make complex from variables
>>> s
(-2+0.5j)
>>> s*w # complex*complex
(-10.5-3.75j)
>>> s/w # complex/complex
(-0.25641025641025639+0.28205128205128205j)
>>> s.real
-2.0
>>> s.imag
0.5

See the book for additional info

Python can also do symbolic computing

Numerical computing: computation with numbers

Symbolic computing: work with formulas (as in trad. math)

>>> from sympy import *
>>> t, v0, g = symbols('t v0 g')
>>> y = v0*t - Rational(1,2)*g*t**2
>>> dydt = diff(y, t) # 1st derivative
>>> dydt
-g*t + v0
>>> print 'acceleration:', diff(y, t, t) # 2nd derivative
acceleration: -g
>>> y2 = integrate(dydt, t)
>>> y2
-g*t**2/2 + t*v0

SymPy can do a lot of traditional mathematics

>>> y = v0*t - Rational(1,2)*g*t**2
>>> roots = solve(y, t) # solve y=0 wrt t
>>> roots
[0, 2*v0/g]

>>> x, y = symbols('x y')
>>> f = -sin(x)*sin(y) + cos(x)*cos(y)
>>> simplify(f)
cos(x + y)
>>> expand(sin(x+y), trig=True) # requires a trigonometric hint
sin(x)*cos(y) + sin(y)*cos(x)

Summary of Chapter 1 (part 1)

Programs must be accurate!

Variables are names for objects

We have met di�erent object types: int, float, str

Choose variable names close to the mathematical symbols in
the problem being solved

Arithmetic operations in Python: term by term (+/-) from left
to right, power before * and / - as in mathematics; use
parenthesis when there is any doubt

Watch out for unintended integer division!

Summary of Chapter 1 (part 2)

Mathematical functions like sin x and ln x must be imported from
the math module:

from math import sin, log
x = 5
r = sin(3*log(10*x))

Use printf syntax for full control of output of text and numbers!
Important terms: object, variable, algorithm, statement,
assignment, implementation, veri�cation, debugging

Programming is challenging

You think you know when you can learn,

are more sure when you can write,

even more when you can teach,

but certain when you can program

Within a computer, natural language is unnatural

To understand a program you must become both the

machine and the program

Alan Perlis, computer scientist, 1922-1990.

Summarizing example: throwing a ball (problem)

We throw a ball with velocity v0, at an angle θ with the horizontal,
from the point (x = 0, y = y0). The trajectory of the ball is a
parabola (we neglect air resistance):

y = x tan θ − 1

2v0

gx2

cos2 θ
+ y0

Program tasks:

initialize input data (v0, g , θ, y0)
import from math

compute y

We give x , y and y0 in m, g = 9.81m/s2, v0 in km/h and θ in
degrees - this requires conversion of v0 to m/s and θ to radians

Summarizing example: throwing a ball (solution)

Program:

g = 9.81 # m/s**2
v0 = 15 # km/h
theta = 60 # degrees
x = 0.5 # m
y0 = 1 # m

print """v0 = %.1f km/h
theta = %d degrees
y0 = %.1f m
x = %.1f m""" % (v0, theta, y0, x)

convert v0 to m/s and theta to radians:
v0 = v0/3.6
from math import pi, tan, cos
theta = theta*pi/180

y = x*tan(theta) - 1/(2*v0)*g*x**2/((cos(theta))**2) + y0

print 'y = %.1f m' % y

