
Ch.7: Introduction to classes

Hans Petter Langtangen1,2

Simula Research Laboratory1

University of Oslo, Dept. of Informatics2

Aug 15, 2015

Basics of classes

Class = functions + data (variables) in one unit

A class packs together data (a collection of variables) and
functions as one single unit

As a programmer you can create a new class and thereby a
new object type (like float, list, file, ...)

A class is much like a module: a collection of �global� variables
and functions that belong together

There is only one instance of a module while a class can have
many instances (copies)

Modern programming applies classes to a large extent

It will take some time to master the class concept

Let's learn by doing!

Representing a function by a class; background

Consider a function of t with a parameter v0:

y(t; v0) = v0t −
1

2
gt2

We need both v0 and t to evaluate y (and g = 9.81), but how
should we implement this?

Having t and v0 as arguments:

def y(t, v0):
g = 9.81
return v0*t - 0.5*g*t**2

Having t as argument and v0 as global variable:

def y(t):
g = 9.81
return v0*t - 0.5*g*t**2

Motivation: y(t) is a function of t only

Representing a function by a class; idea

With a class, y(t) can be a function of t only, but still have

v0 and g as parameters with given values.

The class packs together a function y(t) and data (v0, g)

Representing a function by a class; technical overview

We make a class Y for y(t; v0) with variables v0 and g and a
function value(t) for computing y(t; v0)

Any class should also have a function __init__ for
initialization of the variables

Y

__init__
value
formula
__call__
__str__

g
v0

Representing a function by a class; the code

class Y:
def __init__(self, v0):

self.v0 = v0
self.g = 9.81

def value(self, t):
return self.v0*t - 0.5*self.g*t**2

Usage:

y = Y(v0=3) # create instance (object)
v = y.value(0.1) # compute function value

Representing a function by a class; the constructor

When we write

y = Y(v0=3)

we create a new variable (instance) y of type Y. Y(3) is a call to
the constructor:

def __init__(self, v0):
self.v0 = v0
self.g = 9.81

What is this self variable? Stay cool - it will be understood
later as you get used to it

Think of self as y, i.e., the new variable to be created.
self.v0 = ... means that we attach a variable v0 to self

(y).

Y(3) means Y.__init__(y, 3), i.e., set self=y, v0=3

Remember: self is always �rst parameter in a function, but
never inserted in the call!

After y = Y(3), y has two variables v0 and g

print y.v0
print y.g

In mathematics you don't understand things. You just get

used to them. John von Neumann, mathematician,

1903-1957.

Representing a function by a class; the value method

Functions in classes are called methods

Variables in classes are called attributes

Here is the value method:

def value(self, t):
return self.v0*t - 0.5*self.g*t**2

Example on a call:

v = y.value(t=0.1)

self is left out in the call, but Python automatically inserts y as
the self argument inside the value method. Think of the call as

Y.value(y, t=0.1)

Inside value things �appear� as

return y.v0*t - 0.5*y.g*t**2

self gives access to �global variables� in the class object.

Representing a function by a class; summary

Class Y collects the attributes v0 and g and the method value

as one unit

value(t) is function of t only, but has automatically access
to the parameters v0 and g as self.v0 and self.g

The great advantage: we can send y.value as an ordinary
function of t to any other function that expects a function
f(t) of one variable

def make_table(f, tstop, n):
for t in linspace(0, tstop, n):

print t, f(t)

def g(t):
return sin(t)*exp(-t)

table(g, 2*pi, 101) # send ordinary function

y = Y(6.5)
table(y.value, 2*pi, 101) # send class method

Representing a function by a class; the general case

Given a function with n + 1 parameters and one independent
variable,

f (x ; p0, . . . , pn)

it is wise to represent f by a class where p0, . . . , pn are attributes
and where there is a method, say value(self, x), for computing
f (x)

class MyFunc:
def __init__(self, p0, p1, p2, ..., pn):

self.p0 = p0
self.p1 = p1
...
self.pn = pn

def value(self, x):
return ...

Class for a function with four parameters

v(r ;β, µ0, n,R) =

(
β

2µ0

) 1

n n

n + 1

(
R1+ 1

n − r1+
1

n

)

class VelocityProfile:
def __init__(self, beta, mu0, n, R):

self.beta, self.mu0, self.n, self.R = \
beta, mu0, n, R

def value(self, r):
beta, mu0, n, R = \
self.beta, self.mu0, self.n, self.R
n = float(n) # ensure float divisions
v = (beta/(2.0*mu0))**(1/n)*(n/(n+1))*\

(R**(1+1/n) - r**(1+1/n))
return v

v = VelocityProfile(R=1, beta=0.06, mu0=0.02, n=0.1)
print v.value(r=0.1)

Rough sketch of a general Python class

class MyClass:
def __init__(self, p1, p2):

self.attr1 = p1
self.attr2 = p2

def method1(self, arg):
can init new attribute outside constructor:
self.attr3 = arg
return self.attr1 + self.attr2 + self.attr3

def method2(self):
print 'Hello!'

m = MyClass(4, 10)
print m.method1(-2)
m.method2()

It is common to have a constructor where attributes are initialized,
but this is not a requirement - attributes can be de�ned whenever
desired

You can learn about other versions and views of class Y in
the course book

The book features a section on a di�erent version of class Y
where there is no constructor (which is possible)

The book also features a section on how to implement classes
without using classes

These sections may be clarifying - or confusing

But what is this self variable? I want to know now!

Warning

You have two choices:

1 follow the detailed explanations of what self really is

2 postpone understanding self until you have much more
experience with class programming (suddenly self becomes
clear!)

The syntax

y = Y(3)

can be thought of as

Y.__init__(y, 3) # class prefix Y. is like a module prefix

Then

self.v0 = v0

is actually

y.v0 = 3

How self works in the value method

v = y.value(2)

can alternatively be written as

v = Y.value(y, 2)

So, when we do instance.method(arg1, arg2), self becomes
instance inside method.

Working with multiple instances may help explain self

id(obj): print unique Python identi�er of an object

class SelfExplorer:
"""Class for computing a*x."""
def __init__(self, a):

self.a = a
print 'init: a=%g, id(self)=%d' % (self.a, id(self))

def value(self, x):
print 'value: a=%g, id(self)=%d' % (self.a, id(self))
return self.a*x

>>> s1 = SelfExplorer(1)
init: a=1, id(self)=38085696
>>> id(s1)
38085696

>>> s2 = SelfExplorer(2)
init: a=2, id(self)=38085192
>>> id(s2)
38085192

>>> s1.value(4)
value: a=1, id(self)=38085696
4
>>> SelfExplorer.value(s1, 4)
value: a=1, id(self)=38085696
4

>>> s2.value(5)
value: a=2, id(self)=38085192
10
>>> SelfExplorer.value(s2, 5)
value: a=2, id(self)=38085192
10

But what is this self variable? I want to know now!

Warning

You have two choices:

1 follow the detailed explanations of what self really is

2 postpone understanding self until you have much more
experience with class programming (suddenly self becomes
clear!)

The syntax

y = Y(3)

can be thought of as

Y.__init__(y, 3) # class prefix Y. is like a module prefix

Then

self.v0 = v0

is actually

y.v0 = 3

How self works in the value method

v = y.value(2)

can alternatively be written as

v = Y.value(y, 2)

So, when we do instance.method(arg1, arg2), self becomes
instance inside method.

Working with multiple instances may help explain self

id(obj): print unique Python identi�er of an object

class SelfExplorer:
"""Class for computing a*x."""
def __init__(self, a):

self.a = a
print 'init: a=%g, id(self)=%d' % (self.a, id(self))

def value(self, x):
print 'value: a=%g, id(self)=%d' % (self.a, id(self))
return self.a*x

>>> s1 = SelfExplorer(1)
init: a=1, id(self)=38085696
>>> id(s1)
38085696

>>> s2 = SelfExplorer(2)
init: a=2, id(self)=38085192
>>> id(s2)
38085192

>>> s1.value(4)
value: a=1, id(self)=38085696
4
>>> SelfExplorer.value(s1, 4)
value: a=1, id(self)=38085696
4

>>> s2.value(5)
value: a=2, id(self)=38085192
10
>>> SelfExplorer.value(s2, 5)
value: a=2, id(self)=38085192
10

Another class example: a bank account

Attributes: name of owner, account number, balance

Methods: deposit, withdraw, pretty print

class Account:
def __init__(self, name, account_number, initial_amount):

self.name = name
self.no = account_number
self.balance = initial_amount

def deposit(self, amount):
self.balance += amount

def withdraw(self, amount):
self.balance -= amount

def dump(self):
s = '%s, %s, balance: %s' % \

(self.name, self.no, self.balance)
print s

UML diagram of class Account Example on using class Account

>>> a1 = Account('John Olsson', '19371554951', 20000)
>>> a2 = Account('Liz Olsson', '19371564761', 20000)
>>> a1.deposit(1000)
>>> a1.withdraw(4000)
>>> a2.withdraw(10500)
>>> a1.withdraw(3500)
>>> print "a1's balance:", a1.balance
a1's balance: 13500
>>> a1.dump()
John Olsson, 19371554951, balance: 13500
>>> a2.dump()
Liz Olsson, 19371564761, balance: 9500

Use underscore in attribute names to avoid misuse

Possible, but not intended use:
>>> a1.name = 'Some other name'
>>> a1.balance = 100000
>>> a1.no = '19371564768'

The assumptions on correct usage:

The attributes should not be changed!

The balance attribute can be viewed

Changing balance is done through withdraw or deposit

Remedy:

Attributes and methods not intended for use outside the class can
be marked as protected by pre�xing the name with an underscore
(e.g., _name). This is just a convention - and no technical way of
avoiding attributes and methods to be accessed.

Improved class with attribute protection (underscore)

class AccountP:
def __init__(self, name, account_number, initial_amount):

self._name = name
self._no = account_number
self._balance = initial_amount

def deposit(self, amount):
self._balance += amount

def withdraw(self, amount):
self._balance -= amount

def get_balance(self): # NEW - read balance value
return self._balance

def dump(self):
s = '%s, %s, balance: %s' % \

(self._name, self._no, self._balance)
print s

Usage of improved class AccountP

a1 = AccountP('John Olsson', '19371554951', 20000)
a1.withdraw(4000)

print a1._balance # it works, but a convention is broken

print a1.get_balance() # correct way of viewing the balance

a1._no = '19371554955' # this is a "serious crime"!

Another example: a phone book

A phone book is a list of data about persons

Data about a person: name, mobile phone, o�ce phone,
private phone, email

Let us create a class for data about a person!

Methods:

Constructor for initializing name, plus one or more other data

Add new mobile number

Add new o�ce number

Add new private number

Add new email

Write out person data

UML diagram of class Person Basic code of class Person

class Person:
def __init__(self, name,

mobile_phone=None, office_phone=None,
private_phone=None, email=None):

self.name = name
self.mobile = mobile_phone
self.office = office_phone
self.private = private_phone
self.email = email

def add_mobile_phone(self, number):
self.mobile = number

def add_office_phone(self, number):
self.office = number

def add_private_phone(self, number):
self.private = number

def add_email(self, address):
self.email = address

Code of a dump method for printing all class contents

class Person:
...
def dump(self):

s = self.name + '\n'
if self.mobile is not None:

s += 'mobile phone: %s\n' % self.mobile
if self.office is not None:

s += 'office phone: %s\n' % self.office
if self.private is not None:

s += 'private phone: %s\n' % self.private
if self.email is not None:

s += 'email address: %s\n' % self.email
print s

Usage:

p1 = Person('Hans Petter Langtangen', email='hpl@simula.no')
p1.add_office_phone('67828283'),
p2 = Person('Aslak Tveito', office_phone='67828282')
p2.add_email('aslak@simula.no')
phone_book = [p1, p2] # list
phone_book = {'Langtangen': p1, 'Tveito': p2} # better
for p in phone_book:

p.dump()

Another example: a class for a circle

A circle is de�ned by its center point x0, y0 and its radius R

These data can be attributes in a class

Possible methods in the class: area, circumference

The constructor initializes x0, y0 and R

class Circle:
def __init__(self, x0, y0, R):

self.x0, self.y0, self.R = x0, y0, R

def area(self):
return pi*self.R**2

def circumference(self):
return 2*pi*self.R

>>> c = Circle(2, -1, 5)
>>> print 'A circle with radius %g at (%g, %g) has area %g' % \
... (c.R, c.x0, c.y0, c.area())
A circle with radius 5 at (2, -1) has area 78.5398

Test function for class Circle

def test_Circle():
R = 2.5
c = Circle(7.4, -8.1, R)

from math import pi
expected_area = pi*R**2
computed_area = c.area()
diff = abs(expected_area - computed_area)
tol = 1E-14
assert diff < tol, 'bug in Circle.area, diff=%s' % diff

expected_circumference = 2*pi*R
computed_circumference = c.circumference()
diff = abs(expected_circumference - computed_circumference)
assert diff < tol, 'bug in Circle.circumference, diff=%s' % diff

Special methods

class MyClass:
def __init__(self, a, b):
...

p1 = MyClass(2, 5)
p2 = MyClass(-1, 10)

p3 = p1 + p2
p4 = p1 - p2
p5 = p1*p2
p6 = p1**7 + 4*p3

Special methods allow nice syntax and are recognized by
double leading and trailing underscores

def __init__(self, ...)
def __call__(self, ...)
def __add__(self, other)

Python syntax
y = Y(4)
print y(2)
z = Y(6)
print y + z

What's actually going on
Y.__init__(y, 4)
print Y.__call__(y, 2)
Y.__init__(z, 6)
print Y.__add__(y, z)

We shall learn about many more such special methods

Example on a call special method

Replace the value method by a call special method:

class Y:
def __init__(self, v0):

self.v0 = v0
self.g = 9.81

def __call__(self, t):
return self.v0*t - 0.5*self.g*t**2

Now we can write

y = Y(3)
v = y(0.1) # same as v = y.__call__(0.1) or Y.__call__(y, 0.1)

Note:

The instance y behaves and looks as a function!

The value(t) method does the same, but __call__ allows
nicer syntax for computing function values

Representing a function by a class revisited

Given a function with n + 1 parameters and one independent
variable,

f (x ; p0, . . . , pn)

it is wise to represent f by a class where p0, . . . , pn are attributes
and __call__(x) computes f (x)

class MyFunc:
def __init__(self, p0, p1, p2, ..., pn):

self.p0 = p0
self.p1 = p1
...
self.pn = pn

def __call__(self, x):
return ...

Can we automatically di�erentiate a function?

Given some mathematical function in Python, say

def f(x):
return x**3

can we make a class Derivative and write

dfdx = Derivative(f)

so that dfdx behaves as a function that computes the derivative of
f(x)?

print dfdx(2) # computes 3*x**2 for x=2

Automagic di�erentiation; solution

Method

We use numerical di�erentiation �behind the curtain�:

f ′(x) ≈ f (x + h)− f (x)

h

for a small (yet moderate) h, say h = 10−5

Implementation

class Derivative:
def __init__(self, f, h=1E-5):

self.f = f
self.h = float(h)

def __call__(self, x):
f, h = self.f, self.h # make short forms
return (f(x+h) - f(x))/h

Automagic di�erentiation; demo

>>> from math import *
>>> df = Derivative(sin)
>>> x = pi
>>> df(x)
-1.000000082740371
>>> cos(x) # exact
-1.0
>>> def g(t):
... return t**3
...
>>> dg = Derivative(g)
>>> t = 1
>>> dg(t) # compare with 3 (exact)
3.000000248221113

Automagic di�erentiation; useful in Newton's method

Newton's method solves nonlinear equations f (x) = 0, but the
method requires f ′(x)
def Newton(f, xstart, dfdx, epsilon=1E-6):

...
return x, no_of_iterations, f(x)

Suppose f ′(x) requires boring/lengthy derivation, then class
Derivative is handy:

>>> def f(x):
... return 100000*(x - 0.9)**2 * (x - 1.1)**3
...
>>> df = Derivative(f)
>>> xstart = 1.01
>>> Newton(f, xstart, df, epsilon=1E-5)
(1.0987610068093443, 8, -7.5139644257961411e-06)

Automagic di�erentiation; test function

How can we test class Derivative?

Method 1: compute (f (x + h)− f (x))/h by hand for some f

and h

Method 2: utilize that linear functions are di�erentiated
exactly by our numerical formula, regardless of h

Test function based on method 2:

def test_Derivative():
The formula is exact for linear functions, regardless of h
f = lambda x: a*x + b
a = 3.5; b = 8
dfdx = Derivative(f, h=0.5)
diff = abs(dfdx(4.5) - a)
assert diff < 1E-14, 'bug in class Derivative, diff=%s' % diff

Automagic di�erentiation; explanation of the test function

Use of lambda functions:
f = lambda x: a*x + b

is equivalent to

def f(x):
return a*x + b

Lambda functions are convenient for producing quick, short code

Use of closure:
f = lambda x: a*x + b
a = 3.5; b = 8
dfdx = Derivative(f, h=0.5)
dfdx(4.5)

Looks straightforward...but

How can Derivative.__call__ know a and b when it calls
our f(x) function?

Local functions inside functions remember (have access to) all
local variables in the function they are de�ned (!)

f can access a and b in test_Derivative even when called
from __call__ in class `Derivative

f is known as a closure in computer science

Automagic di�erentiation detour; sympy solution (exact
di�erentiation via symbolic expressions)

SymPy can perform exact, symbolic di�erentiation:

>>> from sympy import *
>>> def g(t):
... return t**3
...
>>> t = Symbol('t')
>>> dgdt = diff(g(t), t) # compute g'(t)
>>> dgdt
3*t**2

>>> # Turn sympy expression dgdt into Python function dg(t)
>>> dg = lambdify([t], dgdt)
>>> dg(1)
3

Automagic di�erentiation detour; class based on sympy

import sympy as sp

class Derivative_sympy:
def __init__(self, f):

f: Python f(x)
x = sp.Symbol('x')
sympy_f = f(x)
sympy_dfdx = sp.diff(sympy_f, x)
self.__call__ = sp.lambdify([x], sympy_dfdx)

>>> def g(t):
... return t**3

>>> def h(y):
... return sp.sin(y)

>>> dg = Derivative_sympy(g)
>>> dh = Derivative_sympy(h)
>>> dg(1) # 3*1**2 = 3
3
>>> from math import pi
>>> dh(pi) # cos(pi) = -1
-1.0

Automagic integration; problem setting

Given a function f (x), we want to compute

F (x ; a) =

∫
x

a

f (t)dt

Automagic integration; technique

F (x ; a) =

∫
x

a

f (t)dt

Technique: Midpoint rule or Trapezoidal rule, here the latter:

∫
x

a

f (t)dt = h

(
1

2
f (a) +

n−1∑

i=1

f (a + ih) +
1

2
f (x)

)

Desired application code:

def f(x):
return exp(-x**2)*sin(10*x)

a = 0; n = 200
F = Integral(f, a, n)
x = 1.2
print F(x)

Automagic integration; implementation

def trapezoidal(f, a, x, n):
h = (x-a)/float(n)
I = 0.5*f(a)
for i in range(1, n):

I += f(a + i*h)
I += 0.5*f(x)
I *= h
return I

Class Integral holds f, a and n as attributes and has a call special
method for computing the integral:

class Integral:
def __init__(self, f, a, n=100):

self.f, self.a, self.n = f, a, n

def __call__(self, x):
return trapezoidal(self.f, self.a, x, self.n)

Automagic integration; test function

How can we test class Integral?

Method 1: compute by hand for some f and small n

Method 2: utilize that linear functions are integrated exactly
by our numerical formula, regardless of n

Test function based on method 2:

def test_Integral():
f = lambda x: 2*x + 5
F = lambda x: x**2 + 5*x - (a**2 + 5*a)
a = 2
dfdx = Integralf, a, n=4)
x = 6
diff = abs(I(x) - (F(x) - F(a)))
assert diff < 1E-15, 'bug in class Integral, diff=%s' % diff

Special method for printing

In Python, we can usually print an object a by print a, works
for built-in types (strings, lists, �oats, ...)

Python does not know how to print objects of a user-de�ned
class, but if the class de�nes a method __str__, Python will
use this method to convert an object to a string

Example:

class Y:
...
def __call__(self, t):

return self.v0*t - 0.5*self.g*t**2

def __str__(self):
return 'v0*t - 0.5*g*t**2; v0=%g' % self.v0

Demo:

>>> y = Y(1.5)
>>> y(0.2)
0.1038
>>> print y
v0*t - 0.5*g*t**2; v0=1.5

Class for polynomials; functionality

A polynomial can be speci�ed by a list of its coe�cients. For
example, 1− x2 + 2x3 is

1+ 0 · x − 1 · x2 + 2 · x3

and the coe�cients can be stored as [1, 0, -1, 2]

Desired application code:

>>> p1 = Polynomial([1, -1])
>>> print p1
1 - x
>>> p2 = Polynomial([0, 1, 0, 0, -6, -1])
>>> p3 = p1 + p2
>>> print p3.coeff
[1, 0, 0, 0, -6, -1]
>>> print p3
1 - 6*x^4 - x^5
>>> p2.differentiate()
>>> print p2
1 - 24*x^3 - 5*x^4

How can we make class Polynomial?

Class Polynomial; basic code

class Polynomial:
def __init__(self, coefficients):

self.coeff = coefficients

def __call__(self, x):
s = 0
for i in range(len(self.coeff)):

s += self.coeff[i]*x**i
return s

Class Polynomial; addition

class Polynomial:
...

def __add__(self, other):
return self + other

start with the longest list and add in the other:
if len(self.coeff) > len(other.coeff):

coeffsum = self.coeff[:] # copy!
for i in range(len(other.coeff)):

coeffsum[i] += other.coeff[i]
else:

coeffsum = other.coeff[:] # copy!
for i in range(len(self.coeff)):

coeffsum[i] += self.coeff[i]
return Polynomial(coeffsum)

Class Polynomial; multiplication

Mathematics:

Multiplication of two general polynomials:

(
M∑

i=0

cix
i

)


N∑

j=0

djx
j


 =

M∑

i=0

N∑

j=0

cidjx
i+j

The coe�. corresponding to power i + j is ci · dj . The list r of coe�cients of
the result: r[i+j] = c[i]*d[j] (i and j running from 0 to M and N, resp.)

Implementation:

class Polynomial:
...
def __mul__(self, other):

M = len(self.coeff) - 1
N = len(other.coeff) - 1
coeff = [0]*(M+N+1) # or zeros(M+N+1)
for i in range(0, M+1):

for j in range(0, N+1):
coeff[i+j] += self.coeff[i]*other.coeff[j]

return Polynomial(coeff)

Class Polynomial; di�erentation

Mathematics:

Rule for di�erentiating a general polynomial:

d

dx

n∑

i=0

cix
i =

n∑

i=1

icix
i−1

If c is the list of coe�cients, the derivative has a list of coe�cients, dc, where
dc[i-1] = i*c[i] for i running from 1 to the largest index in c. Note that
dc has one element less than c.

Implementation:

class Polynomial:
...
def differentiate(self): # change self

for i in range(1, len(self.coeff)):
self.coeff[i-1] = i*self.coeff[i]

del self.coeff[-1]

def derivative(self): # return new polynomial
dpdx = Polynomial(self.coeff[:]) # copy
dpdx.differentiate()
return dpdx

Class Polynomial; pretty print

class Polynomial:
...
def __str__(self):

s = ''
for i in range(0, len(self.coeff)):

if self.coeff[i] != 0:
s += ' + %g*x^%d' % (self.coeff[i], i)

fix layout (lots of special cases):
s = s.replace('+ -', '- ')
s = s.replace(' 1*', ' ')
s = s.replace('x^0', '1')
s = s.replace('x^1 ', 'x ')
s = s.replace('x^1', 'x')
if s[0:3] == ' + ': # remove initial +

s = s[3:]
if s[0:3] == ' - ': # fix spaces for initial -

s = '-' + s[3:]
return s

Class for polynomials; usage

Consider

p1(x) = 1− x , p2(x) = x − 6x4 − x5

and their sum

p3(x) = p1(x) + p2(x) = 1− 6x4 − x5

>>> p1 = Polynomial([1, -1])
>>> print p1
1 - x
>>> p2 = Polynomial([0, 1, 0, 0, -6, -1])
>>> p3 = p1 + p2
>>> print p3.coeff
[1, 0, 0, 0, -6, -1]
>>> p2.differentiate()
>>> print p2
1 - 24*x^3 - 5*x^4

The programmer is in charge of de�ning special methods!

How should, e.g., __add__(self, other) be de�ned? This is
completely up to the programmer, depending on what is meaningful
by object1 + object2.

An anthropologist was asking a primitive tribesman about
arithmetic. When the anthropologist asked, What does two and two

make? the tribesman replied, Five. Asked to explain, the tribesman
said, If I have a rope with two knots, and another rope with two

knots, and I join the ropes together, then I have �ve knots.

Special methods for arithmetic operations

c = a + b # c = a.__add__(b)

c = a - b # c = a.__sub__(b)

c = a*b # c = a.__mul__(b)

c = a/b # c = a.__div__(b)

c = a**e # c = a.__pow__(e)

Special methods for comparisons

a == b # a.__eq__(b)

a != b # a.__ne__(b)

a < b # a.__lt__(b)

a <= b # a.__le__(b)

a > b # a.__gt__(b)

a >= b # a.__ge__(b)

Class for vectors in the plane

Mathematical operations for vectors in the plane:

(a, b) + (c, d) = (a+ c, b + d)

(a, b)− (c, d) = (a− c, b − d)

(a, b) · (c, d) = ac + bd

(a, b) = (c, d) if a = c and b = d

Desired application code:

>>> u = Vec2D(0,1)
>>> v = Vec2D(1,0)
>>> print u + v
(1, 1)
>>> a = u + v
>>> w = Vec2D(1,1)
>>> a == w
True
>>> print u - v
(-1, 1)
>>> print u*v
0

Class for vectors; implementation

class Vec2D:
def __init__(self, x, y):

self.x = x; self.y = y

def __add__(self, other):
return Vec2D(self.x+other.x, self.y+other.y)

def __sub__(self, other):
return Vec2D(self.x-other.x, self.y-other.y)

def __mul__(self, other):
return self.x*other.x + self.y*other.y

def __abs__(self):
return math.sqrt(self.x**2 + self.y**2)

def __eq__(self, other):
return self.x == other.x and self.y == other.y

def __str__(self):
return '(%g, %g)' % (self.x, self.y)

def __ne__(self, other):
return not self.__eq__(other) # reuse __eq__

The repr special method: eval(repr(p)) creates p

class MyClass:
def __init__(self, a, b):

self.a, self.b = a, b

def __str__(self):
"""Return string with pretty print."""
return 'a=%s, b=%s' % (self.a, self.b)

def __repr__(self):
"""Return string such that eval(s) recreates self."""
return 'MyClass(%s, %s)' % (self.a, self.b)

>>> m = MyClass(1, 5)
>>> print m # calls m.__str__()
a=1, b=5
>>> str(m) # calls m.__str__()
'a=1, b=5'
>>> s = repr(m) # calls m.__repr__()
>>> s
'MyClass(1, 5)'
>>> m2 = eval(s) # same as m2 = MyClass(1, 5)
>>> m2 # calls m.__repr__()
'MyClass(1, 5)'

Class Y revisited with repr print method

class Y:
"""Class for function y(t; v0, g) = v0*t - 0.5*g*t**2."""

def __init__(self, v0):
"""Store parameters."""
self.v0 = v0
self.g = 9.81

def __call__(self, t):
"""Evaluate function."""
return self.v0*t - 0.5*self.g*t**2

def __str__(self):
"""Pretty print."""
return 'v0*t - 0.5*g*t**2; v0=%g' % self.v0

def __repr__(self):
"""Print code for regenerating this instance."""
return 'Y(%s)' % self.v0

Class for complex numbers; functionality

Python already has a class complex for complex numbers, but
implementing such a class is a good pedagogical example on class
programming (especially with special methods).

Usage:

>>> u = Complex(2,-1)
>>> v = Complex(1) # zero imaginary part
>>> w = u + v
>>> print w
(3, -1)
>>> w != u
True
>>> u*v
Complex(2, -1)
>>> u < v
illegal operation "<" for complex numbers
>>> print w + 4
(7, -1)
>>> print 4 - w
(1, 1)

Class for complex numbers; implementation (part 1)

class Complex:
def __init__(self, real, imag=0.0):

self.real = real
self.imag = imag

def __add__(self, other):
return Complex(self.real + other.real,

self.imag + other.imag)

def __sub__(self, other):
return Complex(self.real - other.real,

self.imag - other.imag)

def __mul__(self, other):
return Complex(self.real*other.real - self.imag*other.imag,

self.imag*other.real + self.real*other.imag)

def __div__(self, other):
ar, ai, br, bi = self.real, self.imag, \

other.real, other.imag # short forms
r = float(br**2 + bi**2)
return Complex((ar*br+ai*bi)/r, (ai*br-ar*bi)/r)

Class for complex numbers; implementation (part 2)

def __abs__(self):
return sqrt(self.real**2 + self.imag**2)

def __neg__(self): # defines -c (c is Complex)
return Complex(-self.real, -self.imag)

def __eq__(self, other):
return self.real == other.real and \

self.imag == other.imag

def __ne__(self, other):
return not self.__eq__(other)

def __str__(self):
return '(%g, %g)' % (self.real, self.imag)

def __repr__(self):
return 'Complex' + str(self)

def __pow__(self, power):
raise NotImplementedError(

'self**power is not yet impl. for Complex')

Re�ning the special methods for arithmetics

Can we add a real number to a complex number?

>>> u = Complex(1, 2)
>>> w = u + 4.5
...
AttributeError: 'float' object has no attribute 'real'

Problem: we have assumed that other is Complex. Remedy:

class Complex:
...
def __add__(self, other):

if isinstance(other, (float,int)):
other = Complex(other)

return Complex(self.real + other.real,
self.imag + other.imag)

or

def __add__(self, other):
if isinstance(other, (float,int)):

return Complex(self.real + other, self.imag)
else:

return Complex(self.real + other.real,
self.imag + other.imag)

Special methods for �right� operands; addition

What if we try this:

>>> u = Complex(1, 2)
>>> w = 4.5 + u
...
TypeError: unsupported operand type(s) for +:

'float' and 'instance'

Problem: Python's float objects cannot add a Complex.
Remedy: if a class has an __radd__(self, other) special
method, Python applies this for other + self

class Complex:
...
def __radd__(self, other):

"""Rturn other + self."""
other + self = self + other:
return self.__add__(other)

Special methods for �right� operands; subtraction

Right operands for subtraction is a bit more complicated since
a − b 6= b − a:

class Complex:
...
def __sub__(self, other):

if isinstance(other, (float,int)):
other = Complex(other)

return Complex(self.real - other.real,
self.imag - other.imag)

def __rsub__(self, other):
if isinstance(other, (float,int)):

other = Complex(other)
return other.__sub__(self)

What's in a class?

class A:
"""A class for demo purposes."""
def __init__(self, value):

self.v = value

Any instance holds its attributes in the self.__dict__ dictionary
(Python automatically creates this dict)

>>> a = A([1,2])
>>> print a.__dict__ # all attributes
{'v': [1, 2]}
>>> dir(a) # what's in object a?
'__doc__', '__init__', '__module__', 'dump', 'v']
>>> a.__doc__ # programmer's documentation of A
'A class for demo purposes.'

Ooops - we can add new attributes as we want!

>>> a.myvar = 10 # add new attribute (!)
>>> a.__dict__
{'myvar': 10, 'v': [1, 2]}
>>> dir(a)
['__doc__', '__init__', '__module__', 'dump', 'myvar', 'v']

>>> b = A(-1)
>>> b.__dict__ # b has no myvar attribute
{'v': -1}
>>> dir(b)
['__doc__', '__init__', '__module__', 'dump', 'v']

Summary of de�ning a class

Example on a de�ning a class with attributes and methods:

class Gravity:
"""Gravity force between two objects."""
def __init__(self, m, M):

self.m = m
self.M = M
self.G = 6.67428E-11 # gravity constant

def force(self, r):
G, m, M = self.G, self.m, self.M
return G*m*M/r**2

def visualize(self, r_start, r_stop, n=100):
from scitools.std import plot, linspace
r = linspace(r_start, r_stop, n)
g = self.force(r)
title='m=%g, M=%g' % (self.m, self.M)
plot(r, g, title=title)

Summary of using a class

Example on using the class:

mass_moon = 7.35E+22
mass_earth = 5.97E+24

make instance of class Gravity:
gravity = Gravity(mass_moon, mass_earth)

r = 3.85E+8 # earth-moon distance in meters
Fg = gravity.force(r) # call class method

Summary of special methods

c = a + b implies c = a.__add__(b)

There are special methods for a+b, a-b, a*b, a/b, a**b, -a,
if a:, len(a), str(a) (pretty print), repr(a) (recreate a
with eval), etc.

With special methods we can create new mathematical objects
like vectors, polynomials and complex numbers and write
�mathematical code� (arithmetics)

The call special method is particularly handy: v = c(5)

means v = c.__call__(5)

Functions with parameters should be represented by a class
with the parameters as attributes and with a call special
method for evaluating the function

Summarizing example: interval arithmetics for uncertainty
quanti�cation in formulas

Uncertainty quanti�cation:

Consider measuring gravity g by dropping a ball from y = y0 to
y = 0 in time T :

g = 2y0T
−2

What if y0 and T are uncertain? Say y0 ∈ [0.99, 1.01] m and
T ∈ [0.43, 0.47] s. What is the uncertainty in g?

The uncertainty can be computed by interval arithmetics

Interval arithmetics

Rules for computing with intervals, p = [a, b] and q = [c , d]:

p + q = [a + c , b + d]

p − q = [a − d , b − c]

pq = [min(ac , ad , bc, bd),max(ac , ad , bc, bd)]

p/q = [min(a/c, a/d , b/c , b/d),max(a/c , a/d , b/c, b/d)]
([c , d] cannot contain zero)

Obvious idea: make a class for interval arithmetics!

Class for interval arithmetics

class IntervalMath:
def __init__(self, lower, upper):

self.lo = float(lower)
self.up = float(upper)

def __add__(self, other):
a, b, c, d = self.lo, self.up, other.lo, other.up
return IntervalMath(a + c, b + d)

def __sub__(self, other):
a, b, c, d = self.lo, self.up, other.lo, other.up
return IntervalMath(a - d, b - c)

def __mul__(self, other):
a, b, c, d = self.lo, self.up, other.lo, other.up
return IntervalMath(min(a*c, a*d, b*c, b*d),

max(a*c, a*d, b*c, b*d))

def __div__(self, other):
a, b, c, d = self.lo, self.up, other.lo, other.up
if c*d <= 0: return None
return IntervalMath(min(a/c, a/d, b/c, b/d),

max(a/c, a/d, b/c, b/d))
def __str__(self):

return '[%g, %g]' % (self.lo, self.up)

Demo of the new class for interval arithmetics

Code:
I = IntervalMath # abbreviate
a = I(-3,-2)
b = I(4,5)

expr = 'a+b', 'a-b', 'a*b', 'a/b' # test expressions
for e in expr:

print e, '=', eval(e)

Output:

a+b = [1, 3]
a-b = [-8, -6]
a*b = [-15, -8]
a/b = [-0.75, -0.4]

Shortcomings of the class

This code

a = I(4,5)
q = 2
b = a*q

leads to

File "IntervalMath.py", line 15, in __mul__
a, b, c, d = self.lo, self.up, other.lo, other.up

AttributeError: 'float' object has no attribute 'lo'

Problem: IntervalMath times int is not de�ned.
Remedy: (cf. class Complex)

class IntervalArithmetics:
...
def __mul__(self, other):

if isinstance(other, (int, float)): # NEW
other = IntervalMath(other, other) # NEW

a, b, c, d = self.lo, self.up, other.lo, other.up
return IntervalMath(min(a*c, a*d, b*c, b*d),

max(a*c, a*d, b*c, b*d))

(with similar adjustments of other special methods)

More shortcomings of the class

Try to compute g = 2*y0*T**(-2): multiplication of int (2) and
IntervalMath (y0), and power operation T**(-2) are not de�ned

class IntervalArithmetics:
...
def __rmul__(self, other):

if isinstance(other, (int, float)):
other = IntervalMath(other, other)

return other*self

def __pow__(self, exponent):
if isinstance(exponent, int):

p = 1
if exponent > 0:

for i in range(exponent):
p = p*self

elif exponent < 0:
for i in range(-exponent):

p = p*self
p = 1/p

else: # exponent == 0
p = IntervalMath(1, 1)

return p
else:

raise TypeError('exponent must int')

Adding more functionality to the class: rounding

�Rounding� to the midpoint value:

>>> a = IntervalMath(5,7)
>>> float(a)
6

is achieved by

class IntervalArithmetics:
...
def __float__(self):

return 0.5*(self.lo + self.up)

Adding more functionality to the class: repr and str methods

class IntervalArithmetics:
...
def __str__(self):

return '[%g, %g]' % (self.lo, self.up)

def __repr__(self):
return '%s(%g, %g)' % \

(self.__class__.__name__, self.lo, self.up)

Demonstrating the class: g = 2y0T
−2

>>> g = 9.81
>>> y_0 = I(0.99, 1.01)
>>> Tm = 0.45 # mean T
>>> T = I(Tm*0.95, Tm*1.05) # 10% uncertainty
>>> print T
[0.4275, 0.4725]
>>> g = 2*y_0*T**(-2)
>>> g
IntervalMath(8.86873, 11.053)
>>> # computing with mean values:
>>> T = float(T)
>>> y = 1
>>> g = 2*y_0*T**(-2)
>>> print '%.2f' % g
9.88

Demonstrating the class: volume of a sphere

>>> R = I(6*0.9, 6*1.1) # 20 % error
>>> V = (4./3)*pi*R**3
>>> V
IntervalMath(659.584, 1204.26)
>>> print V
[659.584, 1204.26]
>>> print float(V)
931.922044761
>>> # compute with mean values:
>>> R = float(R)
>>> V = (4./3)*pi*R**3
>>> print V
904.778684234

20% uncertainty in R gives almost 60% uncertainty in V

