
Hans Petter Langtangen∗, Geir K. Pedersen†

Scaling of Differential Equations

Jun 20, 2016

Springer

∗Center for Biomedical Computing, Simula Research Laboratory and Department of
Informatics, University of Oslo.

†Department of Mathematics, University of Oslo.

Preface

Finding proper values of physical parameters in mathematical models is often
quite a challenge. While many have gotten away with using just the math-
ematical symbols when doing science and engineering with pen and paper,
the modern world of numerical computing requires each physical parameter
to have a numerical value, otherwise one cannot get started with the com-
putations. For example, in the simplest possible transient heat conduction
simulation, a case relevant for a real physical material needs values for the
heat capacity, the density, and the heat conduction coefficient of the ma-
terial. In addition, relevant values must be chosen for initial and boundary
temperatures as well as the size of the material. With a dimensionless math-
ematical model, as explained in Chapter 3.2, no physical quantities need to
be assigned (!). Not only is this a simplification of great convenience, as one
simulation is valid for any type of material, but it also actually increases the
understanding of the physical problem.

Scaling of differential equations is basically a simple mathematical process,
consisting of the chain rule for differentiation and some algebra. The choice
of scales, however, is a non-trivial topic, which may cause confusion among
practitioners without extensive experience with scaling. How to choose scales
is unfortunately not well treated in the literature. Most of the times, authors
just state scales without proper motivation. The choice of scales is highly
problem-dependent and requires knowledge of the characteristic features of
the solution or the physics of the problem. The present notes aim at explaining
“all nuts and bolts” of the scaling technique, including choice of scales, the
algebra, the interpretation of dimensionless parameters in scaled models, and
how scaling impacts software for solving differential equations.

Traditionally, scaling was mainly used to identify small parameters in
mathematical models, such that perturbation methods based on series ex-
pansions in terms of the small parameters could be used as an approximate
solution method for differential equations. Nowadays, the greatest practical
benefit of scaling is related to running numerical simulations, since scaling
greatly simplifies the choice of values for the input data and makes the sim-

v

vi

ulations results more widely applicable. The number of parameters in scaled
models may be much less than the number of physical parameters in the
original model. The parameters in scaled models are also dimensionless and
express ratios of physical effects rather than levels of individual effects. Set-
ting meaningful values of a few dimensionless numbers is much easier than
determining physically relevant values for the original physical parameters.

Another great benefit of scaling is the physical insight that follows from
dimensionless parameters. Since physical effects enter the problem through a
few dimensionless groups, one can from these groups see how different effects
compete in their impact on the solution. Ideally, a good physical understand-
ing should provide the same insight, but it is not always easy to “think right”
and realize how spatial and temporal scales interact with physical parame-
ters. This interaction becomes clear through the dimensionless numbers, and
such numbers are therefore a great help, especially for students, in developing
a correct physical understanding.

Since we have a special focus on scaling related to numerical simulations,
the notes contain a lot of examples on how to program with dimensionless
differential equation models. Most numerical models feature quantities with
dimension, so we show in particular how to utilize such existing models to
solve the equations in the associated scaled model.

Scaling is not a universal mathematical technique as the details depend
on the problem at hand. We therefore present scaling in a range of specific
applications, starting with simple ODEs, progressing with basic PDEs, before
attacking more complicated models, especially from fluid mechanics.

Chapter 1 discusses units and how to make programs that can automat-
ically take care of unit conversion (the most frequent mathematical mistake
in industry and science?). Section 2.1 introduces the mathematics of scaling
and the thinking about scales in a simple ODE problem modeling expo-
nential decay. The ideas are generalized to nonlinear ODEs and to systems
of ODEs. Another ODE example, on mechanical vibrations, is treated in
Section 2.2, where we cover many different physical contexts and different
choices of scales. Scaling the standard, linear wave equation is the topic of
Chapter 3.1, with discussion of how boundary and initial conditions influence
the choice of scales. Another PDE example, the diffusion equation, appears
in Chapter 3.2. Here we progress from a simple linear diffusion equation in
1D to a study of how scales are influenced by an oscillatory boundary con-
dition. Nonlinear diffusion models, as well as convection-diffusion PDEs, are
elaborated on. The final Chapter is devoted to many famous PDEs arising
from continuum models: elasticity, viscous fluid flow, thermal convection, etc.

The mathematics is translated into complete computer codes for the ODE
and simpler PDE problems.

Experimental fluid mechanics is a field full of relations involving dimen-
sionless numbers such as the Grashof and Prandtl numbers, but none of the
textbooks the authors have seen explain how these numbers actually relate to

vii

dimensionless forms of the governing equations. Consequently, this non-trivial
topic is particularly highlighted in the fluid mechanics examples.

The mathematics in the first two chapters is very gentle and requires
no more background than basic one-variable calculus and preferably some
knowledge of differential equation models. The next chapter involves PDEs
and assumes familiarity with basic models for wave phenomena, diffusion,
and combined convection-diffusion. The final chapter is meant for readers
with knowledge of the physics and mathematics of continuum mechanical
models. The mathematical level of the text rises quickly after the first two
chapters.

In the first two chapters, much of the mathematics is accompanied by com-
plete (yet short) computer codes. The programming level requires familiarity
with procedural programming in Python. As the mathematical level rises,
the computer codes get much more comprehensive, and we refer to some files
for computational examples in chapter three.

The pedagogy is to saturate the reader with lots of detailed examples to
provide an understanding for the topic, primarily because the choice of scales
depends on the problem at hand. One can also view the notes as a reference
on how to scale many of the most important differential equation models in
physics. For the simpler differential equations in Chapters 2 and 3, we present
computer code for many computational examples, but the treatment of the
advanced models in Chapter 4 is more superficial to limit the size of that
chapter.

The exercises are named either Exercise or Problem. The latter is a stand-
alone exercise without reference to the rest of the text, while the former
typically extends a topic in the text or refers to sections or formulas in the
text.

What this booklet is and is not
Books containing material on scaling and non-dimensionalization very
often cover topics not treated in the present notes, e.g., the key topic
of dimensional analysis and the famous Buckingham Pi Theorem [1,
9], which we discuss only briefly in section 1.1.3. Similarly, analytical
solution methods like perturbation techniques and similarity solutions,
which represent classical methods closely related to scaling and non-
dimensionalization, are not addressed herein. There are numerous texts
on perturbation techniques, and these methods build on an already
scaled differential equations. Similarity solutions do not fit within the
present scope since these involve non-dimensional combinations of the
unscaled independent variables to derive new differential equations that
are easier to solve.

Our scope is to scale differential equations to simplify the setting of
parameters in numerical simulations, and at the same time understand

viii

more of the physics through interpretation of the dimensionless numbers
that automatically arise from the scaling procedure.

With these notes, we hope to demystify the thinking involved in scale
determination and encourage numerical simulations to be performed with
dimensionless differential equation models.

All program and data files referred to in this book are available from the
book’s primary web site: URL: http://hplgit.github.io/scaling-book/
doc/web/.

Acknowledgments. Professor Svein Linge provided very detailed, construc-
tive comments on the entire manuscript and helped improve the reading
quality significantly. Yapi Donatien Achou assisted with proof reading. The
authors are thankful to Dr. Joakim Sundnes who contributed a section on
scaling of the bidomain model in electrophysiology in the extended version
of this booklet, found in Section 4.7. Significant portions of the present text
were written when the first author was fed with FOLFIRINOX (and thereby
kept alive) by Linda Falch-Koslung, Dr. Olav Dajani, and the rest of the
OUS team. There would simply be no booklet without their efforts. It is also
a great pleasure to express our sincere thanks to the Springer and Simula
team that handled the prompt editing and production of the text: Martin
Peters, Ruth Allewelt, Aslak Tveito, and Åsmund Ødegård.

Oslo, November 2015 Hans Petter Langtangen, Geir K. Pedersen

http://hplgit.github.io/scaling-book/doc/web/.
http://hplgit.github.io/scaling-book/doc/web/.

Contents

Preface . v

1 Dimensions and units . 1
1.1 Fundamental concepts . 1

1.1.1 Base units and dimensions . 1
1.1.2 Dimensions of common physical quantities 2
1.1.3 The Buckingham Pi theorem . 3
1.1.4 Absolute errors, relative errors, and units 5
1.1.5 Units and computers . 5
1.1.6 Unit systems . 5
1.1.7 Example on challenges arising from unit systems 6
1.1.8 PhysicalQuantity: a tool for computing with units 7

1.2 Parampool: user interfaces with automatic unit conversion . . . 9
1.2.1 Pool of parameters . 9
1.2.2 Fetching pool data for computing 10
1.2.3 Reading command-line options . 11
1.2.4 Setting default values in a file . 12
1.2.5 Specifying multiple values of input parameters 12
1.2.6 Generating a graphical user interface 14

2 Ordinary differential equation models . 17
2.1 Exponential decay problems . 17

2.1.1 Fundamental ideas of scaling . 17
2.1.2 The basic model problem . 18
2.1.3 The technical steps of the scaling procedure 19
2.1.4 Making software for utilizing the scaled model 21
2.1.5 Scaling a generalized problem . 25
2.1.6 Variable coefficients . 30
2.1.7 Scaling a cooling problem with constant temperature

in the surroundings . 32

ix

x Contents

2.1.8 Scaling a cooling problem with time-dependent
surroundings . 33

2.1.9 Scaling a nonlinear ODE . 38
2.1.10 SIR ODE system for spreading of diseases 39
2.1.11 SIRV model with finite immunity 42
2.1.12 Michaelis-Menten kinetics for biochemical reactions . . . 43

2.2 Vibration problems . 49
2.2.1 Undamped vibrations without forcing 49
2.2.2 Undamped vibrations with constant forcing 53
2.2.3 Undamped vibrations with time-dependent forcing 54
2.2.4 Damped vibrations with forcing . 61
2.2.5 Oscillating electric circuits . 68

2.3 Exercises . 69

3 Basic partial differential equation models 113
3.1 The wave equation . 113

3.1.1 Homogeneous Dirichlet conditions in 1D 113
3.1.2 Implementation of the scaled wave equation 115
3.1.3 Time-dependent Dirichlet condition 116
3.1.4 Velocity initial condition . 119
3.1.5 Variable wave velocity and forcing 121
3.1.6 Damped wave equation . 124
3.1.7 A three-dimensional wave equation problem 125

3.2 The diffusion equation . 125
3.2.1 Homogeneous 1D diffusion equation 126
3.2.2 Generalized diffusion PDE . 127
3.2.3 Jump boundary condition . 129
3.2.4 Oscillating Dirichlet condition . 130

3.3 Reaction-diffusion equations . 133
3.3.1 Fisher’s equation . 133
3.3.2 Nonlinear reaction-diffusion PDE 135

3.4 The convection-diffusion equation . 136
3.4.1 Convection-diffusion without a force term 136
3.4.2 Stationary PDE . 139
3.4.3 Convection-diffusion with a source term 141

3.5 Exercises . 142

4 Advanced partial differential equation models 171
4.1 The equations of linear elasticity . 171

4.1.1 The general time-dependent elasticity problem 171
4.1.2 Dimensionless stress tensor . 173
4.1.3 When can the acceleration term be neglected? 174
4.1.4 The stationary elasticity problem 176
4.1.5 Quasi-static thermo-elasticity . 177

4.2 The Navier-Stokes equations . 179

Contents xi

4.2.1 The momentum equation without body forces 179
4.2.2 Scaling of time for low Reynolds numbers 181
4.2.3 Shear stress as pressure scale . 182
4.2.4 Gravity force and the Froude number 182
4.2.5 Oscillating boundary conditions and the Strouhal

number . 183
4.2.6 Cavitation and the Euler number 184
4.2.7 Free surface conditions and the Weber number 184

4.3 Thermal convection . 185
4.3.1 Forced convection . 186
4.3.2 Free convection . 187
4.3.3 The Grashof, Prandtl, and Eckert numbers 190
4.3.4 Heat transfer at boundaries and the Nusselt and Biot

numbers . 192
4.4 Compressible gas dynamics . 193

4.4.1 The Euler equations of gas dynamics 193
4.4.2 General isentropic flow . 195
4.4.3 The acoustic approximation for sound waves 197

4.5 Water surface waves driven by gravity . 199
4.5.1 The mathematical model . 199
4.5.2 Scaling . 200
4.5.3 Waves in deep water . 201
4.5.4 Long waves in shallow water . 201

4.6 Two-phase porous media flow . 202
4.7 The bidomain model in electrophysiology 206

4.7.1 The mathematical model . 206
4.7.2 Scaling . 208
4.7.3 An alternative Iion . 211

4.8 Exercises . 212

References . 221

Index . 223

Chapter 1
Dimensions and units

A mechanical system undergoing one-dimensional damped vibrations can be
modeled by the equation

mu′′+ bu′+ku= 0, (1.1)

wherem is the mass of the system, b is some damping coefficient, k is a spring
constant, and u(t) is the displacement of the system. This is an equation ex-
pressing the balance of three physical effects: mu′′ (mass times acceleration),
bu′ (damping force), and ku (spring force). The different physical quantities,
such as m, u(t), b, and k, all have different dimensions, measured in different
units, but mu′′, bu′, and ku must all have the same dimension, otherwise it
would not make sense to add them.

1.1 Fundamental concepts

1.1.1 Base units and dimensions

Base units have the important property that all other units derive from them.
In the SI system, there are seven such base units and corresponding physical
quantities: meter (m) for length, kilogram (kg) for mass, second (s) for time,
kelvin (K) for temperature, ampere (A) for electric current, candela (cd) for
luminous intensity, and mole (mol) for the amount of substance.

We need some suitable mathematical notation to calculate with dimensions
like length, mass, time, and so forth. The dimension of length is written as
[L], the dimension of mass as [M], the dimension of time as [T], and the
dimension of temperature as [Θ] (the dimensions of the other base units
are simply omitted as we do not make much use of them in this text). The
dimension of a derived unit like velocity, which is distance (length) divided by
time, then becomes [LT−1] in this notation. The dimension of force, another

1

2 1 Dimensions and units

derived unit, is the same as the dimension of mass times acceleration, and
hence the dimension of force is [MLT−2].

Let us find the dimensions of the terms in (1.1). A displacement u(t) has
dimension [L]. The derivative u′(t) is change of displacement, which has di-
mension [L], divided by a time interval, which has dimension [T], implying
that the dimension of u′ is [LT−1]. This result coincides with the interpre-
tation of u′ as velocity and the fact that velocity is defined as distance ([L])
per time ([T]).

Looking at (1.1), and interpreting u(t) as displacement, we realize that
the term mu′′ (mass times acceleration) has dimension [MLT−2]. The term
bu′ must have the same dimension, and since u′ has dimension [LT−1], b
must have dimension [MT−1]. Finally, kumust also have dimension [MLT−2],
implying that k is a parameter with dimension [MT−2].

The unit of a physical quantity follows from the dimension expression. For
example, since velocity has dimension [LT−1] and length is measured in m
while time is measured in s, the unit for velocity becomes m/s. Similarly,
force has dimension [MLT−2] and unit kg m/s2. The k parameter in (1.1) is
measured in kg s−2.

Dimension of derivatives
The easiest way to realize the dimension of a derivative, is to express
the derivative as a finite difference. For a function u(t) we have

du

dt
≈ u(t+∆t)−u(t)

∆t
,

where ∆t is a small time interval. If u denotes a velocity, its dimension
is [LT]−1, and u(t+∆t)−u(t) gets the same dimension. The time in-
terval has dimension [T], and consequently, the finite difference gets the
dimension [LT]−2. In general, the dimension of the derivative du/dt is
the dimension of u divided by the dimension of t.

1.1.2 Dimensions of common physical quantities

Many derived quantities are measured in derived units that have their own
name. Force is one example: Newton (N) is a derived unit for force, equal
to kg m/s2. Another derived unit is Pascal (Pa) for pressure and stress, i.e.,
force per area. The unit of Pa then equals N/m2 or kg/ms2. Below are more
names for derived quantities, listed with their units.

1.1 Fundamental concepts 3

Name Symbol Physical quantity Unit

radian rad angle 1
hertz Hz frequency s−1

newton N force, weight kg m/s2

pascal Pa pressure, stress N/m2

joule J energy, work, heat Nm
watt W power J/s

Some common physical quantities and their dimensions are listed next.

Quantity Relation Unit Dimension

stress force/area N/m2 = Pa [MT−2L−1]
pressure force/area N/m2 = Pa MT−2L−1]
density mass/volume kg/m3 [ML−3]
strain displacement/length 1 [1]
Young’s modulus stress/strain N/m2 = Pa [MT−2L−1]
Poisson’s ratio transverse strain/axial strain 1 [1]
Lame’ parameters λ and µ stress/strain N/m2 = Pa [MT−2L−1]
moment (of a force) distance × force Nm [ML2T−2]
impulse force × time Ns [MLT−1]
linear momentum mass × velocity kg m/s [MLT−1]
angular momentum distance × mass × velocity kg m2/s [ML2T−1]
work force × distance Nm = J [ML2T−2]
energy work Nm = J [ML2T−2]
power work/time Nm/s = W [ML2T−3]
heat work J [ML2T−2]
heat flux heat rate/area Wm−2 [MT−3]
temperature base unit K [Θ]
heat capacity heat change/temperature change J/K [ML2T−2Θ−1]
specific heat capacity heat capacity/unit mass JK−1kg−1 [L2T−2Θ−1]
thermal conductivity heat flux/temperature gradient Wm−1K−1 [MLT−3Θ−1]
dynamic viscosity shear stress/velocity gradient kgm−1s−1 [ML−1T−1]
kinematic viscosity dynamic viscosity/density m2/s [L2T−1]
surface tension energy/area J/m2 [MT−2]

Prefixes for units. Units often have prefixes. For example, kilo (k) is a
prefix for 1000, so kg is 1000 g. Similarly, GPa means giga pascal or 109 Pa.

1.1.3 The Buckingham Pi theorem

Almost all texts on scaling has a treatment of the famous Buckingham Pi the-
orem, which can be used to derive physical laws based on unit compatibility
rather than the underlying physical mechanisms. This booklet has its focus
on models where the physical mechanisms are already expressed through dif-

https://en.wikipedia.org/wiki/Metric_prefix

4 1 Dimensions and units

ferential equations. Nevertheless, the Pi theorem has a remarkable position
in the literature on scaling, and since we will occasionally make references to
it, the theorem is briefly discussed below.

The theorem itself is simply stated in two parts. First, if a problem in-
volves n physical parameters in which m independent unit-types (such as
length, mass etc.) appear, then the parameters can be combined to exactly
n−m independent dimensionless numbers, referred to as Pi’s. Second, any
unit-free relation between the original n parameters can be transformed into
a relation between the n−m dimensionless numbers. Such relations may be
identities or inequalities stating, for instance, whether or not a given effect is
negligible. Moreover, the transformation of an equation set into dimension-
less form corresponds to expressing the coefficients, as well as the free and
dependent variables, in terms of Pi’s.

As an example, think of a body moving at constant speed v. What is the
distance s traveled in time t? The Pi theorem results in one dimensionless
variable π = vt/s and leads to the formula s = Cvt, where C is an undeter-
mined constant. The result is very close to the well-known formula s = vt
arising from the differential equation s′ = v in physics, but with an extra
constant.

At first glance the Pi theorem may appear as bordering on the trivial.
However, it may produce remarkable progress for selected problems, such as
turbulent jets, nuclear blasts, or similarity solutions, without the detailed
knowledge of mathematical or physical models. Hence, to a novice in scaling
it may stand out as something very profound, if not magical. Anyhow, as
one moves on to more complex problems with many parameters, the use of
the theorem yields comparatively less gain as the number of Pi’s becomes
large. Many Pi’s may also be recombined in many ways. Thus, good physical
insight, and/or information conveyed through an equation set, is required
to pick the useful dimensionless numbers or the appropriate scaling of the
said equation set. Sometimes scrutiny of the equations also reveals that some
Pi’s, obtained by applying the theorem, in fact may be removed from the
problem. As a consequence, when modeling a complex physical problem, the
real assessment of scaling and dimensionless numbers will anyhow be included
in the analysis of the governing equations instead of being a separate issue
left with the Pi theorem. In textbooks and articles alike, the discussion of
scaling in the context of the equations are too often missing or presented in a
half-hearted fashion. Hence, the authors’ focus will be on this process, while
we do not provide much in the way of examples on the Pi theorem. We do
not allude that the Pi theorem is of little value. In a number of contexts,
such as in experiments, it may provide valuable and even crucial guidance,
but in this particular textbook we seek to tell the complementary story on
scaling. Moreover, as will be shown in this booklet, the dimensionless numbers
in a problem also arise, in a very natural way, from scaling the differential
equations. Provided one has a model based on differential equations, there is
actually no need for classical dimensional analysis.

1.1 Fundamental concepts 5

1.1.4 Absolute errors, relative errors, and units

Mathematically, it does not matter what units we use for a physical quantity.
However, when we deal with approximations and errors, units are important.
Suppose we work with a geophysical problem where the length scale is typ-
ically measured in km and we have an approximation 12.5 km to the exact
value 12.52 km. The error is then 0.02 km. Switching units to mm leads to
an error of 20,000 mm. A program working in mm would report 2 ·105 as the
error, while a program working in km would print 0.02. The absolute error
is therefore sensitive to the choice of units. This fact motivates the use of
relative error : (exact - approximate)/exact, since units then cancel. In the
present example, one gets a relative error of 1.6 ·10−3 regardless of whether
the length is measured in km or mm.

Nevertheless, rather than relying solely on relative errors, it is in general
better to scale the problem such that the quantities entering the computations
are of unit size (or at least moderate) instead of being very large or very small.
The techniques of these notes show how this can be done.

1.1.5 Units and computers

Traditional numerical computing involves numbers only and therefore re-
quires dimensionless mathematical expressions. Usually, an implicit trivial
scaling is used. One can, for example, just scale all length quantities by 1
m, all time quantities by 1 s, and all mass quantities by 1 kg, to obtain
the dimensionless numbers needed for calculations. This is the most common
approach, although it is very seldom explicitly stated.

Symbolic computing packages, such as Mathematica and Maple, allow
computations with quantities that have dimension. This is also possible in
popular computer languages used for numerical computing (Section 1.1.8
provides a specific example in Python).

1.1.6 Unit systems

Confusion arises quickly when some physical quantities are expressed in SI
units while others are in US or British units. Density could, for instance,
be given in unit of ounce per teaspoon (see Exercise 2.1 for how to safely
convert to a standard unit like kgm−3). Although unit conversion tables are
frequently met in school, errors in unit conversion probably rank highest
among all errors committed by scientists and engineers (and when a unit
conversion error makes an airplane’s fuel run out, it is serious!). Having good
software tools to assist in unit conversion is therefore paramount, motivating

http://www.nytimes.com/1983/07/30/us/jet-s-fuel-ran-out-after-metric-conversion-errors.html

6 1 Dimensions and units

the treatment of this topic in Sections 1.1.8 and 1.2. Readers who are pri-
marily interested in the mathematical scaling technique may safely skip this
material and jump right to Section 2.1.

1.1.7 Example on challenges arising from unit systems

A slightly elaborated example on scaling in an actual science/engineering
project may stimulate the reader’s motivation. In its full extent, the study
of tsunamis spans geophysics, geology, history, fluid dynamics, statistics,
geodesy, engineering, and civil protection. This complexity reflects in a diver-
sity of practices concerning the use of units, scales, and concepts. If we narrow
the scope to modeling of tsunami propagation, the scaling aspect, at least,
may seem simple as we are mainly concerned with length and time. Still, even
here the non-uniformity concerning physical units is an encumbrance.

A minor issue is the occasional use of non-SI units such as inches, or in old
charts, even fathoms. More important is the non-uniformity in the magnitude
of the different variables, and the differences in the inherent horizontal and
vertical scales in particular. Typically, surface elevations are in meters or
smaller. For far-field deep water propagation, as well as small tsunamis (which
are still of scientific interest) surface elevations are often given in cm or even
mm. In the deep ocean, the characteristic depth is orders of magnitude larger
than this, typically 5000m. Propagation distances, on the other hand, are
hundreds or thousands of kilometers. Often locations and computational grids
are best described in geographical coordinates (longitude/latitude) which are
related to SI units by 1 latitude minute being roughly one nautical mile
(1852m), and 1 longitude minute being this quantity times the cosine of the
latitude. Wave periods of tsunamis mostly range from minutes to an hour,
hopefully sufficiently short to be well separated from the half-daily period of
the tides. Propagation times are typically hours or maybe the better part of
a day when the Pacific Ocean is traversed.

The scientists, engineers, and bureaucrats in the tsunami community tend
to be particular and non-conform concerning formats and units, as well as
the type of data required. To accommodate these demands, a tsunami mod-
eler must produce a diversity of data which are in units and formats which
cannot be used internally in her models. On the other hand, she must also be
prepared to accept the input data in diversified forms. Some data sets may
be large, implying that unnecessary duplication, with different units or scal-
ing, should be avoided. In addition, tsunami models are often bench-marked
through comparison with experimental data. The lab scale is generally cm
or m, at most, which implies that measured data are provided in different
units (than used in real earth-scale events), or even in volts, with conversion
information, as obtained from the measuring gauges.

1.1 Fundamental concepts 7

All the unit particulars in various file formats is clearly a nuisance and give
rise to a number of misconceptions and errors that may cause loss of precious
time or efforts. To reduce such problems, developers of computational tools
should combine a reasonable flexibility concerning units in input and output
with a clear and consistent convention for scaling within the tools. In fact,
this also applies to academic tools for in-house use.

The discussion above points to some best practices that these notes pro-
motes. First, always compute with scaled differential equation models. This
booklet tells you how to do that. Second, users of software often want to
specify input data with dimension and get output data with dimension. The
software should then apply tools like PhysicalQuantity (Section 1.1.8) or
the more sophisticated Parampool package (Section 1.2) to allow input with
explicit dimensions and convert the dimensions to the right types if necessary.
It is trivial to apply these tools if the computational software is written in
Python, but it is even straightforward if the software is written in compiled
languages like Fortran, C, or C++. In the latter case one just makes an input
reading module in Python that grabs data from a user interface and feeds
them into the computational software, either through files or function calls
(the relevant functions to be called must be wrapped in Python with tools
like f2py, Cython, Weave, SWIG, Instant, or similar, see [7, Appendix C] for
basic examples on f2py and Cython wrapping of C and Fortran code).

1.1.8 PhysicalQuantity: a tool for computing with units

These notes contain quite some computer code to illustrate how the theory
maps in detail to running software. Python is the programming language
used, primarily because it is an easy-to-read, powerful, full-fledged language
that allows MATLAB-like code as well as class-based code typically used in
Java, C#, and C++. The Python ecosystem for scientific computing has in
recent years grown fast in popularity and acts as a replacement for more spe-
cialized tools like MATLAB, R, and IDL. The coding examples in this booklet
requires only familiarity with basic procedural programming in Python.

Readers without knowledge of Python variables, functions, if tests, and
module import should consult, e.g., a brief tutorial on scientific Python, the
Python Scientific Lecture Notes, or a full textbook [4] in parallel with reading
about Python code in the present notes.

These notes apply Python 2.7

Python exists in two incompatible versions, numbered 2 and 3. The
differences can be made small, and there are tools to write code that
runs under both versions.

http://docs.scipy.org/doc/numpy-dev/f2py/
http://cython.org/
http://docs.scipy.org/doc/scipy/reference/tutorial/weave.html
http://www.swig.org/
https://bitbucket.org/fenics-project/instant
http://hplgit.github.io/bumpy/doc/web/index.html
http://scipy-lectures.github.com/

8 1 Dimensions and units

As Python version 2 is still dominating in scientific computing, we
stick to this version, but write code in version 2.7 that is as close as
possible to version 3.4 and later. In most of our programs, only the
print statement differs between version 2 and 3.

Computations with units in Python are well supported by the very
useful tool PhysicalQuantity from the ScientificPython package by Kon-
rad Hinsen. Unfortunately, ScientificPython does not, at the time of this
writing, work with NumPy version 1.9 or later, so we have isolated the
PhysicalQuantity object in a module PhysicalQuantities and made it
publicly available on GitHub. There is also an alternative package Unum for
computing with numbers with units, but we shall stick to the former module
here.

Let us demonstrate the usage of the PhysicalQuantity object by com-
puting s= vt, where v is a velocity given in the unit yards per minute and t
is time measured in hours. First we need to know what the units are called
in PhysicalQuantities. To this end, run pydoc PhysicalQuantities, or

Terminal

Terminal> pydoc Scientific.Physics.PhysicalQuantities

if you have the entire ScientificPython package installed. The resulting docu-
mentation shows the names of the units. In particular, yards are specified by
yd, minutes by min, and hours by h. We can now compute s= vt as follows:

>>> # With ScientificPython:
>>> from Scientific.Physics.PhysicalQuantities import \
... PhysicalQuantity as PQ
>>> # With PhysicalQuantities as separate/stand-alone module:
>>> from PhysicalQuantities import PhysicalQuantity as PQ
>>>
>>> v = PQ(’120 yd/min’) # velocity
>>> t = PQ(’1 h’) # time
>>> s = v*t # distance
>>> print s # s is string
120.0 h*yd/min

The odd unit h*yd/min is better converted to a standard SI unit such as
meter:

>>> s.convertToUnit(’m’)
>>> print s
6583.68 m

Note that s is a PhysicalQuantity object with a value and a unit. For
mathematical computations we need to extract the value as a float object.
We can also extract the unit as a string:

>>> print s.getValue() # float

https://bitbucket.org/khinsen/scientificpython
https://github.com/hplgit/physical-quantities
https://bitbucket.org/kiv/unum/

1.2 Parampool: user interfaces with automatic unit conversion 9

6583.68
>>> print s.getUnitName() # string
m

Here is an example on how to convert the odd velocity unit yards per
minute to something more standard:

>>> v.convertToUnit(’km/h’)
>>> print v
6.58368 km/h
>>> v.convertToUnit(’m/s’)
>>> print v
1.8288 m/s

As another example on unit conversion, say you look up the specific heat
capacity of water to be 1 calg−1K−1. What is the corresponding value in the
standard unit Jg−1K−1 where joule replaces calorie?

>>> c = PQ(’1 cal/(g*K)’)
>>> c.convertToUnit(’J/(g*K)’)
>>> print c
4.184 J/K/g

1.2 Parampool: user interfaces with automatic
unit conversion

The Parampool package allows creation of user interfaces with support for
units and unit conversion. Values of parameters can be set as a number
with a unit. The parameters can be registered beforehand with a preferred
unit, and whatever the user prescribes, the value and unit are converted so
the unit becomes the registered unit. Parampool supports various type of
user interfaces: command-line arguments (option-value pairs), text files, and
interactive web pages. All of these are described next.

Example application. As case, we want to make software for computing
with the simple formula s= v0t+ 1

2at
2. We want v0 to be a velocity with unit

m/s, a to be acceleration with unit m/s2, t to be time measured in s, and
consequently s will be a distance measured in m.

1.2.1 Pool of parameters

First, Parampool requires us to define a pool of all input parameters, which
is here simply represented by list of dictionaries, where each dictionary holds
information about one parameter. It is possible to organize input parameters

https://github.com/hplgit/parampool

10 1 Dimensions and units

in a tree structure with subpools that themselves may have subpools, but
for our simple application we just need a flat structure with three input
parameters: v0, a, and t. These parameters are put in a subpool called “Main”.
The pool is created by the code

def define_input():
pool = [

’Main’, [
dict(name=’initial velocity’, default=1.0, unit=’m/s’),
dict(name=’acceleration’, default=1.0, unit=’m/s**2’),
dict(name=’time’, default=10.0, unit=’s’)
]

]

from parampool.pool.UI import listtree2Pool
pool = listtree2Pool(pool) # convert list to Pool object
return pool

For each parameter we can define a logical name, such as initial velocity,
a default value, and a unit. Additional properties are also allowed, see the
Parampool documentation.

Tip: specify default values of numbers as float objects

Note that we do not just write 1, but 1.0 as default. Had 1 been used,
Parampool would have interpreted our parameter as an integer and
would therefore convert input like 2.5 m/s to 2 m/s. To ensure that a
real-valued parameter becomes a float object inside the pool, we must
specify the default value as a real number: 1. or 1.0. (The type of
an input parameter can alternatively be set explicitly by the str2type
property, e.g., str2type=float.)

1.2.2 Fetching pool data for computing

We can make a little function for fetching values from the pool and computing
s:

def distance(pool):
v_0 = pool.get_value(’initial velocity’)
a = pool.get_value(’acceleration’)
t = pool.get_value(’time’)
s = v_0*t + 0.5*a*t**2
return s

The pool.get_value function returns the numerical value of the named pa-
rameter, after the unit has been converted from what the user has specified

http://hplgit.github.io/parampool/doc/web/index.html

1.2 Parampool: user interfaces with automatic unit conversion 11

to what was registered in the pool. For example, if the user provides the
command-line argument –time ’2 h’, Parampool will convert this quantity
to seconds and pool.get_value(’time’) will return 7200.

1.2.3 Reading command-line options

To run the computations, we define the pool, load values from the command
line, and call distance:

pool = define_input()
from parampool.menu.UI import set_values_from_command_line
pool = set_values_from_command_line(pool)

s = distance(pool)
print ’s=%g’ % s

Parameter names with whitespace must use an underscore for whitespace
in the command-line option, such as in --Initial_velocity. We can now
run

Terminal

Terminal> python distance.py --initial_velocity ’10 km/h’ \
--acceleration 0 --time ’1 h

s=10000

Notice from the answer (s) that 10 km/h gets converted to m/s and 1 h to s.
It is also possible to fetch parameter values as PhysicalQuantity objects

from the pool by calling

v_0 = pool.get_value_unit(’Initial velocity’)

The following variant of the distance function computes with values and
units:

def distance_unit(pool):
Compute with units
from parampool.PhysicalQuantities import PhysicalQuantity as PQ
v_0 = pool.get_value_unit(’initial velocity’)
a = pool.get_value_unit(’acceleration’)
t = pool.get_value_unit(’time’)
s = v_0*t + 0.5*a*t**2
return s.getValue(), s.getUnitName()

We can then do

s, s_unit = distance_unit(pool)
print ’s=%g’ % s, s_unit

and get output with the right unit as well.

12 1 Dimensions and units

1.2.4 Setting default values in a file

In large applications with lots of input parameters one will often like to define
a (huge) set of default values specific for a case and then override a few of
them on the command-line. Such sets of default values can be set in a file
using syntax like

subpool Main
initial velocity = 100 ! yd/min
acceleration = 0 ! m/s**2 # drop acceleration
end

The unit can be given after the ! symbol (and before the comment symbol
#).

To read such files we have to add the lines

from parampool.pool.UI import set_defaults_from_file
pool = set_defaults_from_file(pool)

before the call to set_defaults_from_command_line.
If the above commands are stored in a file distance.dat, we give this file

information to the program through the option –poolfile distance.dat.
Running just

Terminal

Terminal> python distance.py --poolfile distance.dat
s=15.25 m

first loads the velocity 100 yd/min converted to 1.524 m/s and zero accel-
eration into the pool system and, and then we call distance_unit, which
loads these values from the pool along with the default value for time, set as
10 s. The calculation is then s = 1.524 · 10 + 0 = 15.24 with unit m. We can
override the time and/or the other two parameters on the command line:

Terminal

Terminal> python distance.py --poolfile distance.dat --time ’2 h’
s=10972.8 m

The resulting calculations are s= 1.524 ·7200+0 = 10972.8. You are encour-
aged to play around with the distance.py program.

1.2.5 Specifying multiple values of input parameters

Parampool has an interesting feature: multiple values can be assigned to an
input parameter, thereby making it easy for an application to run through all
combinations of all parameters. We can demonstrate this feature by making
a table of v0, a, t, and s values. In the compute function, we need to call

http://tinyurl.com/o8pb3yy/distance.py

1.2 Parampool: user interfaces with automatic unit conversion 13

pool.get_values instead of pool.get_value to get a list of all the values
that were specified for the parameter in question. By nesting loops over all
parameters, we visit all combinations of all parameters as specified by the
user:

def distance_table(pool):
"""Grab multiple values of parameters from the pool."""
table = []
for v_0 in pool.get_values(’initial velocity’):

for a in pool.get_values(’acceleration’):
for t in pool.get_values(’time’):

s = v_0*t + 0.5*a*t**2
table.append((v_0, a, t, s))

return table

In case just a single value was specified for a parameter, pool.get_values
returns this value only and there will be only one pass in the associated loop.

After loading command-line arguments into our pool object, we can call
distance_table instead of distance or distance_unit and write out a
nicely formatted table of results:

table = distance_table(pool)
print ’|---|’
print ’| v_0 | a | t | s |’
print ’|---|’
for v_0, a, t, s in table:

print ’|%11.3f | %10.3f | %10.3f | %12.3f |’ % (v_0, a, t, s)
print ’|---|’

Here is a sample run,
Terminal

Terminal> python distance.py --time ’1 h & 2 h & 3 h’ \
--acceleration ’0 m/s**2 & 1 m/s**2 & 1 yd/s**2’ \
--initial_velocity ’1 & 5’

|---|
| v_0 | a | t | s |
|---|
| 1.000 | 0.000 | 3600.000 | 3600.000 |
| 1.000 | 0.000 | 7200.000 | 7200.000 |
| 1.000 | 0.000 | 10800.000 | 10800.000 |
| 1.000 | 1.000 | 3600.000 | 6483600.000 |
| 1.000 | 1.000 | 7200.000 | 25927200.000 |
| 1.000 | 1.000 | 10800.000 | 58330800.000 |
| 1.000 | 0.914 | 3600.000 | 5928912.000 |
| 1.000 | 0.914 | 7200.000 | 23708448.000 |
| 1.000 | 0.914 | 10800.000 | 53338608.000 |
| 5.000 | 0.000 | 3600.000 | 18000.000 |
| 5.000 | 0.000 | 7200.000 | 36000.000 |
| 5.000 | 0.000 | 10800.000 | 54000.000 |
| 5.000 | 1.000 | 3600.000 | 6498000.000 |
| 5.000 | 1.000 | 7200.000 | 25956000.000 |
| 5.000 | 1.000 | 10800.000 | 58374000.000 |
| 5.000 | 0.914 | 3600.000 | 5943312.000 |
| 5.000 | 0.914 | 7200.000 | 23737248.000 |
| 5.000 | 0.914 | 10800.000 | 53381808.000 |

14 1 Dimensions and units

|---|

Notice that some of the multiple values have dimensions different from the
registered dimension for that parameter, and the table shows that conversion
to the right dimension has taken place.

1.2.6 Generating a graphical user interface

For the fun of it, we can easily generate a graphical user interface via Param-
pool. We wrap the distance_unit function in a function that returns the
result in some nice-looking HTML code:

def distance_unit2(pool):
Wrap result from distance_unit in HTML
s, s_unit = distance_unit(pool)
return ’Distance: %.2f %s’ % (s, s_unit)

In addition, we must make a file generate_distance_GUI.py with the simple
content

from parampool.generator.flask import generate
from distance import distance_unit2, define_input

generate(distance_unit2, pool_function=define_input, MathJax=True)

Running generate_distance_GUI.py creates a Flask-based web interface1

to our distance_unit function, see Figure 1.1. The text fields in this GUI
allow specification of parameters with numbers and units, e.g., acceleration
with unit yards per minute squared, as shown in the figure. Hovering the
mouse slightly to the left of the text field causes a little black window to pop
up with the registered unit of that parameter.

Fig. 1.1 Web GUI where parameters can be specified with units.

1You need to have Flask and additional packages installed. This is easy to do with
a few pip install commands, see [5] or [6].

1.2 Parampool: user interfaces with automatic unit conversion 15

With examples shown above, the reader should be able to make use of
the PhysicalQuantity object and the Parampool package in programs and
thereby work safely with units. For the coming text, where we discuss the
craft of scaling in detail, we shall just work in standard SI units and avoid unit
conversion so there will be no more use of PhysicalQuantity and Parampool.

Chapter 2
Ordinary differential equation models

This chapter introduces the basic techniques of scaling and the ways to reason
about scales. The first class of examples targets exponential decay models,
starting with the simple ordinary differential equation (ODE) for exponential
decay processes: u′ = −au, with constant a > 0. Then we progress to vari-
ous generalizations of this ODE, including nonlinear versions and systems of
ODEs. The next class of examples concerns second-order ODEs for oscilla-
tory systems, where the simplest ODE reads mu′′+ ku = 0, with m and k
as positive constants. Various extensions with damping and force terms are
discussed in detail.

2.1 Exponential decay problems

2.1.1 Fundamental ideas of scaling

Scaling is an extremely useful technique in mathematical modeling and nu-
merical simulation. The purpose of the technique is three-fold:

1. Make independent and dependent variables dimensionless.
2. Make the size of independent and dependent variables about unity.
3. Reduce the number of independent physical parameters in the model.

The first two items mean that for any variable, denote it by q, we introduce
a corresponding dimensionless variable

q̄ = q− q0
qc

,

17

18 2 Ordinary differential equation models

where q0 is a reference value of q (q0 = 0 is a common choice) and qc is a
characteristic size of |q|, often referred to as “a scale”. Since the numerator and
denominator have the same dimension, q̄ becomes a dimensionless number.

If qc is the maximum value of |q−q0|, we see that 0< |q̄| ≤ 1. How to find
qc is sometimes the big challenge of scaling. Examples will illustrate various
approaches to meet this challenge.

The many coming examples on scaling differential equations contain the
following pedagogical ingredients to meet the desired learning outcomes.

• Teach the technical steps of making a mathematical model, based on dif-
ferential equations, dimensionless.

• Describe various techniques for reasoning about the scales, i.e., finding the
characteristic sizes of quantities.

• Teach how to identify and interpret dimensionless numbers arising from
the scaling process.

• Provide a lot of different examples on making models dimensionless with
physically correct scales.

• Show how symbolic software (SymPy) can be used to derive exact solutions
of differential equations.

• Explain how to run a dimensionless model with software developed for the
problem with dimensions.

2.1.2 The basic model problem

Processes undergoing exponential reduction can be modeled by the ODE
problem

u′(t) =−au(t), u(0) = I, (2.1)

where a,I > 0 are prescribed parameters, and u(t) is the unknown function.
For the particular model with a constant a, we can easily derive the exact
solution, u(t) = Ie−at, which is helpful to have in mind during the scaling
process.

Example: Population dynamics. The evolution of a population of hu-
mans, animals, cells, etc., under unlimited access to resources, can be mod-
eled by (2.1). Then u is the number of individuals in the population, strictly
speaking an integer, but well modeled by a real number in large populations.
The parameter a is the increase in the number of individuals per time and
per individual.

Example: Decay of pressure with altitude. The simple model (2.1) also
governs the pressure in the atmosphere (under many assumptions, such air is
an ideal gas in equilibrium). In this case u is the pressure, measured in Nm−2;

2.1 Exponential decay problems 19

t is the height in meters; and a=M/(R∗T), whereM is the molar mass of the
Earth’s air (0.029 kg/mol), R∗ is the universal gas constant (8.314 Nm

mol K),
and T is the temperature in Kelvin (K). The temperature depends on the
height so we have a= a(t).

2.1.3 The technical steps of the scaling procedure

Step 1: Identify independent and dependent variables. There is one
independent variable, t, and one dependent variable, u.

Step 2: Make independent and dependent variables dimensionless.
We introduce a new dimensionless t, called t̄, defined by

t̄= t

tc
, (2.2)

where tc is a characteristic value of t. Similarly, we introduce a dimensionless
u, named ū, according to

ū= u

uc
, (2.3)

where uc is a constant characteristic size of u. When u has a specific inter-
pretation, say when (2.1) models pressure in an atmospheric layer, uc would
be referred to as characteristic pressure. For a decaying population, uc may
be a characteristic number of members in the population, e.g., the initial
population I.

Step 3: Derive the model involving only dimensionless variables.
The next task is to insert the new dimensionless variables in the governing
mathematical model. That is, we replace t by tct̄ and u by ucū in (2.1). The
derivative with respect to t̄ is derived through the chain rule as

du

dt
= d(ucū)

dt̄

dt̄

dt
= uc

dū

dt̄

1
tc

= uc
tc

dū

dt̄
.

The model (2.1) now becomes

uc
tc

dū

dt̄
=−aucū, ucū(0) = I . (2.4)

Step 4: Make each term dimensionless. Equation (2.4) still has terms
with dimensions. To make each term dimensionless, we usually divide by the
coefficient in front of the term with the highest time derivative (but dividing
by any coefficient in any term will do). The result is

dū

dt̄
=−atcū, ū(0) = u−1

c I . (2.5)

20 2 Ordinary differential equation models

Step 5: Estimate the scales. A characteristic quantity like tc reflects the
time scale in the problem. Estimating such a time scale is certainly the most
challenging part of the scaling procedure. There are different ways to reason.
The first approach is to aim at a size of ū and its derivatives that is of order
unity. If uc is chosen such that |ū| is of size unity, we see from (2.5) that
dū/dt̄ is of the size of ū (i.e., unity) if we choose tc = 1/a.

Alternatively, we may look at a special case of the model where we have
analytical insight that can guide the choice of scales. In the present problem
we are lucky to know the exact solution for any value of the input data as
long as a is a constant. For exponential decay, u(t) ∼ e−at, it is common to
define a characteristic time scale tc as the time it takes to reduce the initial
value of u by a factor of 1/e (also called the e-folding time):

e−atc = 1
e
e−a·0 ⇒ e−atc = e−1,

from which it follows that tc = 1/a. Note that using an exact solution of the
problem to determine scales is not a requirement, just a useful help in the
few cases where we actually have access to an exact solution.

In this example, two different, yet common ways of reasoning, lead to the
same value of tc. However, instead of using the e-folding time we could use
the half-time of the exponential decay as characteristic time, which is also a
very common measure of the time scale in such processes. The half time is
defined as the time it takes to halve u:

e−atc = 1
2e
−a·0 ⇒ tc = a−1 ln2 .

There is a factor ln2 = 0.69 difference from the other tc value. As long as the
factor is not an order of magnitude or more different, we do not pay attention
factors like ln2 and skip them, simply to make formulas look nicer. Using
tc = a−1 ln2 as time scale leads to a scaled differential equation u′ =−(ln2)u,
which is fine, but an unusual form. People tend to prefer the simpler ODE
u′=−u, which arises from tc = 1/a, and we shall therefore use this time scale.

Regarding uc, we may look at the initial condition and realize that the
choice uc = I makes ū(0) = 1. For t > 0, the differential equation expresses
explicitly that u decreases, so uc = I gives ū ∈ (0,1]. Scaling a variable q such
that |q̄| ∈ [0,1] is always the ultimate goal, and this goal is in fact obtained
here! Next best result is to ensure that the magnitude of |q| is not “big” or
“small”, in the sense that the size is neither as large as 10 or 100, nor as small
as 0.1 or 0.01. (In the present problem, where we are lucky to have an exact
solution u(t) = Ie−at, we may look at this to explicitly see that u∈ (0, I] such
that uc = I gives ū ∈ (0,1]).

With tc = 1/a and uc = I, we have the final dimensionless model

dū

dt̄
=−ū, ū(0) = 1 . (2.6)

2.1 Exponential decay problems 21

This is a remarkable result in the sense that all physical parameters (a and I)
are removed from the model! Or more precisely, there are no physical input
parameters to assign before using the model. In particular, numerical inves-
tigations of the original model (2.1) would need experiments with different a
and I values, while numerical investigations of (2.6) can be limited to a single
run! As soon as we have computed the curve ū(t̄), we can find the solution
u(t) of (2.1) by

u(t) = ucū(t/tc) = Iū(at) . (2.7)

This particular transformation actually means stretching the t̄ and ū axes in
a plot of ū(t̄) by the factors a and I, respectively.

It is very common to drop the bars when the scaled problem has been
derived and work further with (2.6) simply written as

du

dt
=−u, u(0) = 1 .

Nevertheless, in this booklet we have decided to stick to bars for all dimen-
sionless quantities.

2.1.4 Making software for utilizing the scaled model

Software for solving (2.1) could take advantage of the fact that only one
simulation of (2.6) is necessary. As soon as we have ū(t̄) accessible, a simple
scaling (2.7) computes the real u(t) for any given input data a and I. Although
the numerical computation of u(t) from (2.1) is very fast in this simple model
problem, using (2.7) is very much faster. In general, a simple rescaling of a
scaled solution is extremely more computationally efficient than solving a
differential equation problem.

We can compute with the dimensionless model (2.6) in two ways, either
make a solver for (2.6), or reuse a solver for (2.1) with I = 1 and a= 1. We will
choose the latter approach since it has the advantage of giving us software
that works both with a dimensionless model and a model with dimensions
(and all the original physical parameters).
Software for the original unscaled problem. Assume that we have some
module decay.py that offers the following functions:

• solver(I, a, T, dt, theta=0.5) for returning the solution arrays u
and t, over a time interval [0,T], for (2.1) solved by the so-called θ rule.
This rule includes the Forward Euler scheme (θ = 0), the Backward Euler
scheme (θ= 1), or the Crank-Nicolson (centered midpoint) scheme (θ= 1

2).
• read_command_line_argparse() for reading parameters in the problem

from the command line and returning them: I, a, T, theta (θ), and a list
of ∆t values for time steps. (We shall only make use of the first ∆t value.)

22 2 Ordinary differential equation models

The basic statements for solving (2.1) are then

from decay import solver, read_command_line_argparse
I, a, T, theta, dt_values = read_command_line_argparse()
u, t = solver(I, a, T, dt_values[0], theta)

from matplotlib.pyplot import plot, show
plot(t, u)
show()

The module decay.py is developed and explained in Section 5.1.7 in [3].
To solve the dimensionless problem, just fix I = 1 and a = 1, and choose

T̄ and ∆t̄:

_, _, T, theta, dt_values = read_command_line_argparse()
u, t = solver(I=1, a=1, T=T, dt=dt_values[0], theta=theta)

The first two variables returned from read_command_line_argparse are I
and a, which are ignored here. To indicate that these variables are not to be
used, we use a “dummy name”, often taken to be the underscore symbol in
Python. The user can set –I and –a on the command line, since the decay
module allows this, but we hope the code above has a form that reminds the
user that these options are not to be used. Also note that T and dt_values[0]
set on the command line are the desired parameters for solving the scaled
problem.

Software for the scaled problem. Turning now to the scaled problem,
the solver function (originally designed for the unscaled problem) will be
reused, but it will only be run if it is strictly necessary. That is, when the
user requests a solution, our code should first check whether that solution can
be provided by simply scaling a solution already computed and available in a
file. If not, we will compute an appropriate scaled solution, find the requested
unscaled solution for the user, and also save the new scaled solution to file
for possible later use.

A very plain solution to the problem is found in the file decay_scaled_
v1.py. The np.savetxt function saves a two-dimensional array (“table”) to
a text file, and the np.loadtxt function can load the data back into the
program. A better solution to this problem is obtained by using the joblib
package as described next.

Implementation with joblib. The Python package joblib has function-
ality that is very convenient for implementing the solver_scaled function.
The first time a function is called with a set of arguments, the statements in
the function are executed and the return value is saved to file. If the function
is called again with the same set of arguments, the statements in the func-
tion are not executed, but the return value is read from file (of course, many
files may be stored, one for each combination of parameter values). In com-
puter science, one would say that joblib in this way provides memorization
functionality for Python functions. This functionality is particularly aimed at

http://tinyurl.com/o8pb3yy/decay.py
http://tinyurl.com/o8pb3yy/decay_scaled_v1.py
http://tinyurl.com/o8pb3yy/decay_scaled_v1.py

2.1 Exponential decay problems 23

large-scale computations with arrays that one would hesitate to recompute.
We illustrate the technique here in a very simple mathematical context.

First we make a solver_scaled function for the scaled model that just
calls up a solver_unscaled (with I = a= 1) for the problem with dimensions:

from decay import solver as solver_unscaled
import numpy as np
import matplotlib.pyplot as plt

def solver_scaled(T, dt, theta):
"""
Solve u’=-u, u(0)=1 for (0,T] with step dt and theta method.
"""
print ’Computing the numerical solution’
return solver_unscaled(I=1, a=1, T=T, dt=dt, theta=theta)

Then we create some “computer memory on disk”, i.e., some disk space to
store the result of a call to the solver_scaled function. Thereafter, we rede-
fine the name solver_scaled to a new function, created by joblib, which
calls our original solver_scaled function if necessary and otherwise loads
data from file:

import joblib
disk_memory = joblib.Memory(cachedir=’temp’)
solver_scaled = disk_memory.cache(solver_scaled)

The solutions are actually stored in files in the cache directory temp.
A typical use case is to read values from the command line, solve the scaled

problem (if necessary), unscale the solution, and visualize the solution with
dimension:

def unscale(u_scaled, t_scaled, I, a):
return I*u_scaled, a*t_scaled

from decay import read_command_line_argparse

def main():
Read unscaled parameters, solve and plot
I, a, T, theta, dt_values = read_command_line_argparse()
dt = dt_values[0] # use only the first dt value
T_bar = a*T
dt_bar = a*dt
u_scaled, t_scaled = solver_scaled(T_bar, dt_bar, theta)
u, t = unscale(u_scaled, t_scaled, I, a)

plt.figure()
plt.plot(t_scaled, u_scaled)
plt.xlabel(’scaled time’); plt.ylabel(’scaled velocity’)
plt.title(’Universial solution of scaled problem’)
plt.savefig(’tmp1.png’); plt.savefig(’tmp1.pdf’)

plt.figure()
plt.plot(t, u)

24 2 Ordinary differential equation models

plt.xlabel(’t’); plt.ylabel(’u’)
plt.title(’I=%g, a=%g, theta=%g’ % (I, a, theta))
plt.savefig(’tmp2.png’); plt.savefig(’tmp2.pdf’)
plt.show()

The complete code resides in the file decay_scaled.py. Note from the code
above that read_command_line_argparse is supposed to read parameters
with dimensions (but technically, we solve the scaled problem, if strictly nec-
essary, and unscale the solution). Let us run

Terminal

Terminal> python decay_scaled.py --I 8 --a 0.1 --dt 0.01 --T 50

A plot of the scaled and unscaled solution appears in Figure 2.1.

0 1 2 3 4 5
scaled time

0.0

0.2

0.4

0.6

0.8

1.0

sc
al

ed
 v

el
oc

ity

Universial solution of scaled problem

0.0 0.1 0.2 0.3 0.4 0.5
t

0

1

2

3

4

5

6

7

8

u

I=8, a=0.1, theta=0.5

Fig. 2.1 Scaled (left) and unscaled (right) exponential decay.

Note that we write a message Computing the numerical solution in-
side the solver_scaled function. We can then easily detect when the solu-
tion is actually computed from scratch and when it is simply read from file
(followed by the unscaling procedure). Here is a demo:

Terminal

Terminal> # Very first run
Terminal> python decay_scaled.py --T 7 --a 1 --I 0.5 --dt 0.2
[Memory] Calling __main__--home-hpl...
solver_scaled-alias(7.0, 0.2, 0.5)
Computing the numerical solution

Terminal> # No change of T, dt, theta - can reuse solution in file
Terminal> python decay_scaled.py --T 7 --a 4 --I 2.5 --dt 0.2

Terminal> # Change of dt, must recompute
Terminal> python decay_scaled.py --T 7 --a 4 --I 2.0 --dt 0.5
[Memory] Calling __main__--home-hpl...
solver_scaled-alias(7.0, 0.5, 0.5)
Computing the numerical solution

http://tinyurl.com/o8pb3yy/decay_scaled.py

2.1 Exponential decay problems 25

Terminal> # Change of dt again, but dt=0.2 is already in a file
Terminal> python decay_scaled.py --T 7 --a 0.5 --I 1 --dt 0.2

We realize that joblib has access to all previous runs and does not re-
compute unless it is strictly required. Our previous implementation without
joblib (in decay_scaled_v1.py) used only one file (for one numerical case)
and will therefore perform many more calls to solver_unscaled.

On the implementation of a simple memoize function

A memoized function recalls previous results when the same set of argu-
ments is encountered. That is, the function caches its results. A simple
implementation stores the arguments in a function call and the returned
results in a dictionary, and if the arguments are seen again, one looks
up in the dictionary and returns previously computed results:

class Memoize:
def __init__(self, f):

self.f = f
self.memo = {} # map arguments to results

def __call__(self, *args):
if not args in self.memo:

self.memo[args] = self.f(*args)
return self.memo[args]

Wrap my_compute_function(arg1, arg2, ...)
my_compute_function = Memoize(my_compute_function)

The memoize functionality in joblib.Memory is more sophisticated and
can work very efficiently with large array data structures as arguments.
Note that the simple version above can only be used when all arguments
to the function f are immutable (since the key in a dictionary has to
be immutable).

2.1.5 Scaling a generalized problem

Now we consider an extension of the exponential decay ODE to the form

u′(t) =−au(t) + b, u(0) = I . (2.8)

One particular model, with constant a and b, is a spherical small-sized or-
ganism falling in air,

26 2 Ordinary differential equation models

u′ =−3πdµ
%bV

u+g

(
%

%b
−1
)
, (2.9)

where d, µ, %b, %, V , and g are physical parameters. The function u(t) rep-
resents the vertical velocity, being positive upwards. We shall use this model
in the following.

Exact solution. It can be handy to have the exact solution for reference,
in case of constant a and b:

ue(t) = e−at

a

(
b(eat−1) +aI

)
.

Solving differential equations in SymPy

It can be very useful to use a symbolic computation tool such as SymPy
to aid us in solving differential equations. Let us therefore demonstrate
how SymPy can be used to find this solution. First we define the pa-
rameters in the problem as symbols and u(t) as a function:

>>> from sympy import *
>>> t, a, b, I = symbols(’t a b I’, real=True, positive=True)
>>> u = symbols(’u’, cls=Function)

The next task is to define the differential equation, either as a symbolic
expression that is to equal zero, or as an equation Eq(lhs, rhs) with
lhs and rhs as expressions for the left- and right-hand side):

>>> # Define differential equation
>>> eq = diff(u(t), t) + a*u(t) - b
>>> # or
>>> eq = Eq(diff(u(t), t), -a*u(t) + b)

The differential equation can be solved by the dsolve function, yielding
an equation of the form u(t) == expression. We want to grab the
expression on the right-hand side as our solution:

>>> sol = dsolve(eq, u(t))
>>> print sol
u(t) == (b + exp(a*(C1 - t)))/a
>>> u = sol.rhs # grab solution
>>> print u
(b + exp(a*(C1 - t)))/a

The solution contains the unknown integration constant C1, which must
be determined by the initial condition. We form the equation arising
from the initial condition u(0) = I:

>>> C1 = symbols(’C1’)
>>> eq = Eq(u.subs(t, 0), I) # substitute t by 0 in u

2.1 Exponential decay problems 27

>>> sol = solve(eq, C1)
>>> print sol
[log(I*a - b)/a]

The one solution that was found (stored in a list!) must then be sub-
stituted back in the expression u to yield the final solution:

>>> u = u.subs(C1, sol[0])
>>> print u
(b + exp(a*(-t + log(I*a - b)/a)))/a

As in mathematics with pen and paper, we strive to simplify expressions
also in symbolic computing software. This frequently requires some trial
and error process with SymPy’s simplification functions. A very stan-
dard first try is to expand everything and run simplification algorithms:

>>> u = simplify(expand(u))
>>> print u
(I*a + b*exp(a*t) - b)*exp(-a*t)/a

Doing latex(u) automatically converts the expression to LATEX syntax
for inclusion in reports.

The reader may wonder why we bother with scaling of differential equa-
tions if SymPy can solved the problem in a nice, closed formula. This is true in
the present introductory problem, but in a more general problem setting, we
have some differential equation where SymPy perhaps can help with finding
an exact solution only in a special case. We can use this special-case solution
to control our reasoning about scales in the more general setting.

Theory. The challenges in our scaling is to find the right uc and tc scales.
From (2.8) we see that if u′→ 0 as t→∞, u approaches the constant value
b/a. It can be convenient to let the scaled ū→ 1 as we approach the dū/dt̄= 0
state. This idea points to choosing

uc = b

a
= g

(
%

%b
−1
)(

3πdµ
%bV

)−1
. (2.10)

On the sign of the scaled velocity

A little note on the sign of uc is necessary here. With %b < %, the buoy-
ancy force upwards wins over the gravity force downwards, and the body
will move upwards. In this case, the terminal velocity uc > 0. When
%b > %, we get a motion downwards, and uc < 0. The corresponding u
is then also negative, but the scaled velocity u/uc, becomes positive.

Inserting u= ucū= bū/a and t= tct̄ in (2.8) leads to

28 2 Ordinary differential equation models

dū

dt̄
=−tcaū+ tc

uc
b, ū(0) = I

a

b
.

We want the scales such that dū/dt̄ and ū are about unity. To balance the
size of ū and dū/dt̄ we must therefore choose tc = 1/a, resulting in the scaled
ODE problem

dū

dt̄
=−ū+ 1, ū(0) = β, (2.11)

where β is a dimensionless number,

β = I

uc
= I

a

b
, (2.12)

reflecting the ratio of the initial velocity and the terminal (t→∞) velocity
b/a. Scaled equations normally end up with one or more dimensionless param-
eters, such as β here, containing ratios of physical effects in the model. Many
more examples on dimensionless parameters will appear in later sections.

The analytical solution of the scaled model (2.11) reads

ūe(t) = e−t
(
et−1 +β

)
= 1 + (β−1)e−t . (2.13)

The result (2.11) with the solution (2.13) is actually astonishing if a and
b are as in (2.9): the six parameters d, µ, %b, %, V , and g are conjured to one:

β = I
3πdµ
%bV

1
g

(
%

%b
−1
)−1

,

which is an enormous simplification of the problem if our aim is to investigate
how u varies with the physical input parameters in the model. In particular,
if the motion starts from rest, β = 0, and there are no physical parameters
in the scaled model! We can then perform a single simulation and recover all
physical cases by the unscaling procedure. More precisely, having computed
ū(t̄) from (2.11), we can use

u(t) = b

a
ū(at), (2.14)

to scale back to the original problem again. We observe that (2.11) can utilize
a solver for (2.8) by setting a= 1, b= 1, and I = β. Given some implementa-
tion of a solver for (2.8), say solver(I, a, b, T, dt, theta), the scaled
model is run by solver(beta, 1, 1, T, dt, theta).

Software. We may develop a solver for the scaled problem that uses joblib
to cache solutions with the same β, ∆t, and T . For now we fix θ = 0.5.
The module decay_vc.py (see Section 3.1.3 in [3] for details) has a function
solver(I, a, b, T, dt, theta) for solving u′(t) =−a(t)u(t)+b(t) for t ∈

http://tinyurl.com/o8pb3yy/decay_vc.py

2.1 Exponential decay problems 29

(0,T], u(0) = I, with time step dt. We reuse this function and call it with
a= b= 1 and I = β to solve the scaled problem:

from decay_vc import solver as solver_unscaled

def solver_scaled(beta, T, dt, theta=0.5):
"""
Solve u’=-u+1, u(0)=beta for (0,T]
with step dt and theta method.
"""
print ’Computing the numerical solution’
return solver_unscaled(

I=beta, a=lambda t: 1, b=lambda t: 1,
T=T, dt=dt, theta=theta)

import joblib
disk_memory = joblib.Memory(cachedir=’temp’)
solver_scaled = disk_memory.cache(solver_scaled)

If we want to plot the physical solution, we need an unscale function,

def unscale(u_scaled, t_scaled, d, mu, rho, rho_b, V):
a, b = ab(d, mu, rho, rho_b, V)
return (b/a)*u_scaled, a*t_scaled

def ab(d, mu, rho, rho_b, V):
g = 9.81
a = 3*pi*d*mu/(rho_b*V)
b = g*(rho/rho_b - 1)
return a, b

Looking at droplets of water in air, we can fix some of the parameters
and let the size parameter d be the one for experimentation. The following
function sets physical parameters, computes β, runs the solver for the scaled
problem (joblib detects if it is necessary), and finally plots the scaled curve
ū(t̄) and the unscaled curve u(t).

def main(dt=0.075, # Time step, scaled problem
T=7.5, # Final time, scaled problem
d=0.001, # Diameter (unscaled problem)
I=0, # Initial velocity (unscaled problem)
):

Set parameters, solve and plot
rho = 0.00129E+3 # air
rho_b = 1E+3 # density of water
mu = 0.001 # viscosity of water
Asumme we have list or similar for d
if not isinstance(d, (list,tuple,np.ndarray)):

d = [d]

legends1 = []
legends2 = []
plt.figure(1)
plt.figure(2)

30 2 Ordinary differential equation models

betas = [] # beta values already computed (for plot)

for d_ in d:
V = 4*pi/3*(d_/2.)**3 # volume
a, b = ab(d_, mu, rho, rho_b, V)
beta = I*a/b
Restrict to 3 digits in beta
beta = abs(round(beta, 3))

print ’beta=%.3f’ % beta
u_scaled, t_scaled = solver_scaled(beta, T, dt)

Avoid plotting curves with the same beta value
if not beta in betas:

plt.figure(1)
plt.plot(t_scaled, u_scaled)
plt.hold(’on’)
legends1.append(’beta=%g’ % beta)

betas.append(beta)

plt.figure(2)
u, t = unscale(u_scaled, t_scaled, d_, mu, rho, rho_b, V)
plt.plot(t, u)
plt.hold(’on’)
legends2.append(’d=%g [mm]’ % (d_*1000))

plt.figure(1)
plt.xlabel(’scaled time’); plt.ylabel(’scaled velocity’)
plt.legend(legends1, loc=’lower right’)

The most complicated part of the code is related to plotting, but this part
can be skipped when trying to understand how we work with a scaled model
to perform the computations. The complete program is found in the file
falling_body.py.

Since I = 0 implies β = 0, we can run different d values without any need
to recompute ū(t̄) as long as we assume the particle starts from rest.

From the scaling, we see that uc = b/a∼ d−2 and also that tc = 1/a∼ d−2,
so plotting of u(t) with dimensions for various d values will involve significant
variations in the time and velocity scales. Figure 2.2 has an example with
d = 1,2,3 mm, where we clearly see the different time and velocity scales in
the figure with unscaled variables. Note that the scaled velocity is positive
because of the sign of uc (see the box above).

2.1.6 Variable coefficients

When a prescribed coefficient like a(t) in u′(t) = −a(t)u(t) varies with time
one usually also performs a scaling of this a,

ā(t̄) = a(t)−a0
ac

,

http://tinyurl.com/o8pb3yy/falling_body.py

2.1 Exponential decay problems 31

0 1 2 3 4 5 6 7 8
scaled time

0.0

0.2

0.4

0.6

0.8

1.0

sc
a
le

d
 v

e
lo

ci
ty

beta=0

0 20 40 60 80 100 120 140
t [s]

5

4

3

2

1

0

u
 [

m
/s

]

d=1 [mm]
d=2 [mm]
d=3 [mm]

Fig. 2.2 Velocity of falling body: scaled (left) and with dimensions (right).

where the goal is to have the scaled ā of size unity: |ā| ≤ 1. This property
is obtained by choosing ac as the maximum value of |a(t)−a0| for t ∈ [0,T],
which is usually a quantity that can be estimated since a(t) is known as a
function of t. The a0 parameter can be chosen as 0 here. (It could be tempting
to choose a0 = mint a(t) so that 0≤ ā≤ 1, but then there is at least one point
where ā= 0 and the differential equation collapses to u′ = 0.)

As an example, imagine a decaying cell culture where we at time t1 change
the environment (typically the nutrition) such that the death rate increases
by a factor 5. Mathematically, a(t) = d for t < t1 and a(t) = 5d for t≥ t1. The
model reads u′ =−a(t)u, u(0) = I.

The a(t) function is scaled by letting the characteristic size be ac = d and
a0 = 0:

ā(t̄) =
{

1, t̄ < t1/tc
5, t̄≥ t1/tc

The scaled equation becomes

uc
tc

dū

dt̄
= acā(t̄)ucū, ucū(0) = I .

The natural choice of uc is I. The characteristic time, previously taken as
tc = 1/a, can now be chosen as tc = t1 or tc = 1/d. With tc = 1/d we get

ū′(t̄) =−āū, ū(0) = 1, ā=
{

1, t̄ < γ
5, t̄≥ γ (2.15)

where

γ = t1d

is a dimensionless number in the problem. With tc = t1, we get

ū′(t̄) =−γāū, ū(0) = 1, ā=
{

1, t̄ < 1
5, t̄≥ 1

32 2 Ordinary differential equation models

The dimensionless parameter γ is now in the equation rather than in the
definition of ā. Both problems involve γ, which is the ratio between the time
when the environmental change happens and the typical time for the decay
(1/d).

A computation with the scaled model (2.15) and the original model with
dimensions appears in Figure 2.3.

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
scaled time

0.0

0.2

0.4

0.6

0.8

1.0

sc
a
le

d
 v

e
lo

ci
ty

gamma=0.833

0.000 0.005 0.010 0.015 0.020 0.025 0.030 0.035
t [s]

0.0

0.2

0.4

0.6

0.8

1.0

u

d=0.01 [1/s], t_1=100.00 s

Fig. 2.3 Exponential decay with jump: scaled model (left) and unscaled model (right).

2.1.7 Scaling a cooling problem with constant
temperature in the surroundings

The heat exchange between a body at temperature T (t) and the surroundings
at constant temperature Ts can be modeled by Newton’s law of cooling:

T ′(t) =−k(T −Ts), T (0) = T0, (2.16)

where k is a prescribed heat transfer coefficient.

Exact solution. An analytical solution is always handy to have as a control
of the choice of scales. The solution of (2.16) is by standard methods for
ODEs found to be T (t) = Ts+ (T0−Ts)e−kt.

Scaling. Physically, we expect the temperature to start at T0 and then to
move toward the temperature of the surroundings (Ts). We therefore expect
that T lies between T0 and Ts. This is mathematically demonstrated by the
analytical solution as well. A proper scaling is therefore to scale and translate
T according to

T̄ = T −T0
Ts−T0

. (2.17)

2.1 Exponential decay problems 33

Now, 0≤ T̄ ≤ 1.
Scaling time by t̄ = t/tc and inserting T = T0 + (Ts−T0)T̄ and t = tct̄ in

the problem (2.16) gives

dT̄

dt̄
=−tck(T̄ −1), T̄ (0) = 0 .

A natural choice, as argued in other exponential decay problems, is to choose
tck = 1, which leaves us with the scaled problem

dT̄

dt̄
=−(T̄ −1), T̄ (0) = 0 . (2.18)

No physical parameter enters this problem! Our scaling implies that T̄ starts
at 0 and approaches 1 as t̄→∞, also in the case Ts < T0. The physical
temperature is always recovered as

T (t) = T0 + (Ts−T0)T̄ (kt̄) . (2.19)

Software. An implementation for (2.16) works for (2.18) by setting k = 1,
Ts = 1, and T0 = 0.

Alternative scaling. An alternative temperature scaling is to choose

T̄ = T −Ts
T0−Ts

. (2.20)

Now T̄ = 1 initially and approaches zero as t→∞. The resulting scaled ODE
problem then becomes

dT̄

dt̄
=−T̄ , T̄ (0) = 1, . (2.21)

with solution T̄ = e−t̄.

2.1.8 Scaling a cooling problem with time-dependent
surroundings

Let us apply the model (2.16) to the case when the surrounding temperature
varies in time. Say we have an oscillating temperature environment according
to

Ts(t) = Tm+asin(ωt), (2.22)

where Tm is the mean temperature in the surroundings, a is the amplitude
of the variations around Tm, and 2π/ω is the period of the temperature
oscillations.

34 2 Ordinary differential equation models

Exact solution. Also in this relatively simple problem it is possible to solve
the differential equation problem analytically. Such a solution may be a good
help to see what the scales are, and especially to control other forms for
reasoning about the scales. Using the method of integrating factors for the
original differential equation, we have

T (t) = T0e
−kt+e−ktk

∫ t

0
ekτTs(τ)dτ .

With Ts(t) = Tm+asin(ωt) we can use SymPy to help us with integrations
(note that we use w for ω in the computer code):

>>> from sympy import *
>>> t, k, T_m, a, w = symbols(’t k T_m a w’, real=True, positive=True)
>>> T_s = T_m + a*sin(w*t)
>>> I = exp(k*t)*T_s
>>> I = integrate(I, (t, 0, t))
>>> Q = k*exp(-k*t)*I
>>> Q = simplify(expand(Q))
>>> print Q
(-T_m*k**2 - T_m*w**2 + a*k*w +
(T_m*k**2 + T_m*w**2 + a*k**2*sin(t*w) -
a*k*w*cos(t*w))*exp(k*t))*exp(-k*t)/((k**2 + w**2))

Reordering the result, we get

T (t) =T0e
−kt+Tm(1−e−kt)+(k2 +ω2)−1(akωe−kt+ak sin(ωt)−akw cos(ωt)) .

Scaling. The scaling (2.17) brings in a time-dependent characteristic tem-
perature scale Ts− T0. Let us start with a fixed scale, where we take the
characteristic temperature variation to be Tm−T0:

T̄ = T −T0
Tm−T0

.

We realize by physical reasoning that T sets out at T0, but with time, it
will oscillate around Tm. (This reasoning can be controlled by looking at the
exact solution we produced above.) The typical average temperature span is
therefore |Tm−T0|, unless a is much larger than |Tm−T0| or T0 is very close
to Tm (see Exercise 2.3 for a discussion of these cases).

We get from the differential equation, with tc = 1/k as in the former case,

k(Tm−T0)dT̄
dt̄

=−k((Tm−T0)T̄ +T0−Tm−asin(ωt),

resulting in

dT̄

dt̄
=−T̄ + 1 +αsin(βt̄), T̄ (0) = 0, (2.23)

2.1 Exponential decay problems 35

where we have two dimensionless numbers:

α= a

Tm−T0
, β = ω

k
.

The α quantity measures the ratio of temperatures: amplitude of oscillations
versus distance from initial temperature to the average temperature for large
times. The β number is the ratio of the two time scales: the frequency of the
oscillations in Ts and the inverse e-folding time of the heat transfer. For clear
interpretation of β we may introduce the period P = 2π/ω of the oscillations
in Ts and the e-folding time e = 1/k. Then β = 2πe/P and measures the
e-folding time versus the period.

Remark
The original problem features five physical parameters: k, T0, Tm, a,
and ω, but only two dimensionless numbers appear in the scaled model
(2.23). In fact, this is an example where application of the Pi theorem
(see Section 1.1.3) falls short. Since, only time and temperature are
involved as unit types, the theorem predicts that the five parameters
yields three dimensionless numbers, not two. Scaling of the differential
equations, on the other hand, shows us that the two parameters Tm and
T0 affect the nature of the problem only through their difference.

Software. Implementations of the unscaled problem (2.16) can be reused for
the scaled model by setting k = 1, T0 = 0, and Ts(t) = 1+αsin(βt̄) (Tm = 1,
a=α, ω= β). The file osc_cooling.py contains solvers for the problem with
dimensions and for the scaled problem. The figure below shows three cases
of β values: small, medium, and large.

http://tinyurl.com/o8pb3yy/osc_cooling.py

36 2 Ordinary differential equation models

0 5 10 15 20 25 30
t

0.0

0.2

0.4

0.6

0.8

1.0

1.2

T

β=2.09

β=12.57

β=0.35

Ts , β=0.35

For the small β value, the oscillations in the surrounding temperature are
slow enough compared to k for the heating and cooling process to follow the
surrounding temperature, with a small time lag. For larger β, the heating
and cooling require more time, and the oscillations get smaller.

Discussion of the time scale. There are two time variations of importance
in the present problem: heat is transferred to the surroundings at a rate k,
and the surroundings have a temperature variation with a period that goes
like 1/ω. (We can, when we are so lucky that we have an analytical solution
at hand, inspect this solution to see that k impacts the problem through a
decay factor e−kt, and ω impacts the problem through oscillations sin(ωt).)
The k parameter related to temperature decay points to a time scale tc = 1/k,
while the temperature oscillations of the surroundings point to a time scale
tc = 1/ω. Which one should be chosen?

Bringing the temperature from T0 to the level of the surroundings, Tm,
goes like e−kt, so in this process tc = 1/k is the characteristic time. Thereafter,
the body’s temperature just responds to the oscillations and the sin(ωt) (and
cos(ωt)) term dominates. For these large times, tc = 1/ω is the appropriate
time scale. Choosing tc = 1/ω results in

dT̄

dt̄
=−β−1(T̄ − (1 +αsin(t̄))), T̄ (0) = 0 . (2.24)

Let us illustrate another, less effective, scaling. The temperature scale
in (2.17) looks natural, so we apply this choice of scale. The characteristic
temperature T0−Ts now involves a time-dependent term Ts(t). The mathe-
matical steps become a bit more technically involved:

2.1 Exponential decay problems 37

T (t) = T0 + (Ts(t)−T0)T̄ ,

dT

dt
= dTs

dt
T̄ + (Ts−T0)dT̄

dt̄

dt̄

dt
.

With t̄= t/tc = kt we get from the differential equation

dTs
dt

T̄ + (Ts−T0)dT̄
dt̄
k =−k(T̄ −1)(Ts−T0),

which after dividing by k(Ts−T0) results in

dT̄

dt̄
=−(T̄ −1)− dTs

dt

T̄

k(Ts−T0
,

or

dT̄

dt̄
=−(T̄ −1)− aω cos(ωt̄/k)

k(Tm+asin(ωt̄/k)−T0)
T̄ .

The last term is complicated and becomes more tractable if we factor out
dimensionless numbers. To this end, we scale Ts by (e.g.) Tm, which means
to factor out Tm in the denominator. We are then left with

dT̄

dt̄
=−(T̄ −1)−αβ cos(βt̄)

1 +αsin(βt̄)−γ
T̄ , (2.25)

where α, β, and γ are dimensionless numbers characterizing the relative im-
portance of parameters in the problem:

α= a/Tm, β = ω/k, γ = T0/Tm . (2.26)

We notice that (2.25) is not a special case of the original problem (2.16).
Furthermore, the original five parameters k, Tm, a, ω, and T0 are reduced
to three dimensionless parameters. We conclude that this scaling is inferior,
because using the temperature scale T0−Tm enables reuse of the software
for the unscaled problem and only two dimensionless parameters appear in
the scaled model.

Let us briefly mention another possible temperature scaling: T̄ = T/Tm,
motivated by the fact that as t→∞, T will oscillate around Tm, so this T̄
will oscillate around unity. We get the dimensionless ODE

dT̄

dt̄
=−(T̄ − (1 + δ sin(βt̄))),

with a new dimensionless parameter δ = a/Tm. However, the initial condi-
tion becomes T̄ (0) = T0/Tm, and the ratio T0/Tm is a third dimensionless
parameter, so this scaling is also inferior to the one above with only two
parameters.

38 2 Ordinary differential equation models

2.1.9 Scaling a nonlinear ODE

Exponential growth models, u′ = au, are not realistic in environments with
limited resources. However, by letting a depend on u, the effect of limited
resources can well be captured by such a simple differential equation model:

u′ = a(u)u, u(0) = I . (2.27)

If the maximum value of u is denoted by M , we have that a(M) = 0. A
simple choice fulfilling this requirement is a(u) = %(1−u/M). The parameter
% can be interpreted as the initial exponential growth rate if we assume that
I/M � 1, since at t= 0 the model then approximates u′ = %u.

The choice a(u) = %(1−u/M) is known as the logistic model for population
growth:

u′ = %u(1−u/M), u(0) = I . (2.28)

A more complicated choice of amay be a(u) = %(1−u/M)p for some exponent
p (this function also fulfills a(M) = 0 and a≈ % for t= 0).

Scaling. Let us scale (2.27) with a(u) = %(1− u/M)p. The natural scale
for u is M (uc = M), since we know that 0 < u ≤M , and this makes the
dimensionless ū= u/M ∈ (0,1]. The function a(u) is typically varying between
0 and %, so it can be scaled as

ā(ū) = a(u)
%

= (1− u

M
)p = (1− ū)p .

Time is scaled as t̄= t/tc for some suitable characteristic time tc. Inserted in
(2.27), we get

uc
tc

dū

dt̄
= %āucū, ucū(0) = I,

resulting in

dū

dt̄
= tc%(1− ū)pū, ū(0) = I

M
.

A natural choice is tc = 1/% as in other exponential growth models since
it leads to the term on the right-hand side to be about unity, just as the
left-hand side. (If the scaling is correct, ū and its derivatives are of order
unity, so the coefficients must also be of order unity.) Introducing also the
dimensionless parameter

α= I

M
,

measuring the fraction of the initial population compared to the maximum
one, we get the dimensionless model

2.1 Exponential decay problems 39

dū

dt̄
= (1− ū)pū, ū(0) = α. (2.29)

Here, we have two dimensionless parameters: α and p. A classical logistic
model with p= 1 has only one dimensionless variable.

Alternative scaling. We could try another scaling of u where we also trans-
late ū:

ū= u− I
M

.

This choice of ū results in

dū

dt̄
= (1−α− ū)pū, ū(0) = 0 . (2.30)

The essential difference between (2.29) and (2.30) is that ū ∈ [α,1] in the
former and ū ∈ [0,1−α] in the latter. Both models involve the dimensionless
numbers α and p. An advantage of (2.29) is that software for the unscaled
model can easily be used for the scaled model by choosing I = α, M = 1, and
%= 1.

2.1.10 SIR ODE system for spreading of diseases

The field of epidemiology frequently applies ODE systems to describe the
spreading of diseases, such as smallpox, measles, plague, ordinary flu, swine
flu, and HIV. Different models include different effects, which are reflected in
dimensionless numbers. Most of the effects are modeled as exponential decay
or growth of the dependent variables.

The simplest model has three categories of people: susceptibles (S) who can
get the disease, infectious (I) who are infected and may infect susceptibles,
and recovered (R) who have recovered from the disease and gained immunity.
We introduce S(t), I(t), and R(t) as the number of people in the categories
S, I, and R, respectively. The model, naturally known as the SIR model, can
be expressed as a system of three ODEs:

dS

dt
=−βSI, (2.31)

dI

dt
= βSI−νI, (2.32)

dR

dt
= νI, (2.33)

https://en.wikipedia.org/wiki/Epidemic_model

40 2 Ordinary differential equation models

where β and ν are empirical constants. The average time for recovering from
the disease can be shown to be ν−1, but β is much harder to estimate, so
working with a scaled model where β is “scaled away” is advantageous.

Scaling. It is natural to scale S, I, and R by, e.g., S(0):

S̄ = S

S(0) , Ī = I

S(0) , R̄= R

S(0) .

Introducing t̄= t/tc, we arrive at the equations

dS̄

dt̄
=−tcS(0)βS̄Ī,

dĪ

dt̄
= tcS(0)βS̄Ī− tcνĪ,

dR̄

dt̄
= tcνĪ,

with initial conditions S̄(0) = 1, Ī(0) = I0/S(0) = α, and R̄(0) = R(0)/S(0).
Normally, R(0) = 0.

Taking tc = 1/ν, corresponding to a time unit equal to the time it takes
to recover from the disease, we end up with the scaled model

dS̄

dt̄
=−R0S̄Ī, (2.34)

dĪ

dt̄
=R0S̄Ī− Ī , (2.35)

dR̄

dt̄
= Ī , (2.36)

with S̄(0) = 1, Ī(0) = α, R̄(0) = 0, and R0 as the dimensionless number

R0 = S(0)β
ν

. (2.37)

We see from (2.35) that to make the disease spreading, dĪ/dt̄ > 0, and there-
fore R0S̄(0)− 1 > 0 or R0 > 1 since S̄(0) = 1. Therefore, R0 reflects the
disease’s ability to spread and is consequently an important dimensionless
quantity, known as the basic reproduction number. This number reflects the
number of infected people caused by one infectious individual during the time
period of the disease.

Looking at (2.32), we see that to increase I initially, we must have dI/dt> 0
at t= 0, which implies βI(0)S(0)−νI(0)> 0, i.e., R0 > 1.

Software. Any implementation of the SIR model with dimensions can be
reused for the scaled model by setting β = R0, ν = 1, S(0) = 1−α, and

https://en.wikipedia.org/wiki/Basic_reproduction_number

2.1 Exponential decay problems 41

I(0) = α. Below is a plot with two cases: R0 = 2 and R0 = 5, both with
α= 0.02.

0 2 4 6 8 10 12 14 16
0.0

0.2

0.4

0.6

0.8

1.0 R0=2, alpha=0.02

S
I
R

0 1 2 3 4 5 6 7 8
0.0

0.2

0.4

0.6

0.8

1.0 R0=5, alpha=0.02

S
I
R

Alternative scaling. Adding (2.31)-(2.33) shows that

dS

dt
+ dI

dt
+ dR

dt
= 0 ⇒ S+ I+R= const =N,

where N is the size of the population. We can therefore scale S, I, and R by
the total population N = S(0) + I(0) +R(0):

S̄ = S

N
, Ī = I

N
, R̄= R

N
.

With the same time scale, one gets the system (2.34)-(2.36), but with R0
replaced by the dimensionless number:

R̃0 = Nβ

ν
. (2.38)

The initial conditions become S̄(0) = 1−α, Ī(0) = α, and R̄(0) = 0.
For the disease to spread at t= 0, we must have R̃0S̄(0)> 1, but R̃0S̄(0) =

Nβ/ν ·S(0)/N =R0, so the criterion is still R0 > 1. Since R0 is a more famous
number than R̃0, we can write the ODEs with R0/S(0) =R0/(1−α) instead
of R̃0.

Choosing tc to make the SI terms balance the time derivatives, tc =
(Nβ)−1, moves R̃0 (or R0 if we scale S, I, and R by S(0)) to the I terms:

dS̄

dt̄
=−S̄Ī,

dĪ

dt̄
= S̄Ī− R̃−1

0 Ī ,

dR̄

dt̄
= R̃−1

0 I .

42 2 Ordinary differential equation models

2.1.11 SIRV model with finite immunity

A common extension of the SIR model involves finite immunity: after some
period of time, recovered individuals lose their immunity and become suscep-
tibles again. This is modeled as a leakage −µR from the R to the S category,
where µ−1 is the average time it takes to lose immunity. Vaccination is an-
other extension: a fraction pS is removed from the S category by successful
vaccination and brought to a new category V (the vaccinated). The ODE
model reads

dS

dt
=−βSI−pS+µR, (2.39)

dI

dt
= βSI−νI, (2.40)

dR

dt
= νI−µR, (2.41)

dV

dt
= pS . (2.42)

Using tc = 1/ν and scaling the unknowns by S(0), we arrive at the dimen-
sionless model

dS̄

dt̄
=−R0S̄Ī− δS̄+γR̄, (2.43)

dĪ

dt̄
=R0S̄Ī− Ī , (2.44)

dR̄

dt̄
= Ī−γR̄, (2.45)

dV̄

dt̄
= δS̄, (2.46)

with two new dimensionless parameters:

γ = µ

ν
, δ = p

ν
.

The quantity p−1 can be interpreted as the average time it takes to vaccinate
a susceptible successfully. Writing γ = ν−1/µ−1 and δ = ν−1/p−1 gives the
interpretation that γ is the ratio of the average time to recover and the
average time to lose immunity, while δ is the ratio of the average time to
recover and the average time to successfully vaccinate a susceptible.

The plot in Figure 2.4 has γ = 0.05, i.e., loss of immunity takes 20 weeks
if it takes one week to recover from the disease. The left plot corresponds to
no vaccination, while the right has δ = 0.5 for a vaccination campaign that

2.1 Exponential decay problems 43

lasts from day 7 to day 15. The value δ = 0.5 reflects that it takes two weeks
to successfully vaccinate a susceptible, but the effect of vaccination is still
dramatic.

0 5 10 15 20 25 30 35 40
0.0

0.2

0.4

0.6

0.8

1.0
R0 =5, α=0.02, γ=0.05, δ=0

S
I
R
V

0 10 20 30 40 50 60
0.0

0.2

0.4

0.6

0.8

1.0
R0 =5, α=0.02, γ=0.05, δ=0.5

S
I
R
V

Fig. 2.4 Spreading of a disease with loss of immunity (left) and added vaccination
(right).

2.1.12 Michaelis-Menten kinetics for biochemical
reactions

A classical reaction model in biochemistry describes how a substrate S is
turned into a product P with aid of an enzyme E. S and E react to form
a complex ES in the first stage of the reaction. In the second stage, ES is
turned into E and P. Introducing the amount of S, E, ES, and P by [S], [E],
[ES], and [P], the mathematical model can be written as

d[ES]
dt

= k+[E][S]−kv[ES]−k−[ES], (2.47)

d[P]
dt

= kv[ES], (2.48)

d[S]
dt

=−k+[E][S] +k−[ES], (2.49)

d[E]
dt

=−k+[E][S] +k−[ES] +kv[ES] . (2.50)

The initial conditions are [ES](0) = [P](0) = 0, and [S] = S0, [E] =E0. Three
rate constants are involved: k+, k−, and kv. The above mathematical model
is known as Michaelis-Menten kinetics.

The amount of substance is measured in the unit mole (mol). From the
equations we can see that k+ is measured in s−1mol−1, while k− and kv are

https://en.wikipedia.org/wiki/Michaelis-Menten_kinetics
https://en.wikipedia.org/wiki/Mole_(unit)

44 2 Ordinary differential equation models

measured in s−1. It is convenient to get rid of the mole unit for the amount
of a substance. When working with dimensionless quantities, only ratios of
the rate constants and not their specific values are needed.

Classical analysis. A common assumption is that the formation of [ES] is
very fast and that it quickly reaches an equilibrium state, [ES]′ = 0. Equation
(2.47) then reduces to the algebraic equation

k+[E][S]−kv[ES]−k−[ES] = 0,

which leads to

[E][S]
[ES] = k−+kv

k+
=K, (2.51)

where K is the famous Michaelis constant - the equilibrium constant between
[E][S] and [ES].

Another important observation is that the ODE system implies two con-
servation equations, arising from simply adding the ODEs:

d[ES]
dt

+ d[E]
dt

= 0, (2.52)

d[ES]
dt

+ d[S]
dt

+ d[P]
dt

= 0, (2.53)

from which it follows that

[ES] + [E] = E0, (2.54)
[ES] + [S] + [P] = S0 . (2.55)

We can use (2.54) and (2.51) to express [E] by [S]:

[E] = E0− [ES] = E0−
[E][S]
K

⇒ [E] = KE0
K+ [S] .

Now (2.49) can be developed to an equation involving [S] only:

d[S]
dt

=−k+[E][S] +k−[ES]

= (−k+ + k−
K

)[E][S]

= (−k+ + k−
K

)[S] KE0
K+ [S]

=− k−E0
[S] +K

. (2.56)

2.1 Exponential decay problems 45

We see that the parameter K is central.
From above expression for [E] and (2.54) it now follows

[E] = KE0
K+ [S] , [ES] = E0[S]

K+ [S] .

If K is comparable to S0 these indicate

[E]∼ E0, [ES]∼ E0S0
K

,

as is used for scaling [E] and Qc, subsequently. Provided we exclude the case
[S]�K, we may infer that [E] will be of magnitude E0, while [ES] will be
of magnitude E0S0/K.

Dimensionless ODE system. Let us reason how to make the original ODE
system (2.47)-(2.50) dimensionless. Aiming at [S] and [E] of unit size, two
obvious dimensionless unknowns are

S̄ = [S]
S0
, Ē = [E]

E0
.

For the other two unknowns we just introduce scales to be determined later:

P̄ = [P]
Pc

, Q̄= [ES]
Qc

.

With t̄= t/tc the equations become

dQ̄

dt̄
= tck+

E0S0
Qc

ĒS̄− tc(kv +k−)Q̄,

dP̄

dt̄
= tckv

Qc
Pc
Q̄,

dS̄

dt̄
=−tck+E0ĒS̄+ tck−

Qc
S0
Q̄,

dĒ

dt̄
=−tck+S0ĒS̄+ tc(k−+kv)Qc

E0
Q̄ .

Determining scales. Choosing the scales is actually a quite complicated
matter that requires extensive analysis of the equations to determine the
characteristics of the solutions. Much literature is written about this, but
here we shall take a simplistic and pragmatic approach. Besides the Michaelis
constant K, there is another important parameter,

ε= E0
S0
,

46 2 Ordinary differential equation models

because most applications will involve a small ε. We shall have K and ε in
mind while choosing scales such that these symbols appear naturally in the
scaled equations.

Looking at the equations, we see that the K parameter will appear if
tc ∼ 1/k+. However, 1/k+ does not have the dimension [T]−1 as required, so
we need to add a factor with dimension mol. A natural choice is t−1

c = k+S0
or t−1

c = k+E0. Since often S0� E0, the former tc is a short time scale and
the latter is a long time scale. If the interest is in the long time scale, we set

tc = 1
k+E0

.

The equations then take the form

dQ̄

dt̄
= S0
Qc

ĒS̄−KE−1
0 Q̄,

dP̄

dt̄
= kv
k+E0

Qc
Pc
Q̄,

dS̄

dt̄
=−ĒS̄+ k−

k+E0

Qc
S0
Q̄,

dĒ

dt̄
=−ε−1ĒS̄+K

Qc
E2

0
Q̄ .

The [ES] variable starts and ends at zero, and its maximum value can be
roughly estimated from the equation for [ES]′ by setting [ES]′ = 0, which
gives

[ES] = [E][S]
K

∼ E0S0
K

,

where we have replaced [E][S] by E0S0 as an identification of magnitude.
This magnitude of [ES] at its maximum can be used as the characteristic
size Qc:

Qc = E0S0
K

.

The equation for P̄ simplifies if we choose Pc =Qc. With these assumptions
one gets

2.1 Exponential decay problems 47

dQ̄

dt̄
=KE−1

0 (ĒS̄− Q̄),

dP̄

dt̄
= kv
k+E0

Q̄,

dS̄

dt̄
=−ĒS̄+ k−

k+E0

E0
K
Q̄,

dĒ

dt̄
=−ε−1ĒS̄+ ε−1Q̄ .

We can now identify the dimensionless numbers

α= K

E0
, β = kv

k+E0
, γ = k−

k+E0
,

where we see that α= β+γ, so γ can be eliminated. Moreover,

α= k−
k+E0

+β,

implying that α > β.
We arrive at the final set of scaled differential equations:

dQ̄

dt̄
= α(ĒS̄− Q̄), (2.57)

dP̄

dt̄
= βQ̄, (2.58)

dS̄

dt̄
=−ĒS̄+ (1−βα−1)Q̄, (2.59)

ε
dĒ

dt̄
=−ĒS̄+ Q̄ . (2.60)

The initial conditions are S̄ = Ē = 1 and Q̄= P̄ = 0.
The five initial parameters (S0, E0, k+, k−, and kv) are reduced to three

dimensionless constants:

• α is the dimensionless Michaelis constant, reflecting the ratio of the pro-
duction of P and E (kv +k−) versus the production of the complex (k+),
made dimensionless by E0,

• ε is the initial fraction of enzyme relative to the substrate,
• β measures the relative importance of production of P (kv) versus produc-

tion of the complex (k+), made dimensionless by E0.

Observe that software developed for solving (2.47)-(2.50) cannot be reused for
solving (2.57)-(2.60) since the latter system has a slightly different structure.

48 2 Ordinary differential equation models

Conservation equations. The counterpart to the conservation equations
(2.54)-(2.55) is obtained by adding (2.57) and α times (2.60), and adding
(2.57), (2.58), and α times (2.59):

ε−1α−1Q̄+ Ē = 1, (2.61)
αS̄+ Q̄+ P̄ = α. (2.62)

The scaled quantities, as well as the original concentrations, must be pos-
itive variables, and Ē ∈ [0,1], S̄ ∈ [0,1]. Such checks along with the conserved
quantities above should be performed at every time step in a simulation.
Analysis of the scaled system. In the scaled system, we may assume ε
small, which from (2.60) gives rise to the simplification εĒ′ = 0, and thereby
the relation Q̄= ĒS̄. The conservation equation [ES]+[E] =E0 reads QcQ̄+
E0Ē = E0 such that Ē = 1−QcQ̄/E0 = 1− Q̄S0/K = 1− ε−1α−1Q̄. The
relation Q̄= ĒS̄ then becomes

Q̄= (1− ε−1α−1Q̄)S̄,

which can be solved for Q̄:

Q̄= S̄

1 + ε−1α−1S̄
.

The equation (2.59) for S̄ becomes

dS̄

dt̄
=−βα−1Q̄=− βS̄

α+ ε−1S̄
. (2.63)

This is a more precise analysis than the one leading to (2.56) since we now
realize that the mathematical assumption for the simplification is ε→ 0.

Is (2.63) consistent with (2.56)? It is easy to make algebraic mistakes when
deriving scaled equations, so it is always wise to carry out consistency checks.
Introducing dimensions in (2.63) leads to

tc
S0

dS

dt
= dS̄

dt̄
=− βS̄

α+ ε−1S̄
=− kv

k+E0

S

KE−1
0 +E−1

0 S0S̄
=− kv

k+

S̄

K+S
,

and hence with t−1
c = k+E0,

dS

dt
=−kvE0S

K+S
,

which is (2.56).
Figure 2.5 shows the impact of ε: with a moderately small value (0.1) we

see that Q̄ ≈ 0, which justifies the simplifications performed above. We also
observe that all the unknowns vary between 0 and about 1, indicating that the

2.2 Vibration problems 49

scaling is successful for the chosen dimensionless numbers. The simulations
made use of a time step ∆t̄ = 0.01 with a 4th-order Runge-Kutta method,
using α= 1.5, β = 1 (relevant code is in the simulate_biochemical_process
function in session.py).

0 1 2 3 4 5 6 7 8
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6 alpha=1.5, beta=1, epsilon=0.9

complex
product
substrate
enzyme

0 1 2 3 4 5 6 7 8
0.0

0.2

0.4

0.6

0.8

1.0 alpha=1.5, beta=1, epsilon=0.1

complex
product
substrate
enzyme

Fig. 2.5 Simulation of a biochemical process.

However, it is of interest to investigate the limit ε→ 0. Initially, the equa-
tion for dĒ/dt̄ reads dĒ/dt̄ = −ε−1, which implies a very fast reduction of
Ē. Using ε= 0.005 and ∆t̄= 10−3, simulation results show that Ē decays to
approximately zero at t= 0.03 while S̄ ≈ 1 and Q̄≈ P̄ ≈ 0. This is reasonable
since with very little enzyme in comparison with the substrate (ε→ 0) very
little will happen.

2.2 Vibration problems

We shall in this section address a range of different second-order ODEs for
mechanical vibrations and demonstrate how to reason about the scaling in
different physical scenarios.

2.2.1 Undamped vibrations without forcing

The simplest differential equation model for mechanical vibrations reads

mu′′+ku= 0, u(0) = I, u′(0) = V, (2.64)

where unknown u(t) measures the displacement of the body, This is a common
model for a vibrating body with mass m attached to a linear spring with
spring constant k (and force −ku). Figure 2.6 shows a typical mechanical

http://tinyurl.com/o8pb3yy/session.py

50 2 Ordinary differential equation models

sketch of such a system: some mass can move horizontally without friction
and is connected to a spring that exerts a force −ku on the body.

ku

u(t)

m

Fig. 2.6 Oscillating body attached to a spring.

The first technical steps of scaling. The problem (2.64) has one inde-
pendent variable t and one dependent variable u. We introduce dimensionless
versions of these variables:

ū= u

uc
, t̄= t

tc
,

where uc and tc are characteristic values of u and t. Inserted in (2.64), we
get

m
uc
t2c

d2ū

dt̄2
+kucū= 0, ucū(0) = I,

uc
tc

dū

dt̄
(0) = V,

resulting in

d2ū

dt̄2
+ t2ck

m
ū= 0, ū(0) = I

uc
, ū′(0) = V tc

uc
. (2.65)

What is an appropriate displacement scale uc? The initial condition u(0) =
I is a candidate, i.e., uc = I. But how to choose the time scale? Making the
coefficient in front of the ū unity, such that both terms balance and are of
size unity, is a candidate.

The exact solution. To better see what the proper scales of u and t are,
we can look into the analytical solution of this problem. Although the exact
solution of (2.64) is quite straightforward to calculate by hand, we take the
opportunity to make use of SymPy to find u(t). The use of SymPy can later
be generalized to vibration ODEs that are harder to solve by hand.

SymPy requires all mathematical symbols to be explicitly created:

from sympy import *
u = symbols(’u’, cls=Function)
w = symbols(’w’, real=True, positive=True)

2.2 Vibration problems 51

I, V, C1, C2 = symbols(’I V C1 C2’, real=True)

To specify the ODE to be solved, we can make a Python function returning
all the terms in the ODE:

Define differential equation: u’’ + w**2*u = 0
def ode(u):

return diff(u, t, t) + w**2*u

diffeq = ode(u(t))

The diffeq variable, defining the ODE, can be passed to the SymPy function
dsolve to find the symbolic solution of the ODE:

s = dsolve(diffeq, u(t))
s is an u(t) == expression (Eq obj.), s.rhs grabs the expression
u_sol = s.rhs
print u_sol

The solution that gets printed is C1*sin(t*w) + C2*cos(t*w), indicating
that there are two integration constants C1 and C2 to be determined by the
initial conditions. The result of applying these conditions is a 2× 2 linear
system of algebraic equations that SymPy can solve by the solve function.
The code goes as follows:

The solution u_sol contains integration constants C1 and C2
but these are not symbols, substitute them by symbols
u_sol = u_sol.subs(’C1’, C1).subs(’C2’, C2)

Determine C1 and C2 from the initial conditions
ic = [u_sol.subs(t, 0) - I, u_sol.diff(t).subs(t, 0) - V]
print ic # 2x2 algebraic system for C1 and C2
s = solve(ic, [C1, C2])
s is now a dictionary: {C2: I, C1: V/w}
substitute solution back in u_sol
u_sol = u_sol.subs(C1, s[C1]).subs(C2, s[C2])
print u_sol

The u_sol variable is now I*cos(t*w) + V*sin(t*w)/w. Since symbolic
software is far from bug-free and can give wrong results, we should always
check the answer. Here, we insert the solution in the ODE to see if the result
is zero, and we insert the solution in the initial conditions to see that these
are fulfilled:

Check that the solution fulfills the ODE and init.cond.
print simplify(ode(u_sol)),
print u_sol.subs(t, 0) - I, diff(u_sol, t).subs(t, 0) - V

There will be many more examples on using SymPy to find exact solutions
of differential equation problems.

The solution of the ODE in mathematical notation is

u(t) = I cos(ωt) + V

ω
sin(ωt), ω =

√
k

m
.

52 2 Ordinary differential equation models

More insight arises from rewriting such an expression in the form Acos(wt−
φ):

u(t) =
√
I2 + V 2

ω2 cos(wt−φ), φ= tan−1(V/(ωI)) .

Now we see that the u corresponds to cosine oscillations with a frequency
shift φ and amplitude

√
I2 + (V/ω)2.

The forthcoming text relies on a good understanding of concepts like pe-
riod, frequency, and amplitude of oscillating signals, so readers who need to
refresh these concepts are recommended to do Exercise 2.12 before continu-
ing.

Discussion of the displacement scale. The amplitude of u is
√
I2 +V 2/ω2,

and this expression is obviously a candidate for uc. However, the simpler
choice uc = max(I,V/ω) is also relevant and more attractive than the square
root expression (but potentially a factor 1.4 wrong compared to the exact
amplitude). It is not very important to have |u| ≤ 1, the point is to avoid |u|
very small or large.

Discussion of the time scale. What is an appropriate time scale? Looking
at (2.65) and arguing that ū′′ and ū both should be around unity in size, the
coefficient t2ck/m must equal unity, implying that tc =

√
m/k. Also from the

analytical solution we see that the solution goes like the sine or cosine of ωt,
so 1/ω=

√
m/k can be a characteristic time scale. Likewise, one period of the

oscillations, P = 2π/ω, can be the characteristic time, leading to tc = 2π/ω.

The dimensionless solution. With uc = I and tc =
√
m/k we get the

scaled model

d2ū

dt̄2
+ ū= 0, ū(0) = 1, ū′(0) = α, (2.66)

where α is a dimensionless parameter:

α= V

I

√
m

k
.

Note that in case V = 0, we have “scaled away” all physical parameters. The
universal solution without physical parameters is then ū(t̄) = cos t̄.

The unscaled solution is recovered as

u(t) = Iū(
√
k/mt̄) . (2.67)

This expressions shows that the scaling is simply a matter of stretching or
shrinking the axes.

Alternative displacement scale. Using uc = V/ω, the equation is not
changed, but the initial conditions become

2.2 Vibration problems 53

ū(0) = I

uc
= Iω

V
= I

V

√
k

m
= α−1, ū′(0) = 1 .

With uc = V/ω and one period as time scale, tc = 2π
√
m/k, we get the

alternative model

d2ū

dt̄2
+ 4π2ū= 0, ū(0) = α−1, ū′(0) = 2π . (2.68)

The unscaled solution is in this case recovered by

u(t) = V

√
m

k
ū(2π

√
k/mt̄) . (2.69)

About frequency and dimensions. The solution goes like cosωt, where
ω =

√
m/k must have dimension 1/s. Actually, ω has dimension radians per

second: rad/s. A radian is dimensionless since it is arc (length) divided by
radius (length), but still regarded as a unit. The period P of vibrations is a
more intuitive quantity than the frequency ω. The relation between P and
ω is P = 2π/ω. The number of oscillation cycles per period, f , is a more
intuitive measurement of frequency and also known as frequency. Therefore,
to be precise, ω should be named angular frequency. The relation between f
and T is f = 1/T , so f = 2πω and measured in Hz (1/s), which is the unit
for counts per unit time.

2.2.2 Undamped vibrations with constant forcing

For vertical vibrations in the gravity field, the model (2.64) must also take
the gravity force −mg into account:

mu′′+ku=−mg .

How does the new term −mg influence the scaling? We observe that if there
is no movement of the body, u′′ = 0, and the spring elongation matches the
gravity force: ku = −mg, leading to a steady displacement u = −mg/k. We
can then have oscillations around this equilibrium point. A natural scaling
for u is therefore

ū= u− (−mg/k)
uc

= uk+mg

kuc
.

The scaled differential equation with the same time scale as before reads

d2ū

dt̄2
+ ū− t2c

uc
g =− t

2
c

uc
g,

leading to

54 2 Ordinary differential equation models

d2ū

dt̄2
+ ū= 0 .

The initial conditions u(0) = I and u′(0) = V become, with uc = I,

ū(0) = 1 + mg

kI
,

dū

dt̄
(0) =

√
m

k

V

I
.

We see that the oscillations around the equilibrium point in the gravity field
are identical to the horizontal oscillations without gravity, except for an offset
mg/(kI) in the displacement.

2.2.3 Undamped vibrations with time-dependent forcing

Now we add a transient forcing term F (t) to the model (2.64):

mu′′+ku= F (t), u(0) = I, u′(0) = V . (2.70)

Take the forcing to be oscillating:

F (t) =Acos(ψt) .

The technical steps of the scaling are still the same, with the intermediate
result

d2ū

dt̄2
+ t2ck

m
ū= t2c

muc
Acos(ψtct̄), ū(0) = I

uc
, ū′(0) = V tc

uc
. (2.71)

What are typical displacement and time scales? This is not so obvious without
knowing the details of the solution, because there are three parameters (I, V ,
and A) that influence the magnitude of u. Moreover, there are two time scales,
one for the free vibrations of the systems and one for the forced vibrations
F (t).

Investigating scales via analytical solutions. As we have seen already
several times, having access to an exact solution is very fortunate as it allows
us to directly examine the scales. Also in the present problem it is possible to
derive an exact solution. We continue the SymPy session from the previous
section and perform much of the same steps. Note that we use w for ω=

√
k/m

in the computer code (to obtain a more direct visual counterpart to ω).
SymPy may get confused when coefficients in differential equations contain
several symbols. We therefore rewrite the equation with at most one symbol
in each coefficient (i.e., symbolic software is in general more successful when
applied to scaled differential equations than the unscaled counterparts, but

2.2 Vibration problems 55

right now our task is to solve the unscaled version). The amplitude A/m in
the forcing term is of this reason replaced by the symbol A1.

A, A1, m, psi = symbols(’A A1 m psi’, positive=True, real=True)
def ode(u):

return diff(u, t, t) + w**2*u - A1*cos(psi*t)

diffeq = ode(u(t))
u_sol = dsolve(diffeq, u(t))
u_sol = u_sol.rhs

Determine the constants C1 and C2 in u_sol
(first substitute our own declared C1 and C2 symbols,
then use the initial conditions)
u_sol = u_sol.subs(’C1’, C1).subs(’C2’, C2)
eqs = [u_sol.subs(t, 0) - I, u_sol.diff(t).subs(t, 0) - V]
s = solve(eqs, [C1, C2])
u_sol = u_sol.subs(C1, s[C1]).subs(C2, s[C2])

Check that the solution fulfills the equation and init.cond.
print simplify(ode(u_sol))
print simplify(u_sol.subs(t, 0) - I)
print simplify(diff(u_sol, t).subs(t, 0) - V)

u_sol = simplify(expand(u_sol.subs(A1, A/m)))
print u_sol

The output from the last line is

A/m*cos(psi*t)/(-psi**2 + w**2) + V*sin(t*w)/w +
(A/m + I*psi**2 - I*w**2)*cos(t*w)/(psi**2 - w**2)

With a bit of rewrite this expression becomes

u(t) = A/m

ω2−ψ2 cos(ψt) + V

ω
sin(ωt) +

(
A/m

ψ2−ω2 + I

)
cos(ωt) .

Obviously, this expression is only meaningful for ψ 6= ω. The case ψ = ω gives
an infinite amplitude in this model, a phenomenon known as resonance. The
amplitude becomes finite when damping is included, see Section 2.2.4.

When the system starts from rest, I = V = 0, and the forcing is the only
driving mechanism, we can simplify:

u(t) = A

m(ω2−ψ2) cos(ψt) + A

m(ψ2−ω2) cos(ωt)

= A

m(ω2−ψ2) (cos(ψt)− cos(ωt)) .

To gain more insight, cos(ψt)−cos(ωt) can be rewritten in terms of the mean
frequency (ψ+ω)/2 and the difference in frequency (ψ−ω)/2:

56 2 Ordinary differential equation models

u(t) = A

m(ω2−ψ2)2sin
(
ψ−ω

2 t

)
sin
(
ψ+ω

2 t

)
, (2.72)

showing that there is a signal with frequency (ψ+ω)/2 whose amplitude has
a (much) slower frequency (ψ−ω)/2. Figure 2.7 shows an example on such
a signal.

0 5 10 15 20 25 30 35
t

0.4

0.3

0.2

0.1

0.0

0.1

0.2

0.3

0.4

u

Fig. 2.7 Signal with frequency 3.1 and envelope frequency 0.2.

The displacement and time scales. A characteristic displacement can
in the latter special case be taken as uc = A/(m(ω2−ψ2)). This is also a
relevant choice in the more general case I 6= 0,V 6= 0, unless I or V is so
large that it dominates over the amplitude caused by the forcing. With uc =
A/(m(ω2−ψ2)) we also have three special cases: ω� ψ, ω� ψ, and ψ ∼ ω.
In the latter case we need uc = A/(m(ω2−ψ2)) if we want |u| ≤ 1. When ω
and ψ are significantly different, we may choose one of them and neglect the
smaller. Choosing ω means uc =A/k, which is the relevant scale if ω� ψ. In
the opposite case, ω� ψ, uc =A/(mψ2).

The time scale is dominated by the fastest oscillations, which are of fre-
quency ψ or ω when these are close and the largest of them when they are
distant. In any case, we set tc = 1/max(ψ,ω).

Finding the displacement scale from the differential equation. Going
back to (2.71), we may demand that all the three terms in the differential
equation are of size unity. This leads to tc =

√
m/k and uc =At2c/m=A/k.

The formula for uc is a kind of measure of the ratio of the forcing and the
spring force (the dimensionless number A/(kuc) would be this ratio).

2.2 Vibration problems 57

Looking at (2.72), we see that if ψ� ω, the amplitude can be approxi-
mated by A/(mω2) =A/k, showing that the scale uc =A/k is relevant for an
excitation frequency ψ that is small compared to the free vibration frequency
ω.

Scaling with free vibrations as time scale. The next step is to work out
the dimensionless ODE for the chosen scales. We first select the time scale
based on the free oscillations with frequency ω, i.e., tc = 1/ω. Inserting the
expression in (2.71) results in

d2ū

dt̄2
+ ū= γ cos(δt̄), ū(0) = α, ū′(0) = β . (2.73)

Here we have four dimensionless variables

α= I

uc
, (2.74)

β = V tc
uc

= V

ωuc
, (2.75)

γ = t2cA

muc
= A

kuc
, (2.76)

δ = tc
ψ−1 = ψ

ω
. (2.77)

We remark that the choice of uc has so far not been made. Several different
cases will be considered below, and we will see that certain choices reduce
the number of independent dimensionless variables to three.

The four dimensionless variables above have interpretations as ratios of
physical effects:

• α: ratio of the initial displacement and the characteristic response uc,
• β: ratio of the initial velocity and the typical velocity measure uc/tc,
• γ: ratio of the forcing A and the mass times acceleration muc/t

2
c or the

ratio of the forcing and the spring force kuc
• δ: ratio of the frequencies or the time scales of the forcing and the free

vibrations.

Software. Any solver for (2.71) can be used for (2.73). More details are
provided at the end of Section 2.2.4.

Choice of uc close to resonance. Now we shall discuss various choices of
uc. Close to resonance, when ψ ∼ ω, we may set uc = A/(m(ω2−ψ2)). The
dimensionless numbers become in this case

58 2 Ordinary differential equation models

α= I

uc
= I

A/k
(1− δ2),

β = V

ωuc
= V
√
km

A
(1− δ2),

γ = A

kuc
= 1− δ2,

δ = ψ

ω
.

With ψ = 0.99ω, δ = 0.99, V = 0, α= γ = 1−δ2 = 0.02, we have the problem

d2ū

dt̄2
+ ū= 0.02cos(0.99t̄), ū(0) = 0.02, ū′(0) = 0 .

This is a problem with a very small initial condition and a very small forcing,
but the state close to resonance brings the amplitude up to about unity, see
the result of numerical simulations with δ = 0.99 in Figure 2.8. Neglecting α,
the solution is given by (2.72), which here means A = 1− δ2, m = 1, ω = 1,
ψ = δ:

ū(t̄) = 2sin(−0.005t̄)sin(0.995t̄) .

Note that this is a problem which demands very high accuracy in the numer-
ical calculations. Using 20 time steps per period gives a significant angular
frequency error and an amplitude of about 1.4. We used 160 steps per period
for the results in Figure 2.8.

Unit size of all terms in the ODE. Using the displacement scale uc =A/k
leads to (2.73) with

α= I

uc
= I

A/k
,

β = V

ωuc
= V k

Aω
,

γ = A

kuc
= 1,

δ = ψ

ω
.

Simulating a case with δ = 0.5, α = 1, and β = 0 gives the oscillations in
Figure 2.9, which is a case away from resonance, and the amplitude is about
unity. However, choosing δ = 0.99 (close to resonance) results in a figure
similar to Figure 2.8, except that the amplitude is about 102 because of the
moderate size of uc. The present scaling is therefore most suitable away from
resonance, and when the terms containing cosωt and sinωt are important
(e.g., ω� ψ).

2.2 Vibration problems 59

0 200 400 600 800 1000
t

2

1

0

1

2

u

dt=0.0392699

Fig. 2.8 Forced undamped vibrations close to resonance.

Choice of uc when ψ� ω. Finally, we may look at the case where ψ� ω
such that uc =A/(mψ2) is a relevant scale (i.e., omitting ω2 compared to ψ2

in the denominator), but in this case we should use tc = 1/ψ since the force
varies much faster than the free vibrations of the system. This choice of tc
changes the scaled ODE to

d2ū

dt̄2
+ δ−2ū= γ cos(t̄), ū(0) = α, ū′(0) = β, (2.78)

where

α= I

uc
= I

A/k
δ2,

β = V tc
uc

= V
√
km

A
δ,

γ = t2cA

muc
= 1,

δ = tc
ψ−1 = ψ

ω
.

60 2 Ordinary differential equation models

0 50 100 150
t

2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

u

dt=0.0392699

Fig. 2.9 Forced undamped vibrations away from resonance.

In the regime ψ� ω, δ� 1, thus making α and β large. However, if α and/or
β is large, the initial condition dominates over the forcing, and will also
dominate the amplitude of u, thereby making the scaling of u inappropriate.
In case I = V = 0 so that α = β = 0, (2.72) predicts (A = m = 1, ω = δ−1,
ψ = 1)

ū(t̄) = (δ−2−1)−12sin
(

1
2(1− δ−1)t̄

)
sin
(

1
2(1 + δ−1)t̄

)
,

which has an amplitude about 2 for δ� 1. Figure 2.10 shows a case.
With α= 0.05δ2 = 5, we get a significant contribution from the free vibra-

tions (the homogeneous solution of the ODE) as shown in Figure 2.11. For
larger α values, one must base uc on I instead. (The graphs in Figure 2.10
and 2.11 were produced by numerical simulations with 160 time steps per
period of the forcing.)

Displacement scale based on I. Choosing uc = I gives

d2ū

dt̄2
+ ū= γ cos(δt̄), ū(0) = 1, ū′(0) = β, (2.79)

with

2.2 Vibration problems 61

0 20 40 60 80 100 120
t

2

1

0

1

2

u

dt=0.0392699

Fig. 2.10 Forced undamped vibrations with rapid forcing.

β = V tc
uc

= V

I

√
m

k
, (2.80)

γ = tc2A

muc
= A

kuc
= A

kI
. (2.81)

This scaling is not relevant close to resonance since then uc� I.

2.2.4 Damped vibrations with forcing

We now introduce a linear damping force bu′(t) in the equation of motion:

mu′′+ bu′+ku=Acos(ψt), u(0) = I, u′(0) = V . (2.82)

Figure 2.12 shows a typical one-degree-of-freedom mechanical system with a
linear dashpot, representing the damper (bu′), a linear spring (ku), and an
external force (F).

The standard scaling procedure results in

62 2 Ordinary differential equation models

0 20 40 60 80 100 120
t

5

0

5
u

dt=0.0392699

Fig. 2.11 Forced undamped vibrations with rapid forcing and initial displacement of
5.

m

u(t)

bu′

ku

Fig. 2.12 Oscillating body with external force, attached to a spring and damper.

d2ū

dt̄2
+ tcb

m

dū

dt̄
+ t2ck

m
ū= t2c

muc
Acos(ψtct̄), ū(0) = I

uc
, ū′(0) = V tc

uc
. (2.83)

The exact solution. As always, it is a great advantage to look into exact
solutions for controlling our choice of scales. Using SymPy to solve (2.82) is,
in principle, very straightforward:

>>> diffeq = diff(u(t), t, t) + b/m*diff(u(t), t) + w**2*u(t)
>>> s = dsolve(diffeq, u(t))
>>> s.rhs

2.2 Vibration problems 63

C1*exp(t*(-b - sqrt(b - 2*m*w)*sqrt(b + 2*m*w))/(2*m)) +
C2*exp(t*(-b + sqrt(b - 2*m*w)*sqrt(b + 2*m*w))/(2*m))

This is indeed the correct solution, but it is on a complex exponential func-
tion form, valid for all b, m, and ω. We are interested in the case with
small damping, b < 2mω, where the solution is an exponentially damped
sinusoidal function. Rewriting the expression in the right form is tricky with
SymPy commands. Instead, we demonstrate a common technique when doing
symbolic computing: general procedures like dsolve are replaced by manual
steps. That is, we solve the ODE “by hand”, but use SymPy to assist the
calculations.

The solution is composed of a homogeneous solution uh of mu′′+ bu′+
ku = 0 and one particular solution up of the nonhomogeneous equation
mu′′+ bu′+ ku = Acos(ψt). The homogeneous solution with damped oscil-
lations (requiring b < 2

√
mk) can be found by the following code. We have

divided the differential equation by m and introduced B = 1
2b/m and let A1

represent A/m to simplify expressions and help SymPy with less symbols
in the equation. Without these simplifications, SymPy stalls in the compu-
tations due to too many symbols in the equation. The problem is actually
a solid argument for scaling differential equations before asking SymPy to
solve them since scaling effectively reduces the number of parameters in the
equations!

The following SymPy steps derives the solution of the homogeneous ODE:

u = symbols(’u’, cls=Function)
t, w, B, A, A1, m, psi = symbols(’t w B A A1 m psi’,

positive=True, real=True)

def ode(u, homogeneous=True):
h = diff(u, t, t) + 2*B*diff(u, t) + w**2*u
f = A1*cos(psi*t)
return h if homogeneous else h - f

Find coefficients in polynomial (in r) for exp(r*t) ansatz
r = symbols(’r’)
ansatz = exp(r*t)
poly = simplify(ode(ansatz)/ansatz)

Convert to polynomial to extract coefficients
poly = Poly(poly, r)
Extract coefficients in poly: a_*t**2 + b_*t + c_
a_, b_, c_ = poly.coeffs()
Assume b_**2 - 4*a_*c_ < 0
d = -b_/(2*a_)
if a_ == 1:

omega = sqrt(c_ - (b_/2)**2) # nicer formula
else:

omega = sqrt(4*a_*c_ - b_**2)/(2*a_)

The homogeneous solution is a linear combination of a
cos term (u1) and a sin term (u2)

64 2 Ordinary differential equation models

u1 = exp(d*t)*cos(omega*t)
u2 = exp(d*t)*sin(omega*t)
C1, C2, V, I = symbols(’C1 C2 V I’, real=True)
u_h = simplify(C1*u1 + C2*u2)
print ’u_h:’, u_h

The print out shows

uh = e−Bt
(
C1 cos(

√
ω2−B2t) +C2 sin(

√
ω2−B2t)

)
,

where C1 and C2 must be determined by the initial conditions later. It is
wise to check that uh is indeed a solution of the homogeneous differential
equation:

assert simplify(ode(u_h)) == 0

We have previously just printed the residuals of the ODE and initial condi-
tions after inserting the solution, but it is better in a code to let the program-
ming language test that the residuals are symbolically zero. This is achieved
using the assert statement in Python. The argument is a boolean expres-
sion, and if the expression evaluates to False, an AssertionError is raised
and the program aborts (otherwise assert runs silently for a True boolean
expression). Hereafter, we will use assert for consistency checks in computer
code.

The ansatz for the particular solution up is

up = C3 cos(ψt) +C4 sin(ψt),

which inserted in the ODE gives two equations for C3 and C4. The relevant
SymPy statements are

Particular solution
C3, C4 = symbols(’C3 C4’)
u_p = C3*cos(psi*t) + C4*sin(psi*t)
eqs = simplify(ode(u_p, homogeneous=False))

Collect cos(omega*t) terms
print ’eqs:’, eqs
eq_cos = simplify(eqs.subs(sin(psi*t), 0).subs(cos(psi*t), 1))
eq_sin = simplify(eqs.subs(cos(psi*t), 0).subs(sin(psi*t), 1))
s = solve([eq_cos, eq_sin], [C3, C4])
u_p = simplify(u_p.subs(C3, s[C3]).subs(C4, s[C4]))

Check that the solution is correct
assert simplify(ode(u_p, homogeneous=False)) == 0

Using the initial conditions for the complete solution u= uh+up determines
C1 and C2:

u_sol = u_h + u_p # total solution
Initial conditions
eqs = [u_sol.subs(t, 0) - I, u_sol.diff(t).subs(t, 0) - V]

2.2 Vibration problems 65

Determine C1 and C2 from the initial conditions
s = solve(eqs, [C1, C2])
u_sol = u_sol.subs(C1, s[C1]).subs(C2, s[C2])

Finally, we should check that u_sol is indeed the correct solution:

checks = dict(
ODE=simplify(expand(ode(u_sol, homogeneous=False))),
IC1=simplify(u_sol.subs(t, 0) - I),
IC2=simplify(diff(u_sol, t).subs(t, 0) - V))

for check in checks:
msg = ’%s residual: %s’ % (check, checks[check])
assert checks[check] == sympify(0), msg

Finally, we may take u_sol = u_sol.subs(A, A/m) to get the right expres-
sion for the solution. Using latex(u_sol) results in a huge expression, which
should be manually ordered to something like the following:

u= Am−1

4B2ψ2 +Ω2 (2Bψ sin(ψt)−Ω cos(ψt))+

e−Bt
(
C1 cos

(
t
√
ω2−B2

)
+C2 sin

(
t
√
ω2−B2

))
C1 = Am−1Ω+ 4IB2ψ2 + IΩ2

4B2ψ2 +Ω2

C2 = −Am
−1BΩ+ 4IB3ψ2 + IBΩ2 + 4V B2ψ2 +V Ω2

√
ω2−B2 (4B2ψ2 +Ω2)

,

Ω = ψ2−ω2 .

The most important feature of this solution is that there are two time
scales with frequencies ψ and

√
ω2−B2, respectively, but the latter appears

in terms that decay as e−Bt in time. The attention is usually on longer periods
of time, so in that case the solution simplifies to

u= Am−1

4B2ψ2 +Ω2 (2Bψ sin(ψt)−Ω cos(ψt))

= A

m

1√
4B2ψ2 +Ω2

cos(ψt+φ) (ψω)−1

(ψω)−1

= A

k
Qδ−1 (1 +Q2(δ− δ−1)

)− 1
2 cos(ψt+φ), (2.84)

where we have introduced the dimensionless numbers

Q= ω

2B , δ = ψ

ω
,

and

66 2 Ordinary differential equation models

φ= tan−1
(
− 2B
ω2−ψ2

)
= tan−1

(
Q−1

δ2−1

)
.

Q is commonly called quality factor and φ is the phase shift. Dividing (2.84)
by A/k, which is a common scale for u, gives the dimensionless relation

u

A/k
= Q

δ
R(Q,δ)

1
2 cos(ψt+φ), R(Q,δ) =

(
1 +Q2(δ− δ−1)

)−1
. (2.85)

Choosing scales. Much of the discussion about scales in the previous sec-
tions are relevant also when damping is included. Although the oscillations
with frequency

√
ω2−B2 die out for t� B−1, we start with using this fre-

quency for the time scale. A highly relevant assumption for engineering ap-
plications of (2.82) is that the damping is small. Therefore,

√
ω2−B2 is close

to ω and we simply apply tc = 1/ω as before (if not the interest in large t for
which the oscillations with frequency ω has died out).

The coefficient in front of the ū′ term then becomes

b

mω
= 2B

ω
=Q−1 .

The rest of the ODE is given in the previous section, and the particular
formulas depend on the choices of tc and uc.
Choice of uc at resonance. The relevant scale for uc at or nearby resonance
(ψ = ω) becomes different from the previous section, since with damping, the
maximum amplitude is a finite value. For t� B−1, when the sinψt term is
dominating, we have for ψ = ω:

u= Am−12Bψ
4B2ψ2 sin(ψt) = A

2Bmψ sin(ψt) = A

bψ
sin(ψt) .

This motivates the choice

uc = A

bψ
= A

bω
.

(It is wise during computations like this to stop and check the dimensions:
A must be [MLT−2] from the original equation (F (t) must have the same
dimension as mu′′), bu′ must also have dimension [MLT−2], implying that
b has dimension [MT−1]. A/b then has dimension LT−1, and A/(bψ) gets
dimension [L], which matches what we want for uc.)

The differential equation on dimensionless form becomes

d2ū

dt̄2
+Q−1 dū

dt̄
+ ū= γ cos(δt̄), ū(0) = α, ū′(0) = β, (2.86)

with

2.2 Vibration problems 67

α= I

uc
= Ib

A

√
k

m
, (2.87)

β = V tc
uc

= V b

A
, (2.88)

γ = t2cA

muc
= bω

k
, (2.89)

δ = tc
ψ−1 = ψ

ω
= 1 . (2.90)

Choice of uc when ω� ψ. In the limit ω� ψ and t�B−1,

u≈ A

mω2 cosψt= A

k
cosψt,

showing that uc = A/k is an appropriate displacement scale. (Alternatively,
we get this scale also from demanding γ = 1 in the ODE.) The dimensionless
numbers α, β, and δ are as for the forced vibrations without damping.

Choice of uc when ω� ψ. In the limit ω� ψ, we should base tc on the
rapid variations in the excitation: tc = 1/ψ.

Software. It is easy to reuse a solver for a general vibration problem also
in the dimensionless case. In particular, we may use the solver function in
the file vib.py:

def solver(I, V, m, b, s, F, dt, T, damping=’linear’):

for solving the ODE problem

mu′′+f(u′) +s(u) = F (t), u(0) = I, u′(0) = V, t ∈ (0,T],

with time steps dt. With damping=’linear’, we have f(u′) = bu′, while the
other value is ’quadratic’, meaning f(u′) = b|u′|u′. Given the dimensionless
numbers α, β, γ, δ, and Q, an appropriate call for solving (2.73) is

u, t = solver(I=alpha, V=beta, m=1, b=1.0/Q,
s=lambda u: u, F=lambda t: gamma*cos(delta*t),

dt=2*pi/n, T=2*pi*P)

where n is the number of intervals per period and P is the number of periods
to be simulated. We way wrap this call in a solver_scaled function and
wrap it furthermore with joblib to avoid repeated calls, as we explained in
Section 2.1.4:

from vib import solver as solver_unscaled

def solver_scaled(alpha, beta, gamma, delta, Q, T, dt):
"""
Solve u’’ + (1/Q)*u’ + u = gamma*cos(delta*t),
u(0)=alpha, u’(1)=beta, for (0,T] with step dt.
"""

http://tinyurl.com/o8pb3yy/vib.py

68 2 Ordinary differential equation models

print ’Computing the numerical solution’
from math import cos
return solver_unscaled(I=alpha, V=beta, m=1, b=1./Q,

s=lambda u: u,
F=lambda t: gamma*cos(delta*t),
dt=dt, T=T, damping=’linear’)

import joblib
disk_memory = joblib.Memory(cachedir=’temp’)
solver_scaled = disk_memory.cache(solver_scaled)

This code is found in vib_scaled.py and features an application for running
the scaled problem with options on the command-line for α, β, γ, δ, Q, num-
ber of time steps per period, and number of periods (see the main function).
It is an ideal application for exploring scaled vibration models.

2.2.5 Oscillating electric circuits

The differential equation for an oscillating electric circuit is very similar to the
equation for forced, damped, mechanical vibrations, and their dimensionless
form is identical. This fact will now be demonstrated.

The current I(t) in a circuit having an inductor with inductance L, a
capacitor with capacitance C, and overall resistance R, obeys the equation

Ï+ R

L
İ+ 1

LC
I = V (t), (2.91)

where V (t) is the voltage source powering the circuit. We introduce

Ī = I

Ic
, t̄= t

tc
,

and get

d2Ī

dt̄2
+ tcR

L

dĪ

dt̄
+ t2c
LC

Ī = t2cVc
Ic

V̄ (t) .

Here, we have scaled V (t) according to

V̄ (t̄) = V (tct̄)
maxtV (t) .

The time scale tc is chosen to make Ï and I/(LC) balance, tc =
√
LC.

Choosing Ic to make the coefficient in the source term of unit size, means
Ic = LCVc. With

Q−1 =R

√
C

L
,

http://tinyurl.com/o8pb3yy/vib_scaled.py

2.3 Exercises 69

we get the scaled equation

d2Ī

dt̄2
+Q−1 dĪ

dt̄
+ Ī = V̄ (t), (2.92)

which is basically the same as we derived for mechanical vibrations. (Two
additional dimensionless variables will arise from the initial conditions for I,
just as in the mechanics cases.)

2.3 Exercises

Exercise 2.1: Perform unit conversion

Density (mass per volume: [ML−3]) of water is given as 1.05 ounce per fluid
ounce. Use the PhysicalQuantity object to convert to kgm−3.

Solution.
Use pydoc PhysicalQuantities to find that floz is the name of the
volume “fluid ounce” and oz is the name of the mass “ounce”. Here is
an interactive session for the conversion:

>>> from PhysicalQuantities import PhysicalQuantity as PQ
>>> d = PQ(’1.05 oz/floz’)
>>> d.convertToUnit(’kg/m**3’)
>>> print d
1006.54198946 kg/m**3

Filename: density_conversion.

Problem 2.2: Scale a simple formula

The height y of a body thrown up in the air is given by

y = v0t−
1
2gt

2,

where t is time, v0 is the initial velocity of the body at t= 0, and g is the ac-
celeration of gravity. Scale this formula. Use two choices of the characteristic
time: the time it takes to reach the maximum y value and the time it takes
to return to y = 0.

70 2 Ordinary differential equation models

Solution.
We introduce

ȳ = y

yc
, t̄= t

tc
.

Inserted in the formula we get

ycȳ = v0tct̄−
1
2gt

2
c t̄

2 .

1. At the maximum point of y, y′= 0, so y′= v0−gt= 0, which means
t = v0/g and ymax = v0v0/g− 1

2gv
2
0/g

2 = 1
2v

2
0/g. We choose tc = v0/g

and yc = 1
2v

2
0/g. This gives

1
2
v2

0
g
ȳ = v2

0
g
t̄− 1

2
v2

0
g
t̄2 ⇒ ȳ = 2t̄− t̄2 .

2. The body is back at y= 0 for v0t− 1
2gt

2 = 0, which gives tc = 2v0/g
and yc = 2ymax = v2

0/g. Inserted, we get

v2
0
g
ȳ = 2v

2
0
g
t̄− 1

24v
2
0
g
t̄2 ⇒ ȳ = 2t̄(1− t̄) .

Observe that the physical parameters v0 and g are absent in the scaled
formula.

Filename: vertical_motion.

Exercise 2.3: Perform alternative scalings

The problem in Section 2.1.8 applies a temperature scaling

T̄ = T −T0
Tm−T0

,

which is not always suitable.

a) Consider the case T0 = Tm and the fact that |Tm−T0| does not represent
the characteristic temperature scale since it collapses to zero. Formulate a
suitable scaling in this case. The figure below corresponds to Tm = 25 C,
T0 = 24.9 C, and a= 2.5 C. We clearly see that T̄ is not of size unity.

2.3 Exercises 71

0 5 10 15 20 25 30
t

30

20

10

0

10

20

30

T

β=2.09

β=12.57

β=0.35

Ts , β=0.35

Solution.
The typical temperature variations will now be oscillations of amplitude
a around Tm = T0, so 2a is the typical variation of the surrounding tem-
perature. If the time scale of Ts is sufficiently large (or more precisely,
β is small), the temperature will actually reach amplitudes of size a,
but for fast oscillations in Ts, there will not be enough time to transfer
heat to/from the body, so the amplitudes of T will be smaller. Taking
2a to be the typical temperature range, we can propose the scaling

T̄ = T −Tm
2a .

Inserted in the differential equation, we get with tc = 1/k,

k2a T̄
dt̄

=−k(2aT̄ +Tm− (Tm+asin(ωt))),

which simplifies to

T̄

dt̄
=−(T̄ − 1

2 sin(βt)),

where β = ω/k. The initial condition becomes

T̄ (0) =−1
2α,

72 2 Ordinary differential equation models

where α = a/(Tm−T0) is the dimensionless number that appeared in
the scaled differential equation in Section 2.1.8.

b) Consider the case where a is much larger than |Tm− T0|. What is an
appropriate scaling of the temperature?

Solution.
In this case, T will oscillate around Tm and at maximum reach the
amplitude a if β is small, see the figure in a). This is the same situation
as in a), and we can consequently use the same scaling and obtain the
same scaled problem.

Problem 2.4: A nonlinear ODE for vertical motion with
air resistance

The velocity v(t) of a body moving vertically through a fluid in the gravity
field (with fluid drag, buoyancy, and added mass) is governed by the ODE

mv′+µv′ =−1
2CD%A|v|v−mg+%V g, v(0) = v0,

where t is time, m is the mass of the body, µ is the body’s added mass, CD
is a drag coefficient, % is the density of the fluid, A is the cross-sectional area
perpendicular to the motion, g is the acceleration of gravity, and V is the
volume of the body. Scale this ODE.

Solution.
We introduce as usual

v̄ = v

vc
, t̄= t

tc
,

but the main challenge is to find values for vc and tc. Inserting the
scaled quantities gives

(m+µ)vc
tc

dv̄

dt̄
=−1

2CD%Av
2
c |v̄|v̄−mg+%V g, vcv(0) = v0,

2.3 Exercises 73

It is tempting to set vc = v0, but v0 = 0 is a relevant value so this choice
is not good. The motion is of decay type so tc and vc should be based
on characteristics of the decay. The terminal velocity, defined by v′ = 0,
is

vT =

√
2(%V −m)g
CD%A

,

when %V >m such that the buoyancy wins over gravity and the motion
is upwards. Otherwise,

vT =−

√
2(m−%V)g
CD%A

.

The two formulas can be combined to

vT = sign(%V −m)

√
2|%V −m|g
CD%A

.

We take vc = |vT |=
√

2|%V−m|g
CD%A

. This results in

dv̄

dt̄
=−tc

1
2(m+µ)CD%A

√
2|%V −m|g
CD%A

|v̄|v̄−tc

√
CD%gA

2|%V −m|

(
m

m+µ
− %V

m+µ

)
,

and

v(0) = v0

√
CD%A

2g|%V −m| .

A natural choice is to assume dv̄/dt̄ and v̄ to be of the same order,
which means that coefficient in front of the nonlinear term |v̄|v̄ should
be unity. This forces tc to be

tc = 2m√
2g|%V −m|CD%A

.

We can introduce the dimensionless numbers

α= %V

m+µ
, β = v0

√
CD%A

2g|%V −m| = v0
|vT |

, γ = µ

m
.

The added mass µ for sphere is µ = 1
2%V , implying γ = 1

2α. We will
assume this relationship from now on.

Summarizing, we get the scaled ODE problem

74 2 Ordinary differential equation models

dv̄

dt̄
=−|v̄|v̄+sign(2−α(α+ 2)

α+ 2 , v̄(0) = β .

Note that, as usual, the dimensionless numbers have simple interpreta-
tions: α is the ratio of the mass of the displaced fluid and the mass of
the body, β is the ratio of the initial and terminal velocities, while γ
is the ratio of the real and added masses. For motion in air, buoyancy
and added mass can often be neglected: α� 1, γ� 1, but in a liquid,
these effects may be significant.

Filename: vertical_motion_with_drag.

Exercise 2.5: Solve a decay ODE with discontinuous
coefficient

Make software for the problem in Section 2.1.6 so that you can produce
Figure 2.3.

Hint. Follow the ideas for software in Section 2.1.5: use the decay_vc.py
module as computational engine and modify the falling_body.py code.

Solution.
We use joblib to avoid unnecessary execution of the scaled problem,
as explained in Section 2.1.4. A potential complete program is listed
below.

import sys, os
Enable loading modules in ../src-scaling
sys.path.insert(0, os.path.join(os.pardir, ’src-scaling’))
from decay_vc import solver as solver_unscaled
from math import pi
import matplotlib.pyplot as plt
import numpy as np

def solver_scaled(gamma, T, dt, theta=0.5):
"""
Solve u’=-a*u, u(0)=1 for (0,T] with step dt and theta method.
a=1 for t < gamma and 2 for t > gamma.
"""
print ’Computing the numerical solution’
return solver_unscaled(

I=1, a=lambda t: 1 if t < gamma else 5,
b=lambda t: 0, T=T, dt=dt, theta=theta)

import joblib

http://tinyurl.com/o8pb3yy/decay_vc.py
http://tinyurl.com/o8pb3yy/falling_body.py

2.3 Exercises 75

disk_memory = joblib.Memory(cachedir=’temp’)
solver_scaled = disk_memory.cache(solver_scaled)

def unscale(u_scaled, t_scaled, d, I):
return I*u_scaled, d*t_scaled

def main(d,
I,
t_1,
dt=0.04, # Time step, scaled problem
T=4, # Final time, scaled problem
):

legends1 = []
legends2 = []
plt.figure(1)
plt.figure(2)

gamma = t_1*d
print ’gamma=%.3f’ % gamma
u_scaled, t_scaled = solver_scaled(gamma, T, dt)

plt.figure(1)
plt.plot(t_scaled, u_scaled)
legends1.append(’gamma=%.3f’ % gamma)

plt.figure(2)
u, t = unscale(u_scaled, t_scaled, d, I)
plt.plot(t, u)
legends2.append(’d=%.2f [1/s], t_1=%.2f s’ % (d, t_1))
plt.figure(1)
plt.xlabel(’scaled time’); plt.ylabel(’scaled velocity’)
plt.legend(legends1, loc=’upper right’)
plt.savefig(’tmp1.png’); plt.savefig(’tmp1.pdf’)

plt.figure(2)
plt.xlabel(’t [s]’); plt.ylabel(’u’)
plt.legend(legends2, loc=’upper right’)
plt.savefig(’tmp2.png’); plt.savefig(’tmp2.pdf’)
plt.show()

if __name__ == ’__main__’:
main(d=1/120., I=1, t_1=100)

Filename: decay_jump.

76 2 Ordinary differential equation models

Exercise 2.6: Implement a scaled model for cooling

Use software for the unscaled problem (2.16) to compute the solution of the
scaled problem (2.23). Let Ts be a function of time.

Hint. You may use the general software decay_vc.py for computing with
the cooling model. See Section 2.1.5 for more ideas.

Solution.

The problem (2.16) is just a special case of the general problem
u′ = −au+ b solved by the decay_vc module. We can make an im-
plementation of (2.23) in terms of the model u′ =−au+ b:

import sys, os
Enable loading modules in ../src-scaling
sys.path.insert(0, os.path.join(os.pardir, ’src-scaling’))
from decay_vc import solver as solver_unscaled
from math import pi
import matplotlib.pyplot as plt
import numpy as np

def solver_scaled(alpha, beta, t_stop, dt, theta=0.5):
"""
Solve T’ = -T + 1 + alha*sin(beta*t), T(0)=0
for (0,T] with step dt and theta method.
"""
print ’Computing the numerical solution’
return solver_unscaled(

I=0, a=lambda t: 1,
b=lambda t: 1 + alpha*np.sin(beta*t),
T=t_stop, dt=dt, theta=theta)

import joblib
disk_memory = joblib.Memory(cachedir=’temp’)
solver_scaled = disk_memory.cache(solver_scaled)

def main(alpha,
beta,
t_stop=50,
dt=0.04
):

T, t = solver_scaled(alpha, beta, t_stop, dt)
plt.plot(t, T)
plt.xlabel(r’$\bar t$’); plt.ylabel(r’$\bar T$’)
plt.title(r’$\alpha=%g,\ \beta=%g$’ % (alpha, beta))
filestem = ’tmp_%s_%s’ % (alpha, beta)
plt.savefig(filestem + ’.png’); plt.savefig(filestem + ’.pdf’)
plt.show()

http://tinyurl.com/o8pb3yy/decay_vc.py

2.3 Exercises 77

if __name__ == ’__main__’:
import sys
alpha = float(sys.argv[1])
beta = float(sys.argv[2])
t_stop = float(sys.argv[3])
main(alpha, beta, t_stop)

Simulations for α= 1 and β = 0.1,1,10 as well as for α= 0.1 and β = 1
are shown below.

0 20 40 60 80 100 120 140 160 180
t̄

0.0

0.5

1.0

1.5

2.0

T̄

α=1, β=0.1

0 5 10 15 20 25 30
t̄

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

T̄

α=1, β=1

0 2 4 6 8 10
t̄

0.0

0.2

0.4

0.6

0.8

1.0

1.2

T̄

α=1, β=10

0 2 4 6 8 10
t̄

0.0

0.2

0.4

0.6

0.8

1.0

1.2

T̄

α=0.1, β=10

Filename: cooling1.

Problem 2.7: Decay ODE with discontinuous coefficients

The goal of this exercise is to scale the problem u′(t) = −a(t)u(t) + b(t),
u(0) = I, when

a(t) =
{
Q, t < s,
Q−A, t≥ s, b=

{
εt, t < s,
0, t≥ s,

Here, Q,A,ε > 0.

78 2 Ordinary differential equation models

Solution.
We start by scaling the known functions a and b. Since Q,A.ε > 0,
max |a(t)| = Q and max |b(t)| = εs. Scaled versions of these functions
are then

ā= a

Q
, b̄= b

εs
.

As usual, we scale u and t as

ū= u

uc
, t̄= t

tc
.

The scaled ODE reads

dū

dt̄
=−tcQā(t̄) +u−1

c tcεsb̄ .

A natural choice of uc is uc = I. The a term will reduce ū from 1, while
the b term may have a growth effect.

The time scale is best chosen to reflect the dynamics of the process,
i.e., the decay with strength Q, so we set tc = 1/Q. This choice results
in

dū

dt̄
=−ā(t̄) +αb̄,

with

ā(t̄) =
{

1, t̄ < γ,
1−β, t̄≥ γ,

and

b̄(t̄) =
{
γ−1t̄, t̄ < γ,
0, t̄≥ γ,

The initial condition is ū(0) = 1. We have three dimensionless numbers
in the problem:

α= εs

QI
, β = A

Q
, γ =Qs.

We realize that α measures the ratio of the b term (εs) and the au term
(QI), β reflects the relative jump in a, while γ measures the ratio of
the transition point t= s and the characteristic time scale.

Filename: decay_varcoeff.

2.3 Exercises 79

Exercise 2.8: Alternative scalings of a cooling model

Implement the scaled model (2.29) and produce a plot with curves corre-
sponding to various values of α and p to summarize how ū(t̄) looks like.

Hint. A centered Crank-Nicolson-style scheme for (2.29) can use an old time
value for the nonlinear coefficient:

ūn+1− ūn

∆t
= (1−αūn)p 1

2(ūn+ ūn+1) .

Filename: growth.

Exercise 2.9: Projectile motion

We have the following mathematical model for the motion of a projectile in
two dimensions:

mẍ+ 1
2CD%A|ẋ|ẋ=−mgj, x(0) = 0, ẋ(0) = v0 cosθi+v0 sinθj .

Here, m is the mass of the projectile, x = xi+ yj is the position vector of
the projectile, i and j are unit vectors along the x and y axes, respectively,
ẍ and ẋ is the second- and first-order time derivative of x(t), CD is a drag
coefficient depending on the shape of the projectile (can be taken as 0.4 for a
sphere), % is the density of the air, A is the cross section area (can be taken
as πR2 for a sphere of radius R), g is gravity, v0 is the initial velocity of the
projectile in a direction that makes the angle θ with the ground.

a) Neglect the air resistance term proportional to ẋ and solve analytically
for x(t).

Solution.
The vector differential equation reduces to the two component equations

mẍ(t) = 0, mÿ(t) =−mg .

Integrating twice yields

x(t) = C1t+C2, y(t) =−1
2gt

2 +C3t+C4 .

The condition x(0) = 0 forces C2 =C4 = 0. The condition on the deriva-
tive gives C1 = v0 cosθ and C3 = v0 sinθ. The result is therefore

80 2 Ordinary differential equation models

x(t) = v0 cos(θ)ti+ (v0 sin(θ)t− 1
2gt

2)j .

b) Make the model for projectile motion with air resistance non-dimensional.
Use the maximum height from the simplification in a) as length scale.

Solution.
We introduce dimensionless quantities:

x̄= x

L
, ȳ = y

L
, t̄= t

tc
,

where the scales L and tc must be determined. Inserted in the original
equation:

mL

t2c

d2x̄

dt̄2
+ 1

2CD%A
L2

t2c

∣∣∣∣dx̄dt̄
∣∣∣∣ dx̄dt̄ =−mgj .

Dividing by mL/t2c gives

d2x̄

dt̄2
+ 1

2CD%A
L

m

∣∣∣∣dx̄dt̄
∣∣∣∣ dx̄dt̄ =−gt

2
c

L
j .

It is tempting to determine scales from setting coefficients in this
equation to unity. However, we expect the effect of air resistance to be
(much) smaller than gravity, so the primary balance in the equation
is between the acceleration term and the gravity term. Setting the co-
efficient in the gravity term to unity gives L = gt2c , which provides a
relevant length scale. However, setting the coefficient in the air resis-
tance term to unity gives a length scale only relevant when air resistance
is as important as gravity and acceleration, and that might be the case
for a very hard kick of a soccer ball, for instance. Otherwise, the coeffi-
cient in front of the air resistance term will be a dimensionless number
which is expected to be small. Of these reasons, we need to determine
L from the insight in a) when we solved the problem using a balance of
acceleration and gravity only.

The maximum height ymax occurs when ẏ = 0, and from the solution
in a) we get

ẏ = v0 sinθ−gt= 0 ⇒ t= g−1v0 sinθ .

The corresponding ymax value is

2.3 Exercises 81

ymax = g−1v2
0 sin2 θ− 1

2g
−1v2

0 sin2 θ = 1
2g
−1v2

0 sin2 θ .

We can take L = ymax and let tc be the corresponding t value: tc =
g−1v0 sinθ. Inserted in the scaled problem:

d2x̄

dt̄2
+ 1

2CD%A
v2

0 sin2 θ

2mg

∣∣∣∣dx̄dt̄
∣∣∣∣ dx̄dt̄ =−2j .

We can identify a dimensionless parameter

α= CD%Av
2
0 sin2 θ

4mg ,

and write the scaled equation as

d2x̄

dt̄2
+α

∣∣∣∣dx̄dt̄
∣∣∣∣ dx̄dt̄ =−2j,

with initial conditions

x̄(0) = 0, dx̄

dt̄
(0) = tc

L
(v0 cosθi+v0 sinθj) = 2cotθi+ 2j .

Apart from the factor 4, the α formula as stated above is seen to
reflect the air resistance force in the vertical motion (which has velocity
v0 sinθ) and the gravity force. We can compute α for a soft and a hard
kick of a soccer ball as described in d), and the values are 0.04 and
0.2, respectively, showing that the balance of acceleration and gravity
is relevant - even a hard kick only gives α0.6, but in that regime it would
not be wrong to choose L such that the coefficient in the air resistance
term becomes unity.

Basing tc and L on the entire flight back to y = 0 means tc =
2g−1v0 sinθ and L = 2ymax (the total vertical distance), removes the
factor 2 on the right-hand side and reduces α by a factor 2.

c) Make the model dimensionless again, but this time by demanding that
the scaled initial velocity is unity in x direction.

Solution.
The scaled initial velocity condition is

x̄(0) = tc
L
v0 cosθ .

Demanding the scaled velocity to be unity gives

82 2 Ordinary differential equation models

L= tcv0 cosθ .

The scaled initial velocity in y direction becomes

ȳ(0) = tanθ .

The scaled ODE becomes

d2x̄

dt̄2
+ 1

2CD%A
L

m

∣∣∣∣dx̄dt̄
∣∣∣∣ dx̄dt̄ =− gtc

v0 cosθ j .

We can choose tc such that the gravity term is unity and balances the
acceleration term:

tc = g−1v0 cosθ,

which makes

L= tcv0 cosθ = g−1v2
0 cos2 θ .

The coefficient in the drag term becomes

α= CD%Av
2
0 cos2 θ

2mg .

To summarize, we get the scaled problem

d2x̄

dt̄2
+α

∣∣∣∣dx̄dt̄
∣∣∣∣ dx̄dt̄ =−j, x̄(0) = 0, dx̄

dt̄
(0) = i+ tanθj .

d) A soccer ball has radius 11 cm and mass 0.43 kg, the density of air is
1.2 kgm−3, a soft kick has velocity 30 km/h, while a hard kick may have
120 km/h. Estimate the dimensionless parameter in the scaled problem for
a soft and a hard kick with θ corresponding to 45 degrees. Solve the scaled
differential equation for these values and plot the trajectory (y versus x) for
the two cases.

Solution.

We need to express R, v0, and θ in standard SI units: A = π0.112 m2,
θ = 45 · π/180 rad, v0 = 30/3.6 and 120/3.6 m/s. The formula for α
results in

αsoft ≈ 0.037, αhard ≈ 0.6 .

2.3 Exercises 83

Appropriate computer code appears below (using Odespy to solve
the ODE system as a first-order system).

import matplotlib.pyplot as plt
import odespy
import numpy as np

def solver(alpha, ic, T, dt=0.05):
def f(u, t):

x, vx, y, vy = u
v = np.sqrt(vx**2 + vy**2) # magnitude of velocity
system = [

vx,
-alpha*np.abs(v)*vx,
vy,
-2 - alpha*np.abs(v)*vy,
]

return system

Nt = int(round(T/dt))
t_mesh = np.linspace(0, Nt*dt, Nt+1)

solver = odespy.RK4(f)
solver.set_initial_condition(ic)
u, t = solver.solve(t_mesh,

terminate=lambda u, t, n: u[n][2] < 0)
x = u[:,0]
y= u[:,2]
return x, y, t

def demo_soccer_ball():
import math
theta_degrees = 45
theta = math.radians(theta_degrees)
ic = [0, 2/math.tan(theta), 0, 2]
g = 9.81
v0_s = 8.3 # soft kick
v0_h = 33.3 # hard kick
Length scales
L_s = 0.5*(v0_s**2/g)*math.sin(theta)**2
L_h = 0.5*(v0_h**2/g)*math.sin(theta)**2
print ’L:’, L_s, L_h

m = 0.43 # kg
R = 0.11 # m
A = math.pi*R**2
rho = 1.2 # kg/m^3
C_D = 0.4
alpha_s = C_D*rho*A*v0_s**2*math.cos(theta)**2/(4*m*g)
alpha_h = C_D*rho*A*v0_h**2*math.cos(theta)**2/(4*m*g)
print ’alpha:’, alpha_s, alpha_h
x_s, y_s, t = solver(alpha=alpha_s, ic=ic, T=6, dt=0.01)

https://github.com/hplgit/odespy

84 2 Ordinary differential equation models

x_h, y_h, t = solver(alpha=alpha_h, ic=ic, T=6, dt=0.01)
plt.plot(x_s, y_s, x_h, y_h)
plt.legend([’soft, L=%.2f’ % L_s, ’hard, L=%.2f’ % L_h],

loc=’upper left’)
Let the y range be [-0.2,2] so we have space for legends
plt.axis([x_s[0], x_s[-1], -0.2, 2])
plt.axes().set_aspect(’equal’) # x and y axis have same scaling
plt.title(r’$\theta=%d$ degrees’ % theta_degrees)
plt.savefig(’tmp.png’)
plt.savefig(’tmp.pdf’)
plt.show()

demo_soccer_ball()

For θ = 45 degrees we get the plot

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

0.0

0.5

1.0

1.5

2.0 θ=45 degrees

soft, L=1.76
hard, L=28.26

The blue curve is very close to motion without air resistance. We
clearly see how significant air resistance is once the velocity is large
enough. The total length is approximately 6.3 m for a soft kick and 45
m for a hard kick (multiply the dimensionless lengths in the plot by the
corresponding L).

Filename: projectile.

2.3 Exercises 85

Problem 2.10: A predator-prey model

The evolution of animal populations with a predator and a prey (e.g., lynx
and hares, or foxes and rabbits) can be described by the Lotka-Volterra ODE
system

H ′ =H(a− bL), (2.93)
L′ = L(dH− c), (2.94)

H(0) =H0, (2.95)
L(0) = L0 . (2.96)

Here, H is the number of animals of the prey (say hares) and L is the cor-
responding measure of the predator population (say lynx). There are six
parameters: a, b, c, d, H0, and L0.

The terms have the following meanings:

• aH is the exponential population growth of H due to births and deaths
and is governed by the access to nutrition,

• −bHL is the loss of preys because they are eaten by predators,
• dHL is the increase of predators because they eat preys (but only a fraction

of the eaten preys, bHL, contribute to population growth of the predator
and therefore d < b),

• −cL is the exponential decay in the predator population because of deaths
(the increase is modeled by dHL).

Dimensionless independent and dependent variables are introduced as usual
by

t̄= t

tc
, H̄ = H

Hc
, L̄= L

Lc
,

where tc, Hc, and Lc are scales to be determined. Inserted in the ODE prob-
lem we arrive at

H0
tc

dH̄

dt̄
=H0H̄(a− bH0L̄), (2.97)

H0
tc

dL̄

dt̄
=H0L̄(dH0H̄− c), (2.98)

HcH̄(0) =H0, (2.99)
LcH̄(0) = L0 . (2.100)

a) Consider first a simple, intuitive scaling of H and L based on initial
conditionsHc =H0 and Lc =Hc. This means that H̄ starts out at unity and L̄

86 2 Ordinary differential equation models

starts out as the fraction L0/H0. Find a time scale and identify dimensionless
parameters in the scaled ODE problem.

Solution.

With Hc = Lc =H0 in (2.97)-(2.100) we get

dH̄

dt̄
= a

bH0
H̄− L̄H̄,

dL̄

dt̄
= d

b
L̄H̄− c

bH0
L̄),

H̄(0) = 1,

L̄(0) = L0
H0

.

With the dimensionless parameters

α= a

bH0
, β = d

b
, γ = c

bH0
, δ = H0

L0
,

we can write the dimensionless problem as

dH̄

dt̄
= αH̄− L̄H̄,

dL̄

dt̄
= βL̄H̄−γL̄),

H̄(0) = 1,
L̄(0) = δ .

The quantity bH0 is the number of eaten preys per predator. Then
α measures the ratio of natural population growth of the prey, due to
nutrition, and the number of eaten preys per predator. The β parameter
measures the fraction of the eaten preys and the amount of this that
actually leads to population growth of the predator. The number γ
reflects the ratio of predator deaths and the eaten preys per predator,
and δ is the initial fraction of preys and predators.

b) Try a different scaling where the aim is to adjust the scales such that the
ODEs become as simple as possible, i.e, have as few dimensionless parameters
as possible. Compare with the scaling in a).

2.3 Exercises 87

Solution.

Dividing by Hc and Lc in (2.97) and (2.100), respectively, and multiply
by tc:

dH̄

dt̄
= tcH̄(a− bLcL̄),

dL̄

dt̄
= tcL̄(dHcH̄− c) .

Choosing tc = 1/a and tcaLc = 1, i.e., Lc = a/b, makes the first equation
free of parameters: H̄ ′ = H̄(1− L̄). Factoring out c in the equation for
L and choosing Hcd/c= 1, i.e., Hc = c/d, leaves us with the L equation
as L̄′ = (c/a)L̄(H̄ − 1). The ratio c/a is now called µ and equals γ/α
from a).

The initial conditions lead to H̄(0) =H0/Hc =H0d/c= β/γ = ν, and
L̄(0) = L0/Lc = L0b/a= δ/α= ω.

The dimensionless problem is now

dH̄

dt̄
= H̄(1− L̄), (2.101)

dL̄

dt̄
= µL̄(H̄−1) = γα−1L̄(H̄−1), (2.102)

H̄(0) = ν = β/γ, (2.103)
L̄(0) = ω = δ/α, (2.104)

with

µ= c

a
, ν =H0

d

c
, ω = L0

b

a
.

The unknowns H̄ and L̄ now has less intuitive scalings,

H̄ = Hd

c
, L̄= Lb

a
,

while time is measured in the units based on the exponential growth
due to births and deaths of preys (a). The number of dimensionless
parameters is one less since we have one more scale (for Lc) at our
disposal. Simplicity in one initial conditions in a) is exchanged with
more simplicity in the ODEs, which now have only one dimensionless
parameter.

Note that ν and ω must be different from unity to avoid H̄ 6= 0 and
L̄ 6= 0 because of the factors 1−L and H−1 in the equations that can
make H̄ ′ = 0 and L̄′ = 0.

88 2 Ordinary differential equation models

c) A more mathematical approach to determining suitable scales for H and
L consists in finding the stationary points (H,L) of the ODE system, where
H ′ = L′ = 0, and use such points as characteristic sizes of the dependent
variables. Show that H ′ = L′ = 0 implies H = L= 0 or L= a/b and H = c/d.
Use Hc = a/b, Lc = c/d, and find a time scale. Compare with the result in
b).

Solution.

Setting H ′ = L′ = 0 leads to

H(a− bL) = 0, L(dH− c) = 0,

from which we see that the factors must vanish: H = L = 0, L = a/b,
and H = c/d. With Use Hc = a/b, Lc = c/d, and tc = 1/a we get the
same scaling as in b), but with a different motivation.

Filename: predator_prey.

Problem 2.11: A model for competing species

Let N1(t) and N2(t) be the number of animals in two competing species. A
generalized Lotka-Volterra model is based on a logistic growth of each specie
and a predator-prey like interaction (cf. Problem 2.10):

dN1
dt

= r1N1

(
1− N1

M1
−s12

N2
M1

)
, (2.105)

dN2
dt

= r2N2

(
1− N2

M2
−s21

N1
M2

)
, (2.106)

where r1, r2,M1,M2, s12, and s21 are given constants. The initial conditions
specify N1 and N2 at t = 0. Find suitable scales and derive a dimensionless
ODE problem.

Solution.
As always, we can introduce dimensionless variables, We use ideas from
scaling of ODEs for logistic growth, i.e., we use the carrying capacities
M1 and M2 as characteristic (maximum) values of N1 and N2, respec-
tively. Time can be scaled from the initial exponential growth of N1 or
N2, i.e., tc = 1/r1 or tc = 1/r2. We choose the former here. Introducing

2.3 Exercises 89

t̄= r1t, u1 = N1
M1

, u2 = N2
M2

,

in the ODE system, leads to

du1
dt̄

= u1 (1−u1− b21βγ) ,

du2
dt̄

= αu2
(
1−u2− b12β

−1γ−1) ,
where the dimensionless numbers are given by

α= r2
r1
, β = M2

M1
, γ = b12

b21
.

We have introduced two separate numbers β and γ since they are related
to different parameters, but only their product matters. Alternatively,
we could introduce the numbers µ = b12γ and ν = b21γ

−1 in the last
term of the first and second ODE, respectively.

Filename: competing_species.

Problem 2.12: Find the period of sinusoidal signals

This exercise aims at investigating various fundamental concepts like period,
wave length, and frequency in non-damped and damped sinusoidal signals.

a) Plot the function

u(t) =Asin(ωt),

for t ∈ [0,8π/ω]. Choose ω and A.

Solution.
Appropriate code is

import numpy as np
import matplotlib.pyplot as plt

def u(t, A, w, module=np):
return A*module.sin(w*t)

90 2 Ordinary differential equation models

def a():
"""Plot u."""
w = 2*np.pi
A = 1.0
t = np.linspace(0, 8*np.pi/w, 1001)
plt.figure()
plt.plot(t, u(t, A, w))
plt.xlabel(’t’); plt.ylabel(’u’)
plt.axis([t[0], t[-1], -1.1, 1.1])
plt.title(r’$u=A\sin (\omega t)$, $A=%g$, $\omega = %g$’

% (A, w))
plt.savefig(’tmp1.png’); plt.savefig(’tmp1.pdf’)

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
t

1.0

0.5

0.0

0.5

1.0

u

u=Asin(ωt), A=1, ω=6.28319

b) The period P of u is the shortest distance between two peaks (where
u=A). Show mathematically that

P = 2π
ω
.

Frequently, P is also referred to as the wave length of u.

Solution.
Since the sine function has period 2π, we have that

2.3 Exercises 91

sin(ωt) = sin(ωt+ 2π) .

The definition of P is that sine gets its value again after time P :

sin(ωt) = sin(ω(t+P)) .

Combing we get that sin(ωt+ 2π) = sin(ω(t+P)), so the arguments
must be equal:

ωt+ 2π = ω(t+P),

from which it follows that P = 2π/ω.
An alternative is to find the peaks as the points where du/dt = 0.

Since du/dt=ω cos(ωt), this function is zero when ωt=nπ for integer n.
If nπ corresponds to a maximum, (n+1)π will correspond to a minimum
and (n+2)π to the next maximum. The period P is the distance in time
between two maxima:

ω(t+P)−ωt= (n+ 2π−nπ ⇒ P = 2π
ω
.

c) Plot the damped signal u(t) = e−at sin(ωt) over four periods of sin(ωt).
Choose ω, A, and a.

Solution.
Code:

def u_damped(t, A, w, a, module=np):
return A*module.exp(-a*t)*module.sin(w*t)

def c():
"""Plot damped u."""
w = 2*np.pi
A = 1.0
a = 0.5
t = np.linspace(0, 8*np.pi/w, 100001)
plt.figure()
plt.plot(t, u_damped(t, A, w, a))
plt.xlabel(’t’); plt.ylabel(’u’)
plt.title(r’$u=Ae^{-at}\sin (\omega t)$,’

’$a=%g$, $A=%g$, $\omega = %g$’ % (a, A, w))
plt.savefig(’tmp2.png’); plt.savefig(’tmp2.pdf’)

u_max = []
u_ = u_damped(t, A, w, a)
for i in range(1, len(t)-1):

if u_[i-1] < u_[i] > u_[i+1]:

92 2 Ordinary differential equation models

u_max.append((t[i], u_[i]))
print u_max
for i in range(len(u_max)-1):

print ’P=’, u_max[i+1][0] - u_max[i][0]

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
t

0.8

0.6

0.4

0.2

0.0

0.2

0.4

0.6

0.8

1.0
u

u=Ae−at sin(ωt),a=0.5, A=1, ω=6.28319

d) What is the period of u(t) = e−at sin(ωt)? We define the period P as the
shortest distance between two peaks of the signal.

Hint. Use that v = pcos(ωt)+q sin(ωt) can be rewritten as v =B cos(ωt−φ)
with B =

√
p2 + q2 and φ= tan−1(p/q). Use such a rewrite of u′ to find the

peaks of u and then the period.

Solution.

Finding the extrema from u′ = 0 leads to

u′ =−ae−at sin(ωt) +e−atω cos(ωt) = 0 .

Using the hint to rewrite (p= ω, q =−a), we get

u′ = e−atB cos(ωt−φ) = 0, B =
√
ω2 +a2, φ= tan−1(−ω/a) .

2.3 Exercises 93

Now, e−at is always positive so only the cosine function can cross zero,
and that happens when the argument is nπ for integer n. However, all
the maxima only occurs for 2nπ (n integer). Demanding the argument
to be 2nπ we get the distance between two nearby peaks as

ω(t+P)−φ− (ωt−φ) = 2(n+ 1)π−2nπ,

which leads to

ωP = 2π ⇒ P = 2π
ω
.

The period of the damped signal is the same; only ω can alter the
period.

Filename: sine_period.

Remarks. The frequency is the number of up and down cycles in one unit
time. Since there is one cycle in a period P , the frequency is f = 1/P , mea-
sured in Hz. The angular frequency ω is then ω = 2π/P = 2πf .

Problem 2.13: Oscillating mass with sliding friction

s(u)

u(t)

m

Fig. 2.13 Body sliding on a surface.

A mass attached to a spring is sliding on a surface and subject to a friction
force, see Figure 2.13. The spring represents a force −kui, where k is the
spring stiffness. The friction force is proportional to the normal force on the
surface, −mgj, and given by −f(u̇)i, where

f(u̇) =

−µmg, u̇ < 0,
µmg, u̇ > 0,
0, u̇= 0

94 2 Ordinary differential equation models

Here, µ≥ 0 is a friction coefficient. With the signum function

sign(x) =

−1, x < 0,
1, x > 0,
0, x= 0

we can simply write f(u̇) = µmg sign(u̇) (the sign function is implemented by
numpy.sign).

The ODE problem for this one-dimensional oscillatory motion reads

mü+µmg sign(u̇) +ku= 0, u(0) = I, u̇(0) = V . (2.107)

a) Scale the problem.

Solution.
Inserting the dimensionless dependent and independent variables,

ū= u

I
, t̄= t

tc
,

in the problem gives

d2ū

dt̄2
+ t2cµg

I
sign

(
dū

dt̄

)
+ t2ck

m
ū= 0, ū(0) = 1, dū

dt̄
(0) = V tc

I
.

As usual, we base the characteristic time on the friction-free oscillations,
which means a balance of the acceleration term and the spring term.
That is, t2ck/m= 1, and consequently tc =

√
m/k.

d2ū

dt̄2
+ µmg

kI
sign

(
dū

dt̄

)
+ ū= 0, ū(0) = 1, dū

dt̄
(0) = V

√
mk

kI
.

Introducing the dimensionless variables

α= µmg

kI
, β = V

√
mk

kI
,

the scaled problem can then be written

d2ū

dt̄2
+αsign

(
dū

dt̄

)
+ ū= 0, ū(0) = 1, dū

dt̄
(0) = β .

The initial set of 6 parameters (µ,m,g,k,I,V) are reduced to 2 dimen-
sionless combinations.

Let us check that the dimensionless parameters really are dimen-
sionless. From the original ODE we know that each term has the di-

2.3 Exercises 95

mension of force, i.e., [MLT−2]. Therefore, the friction coefficient µ
is dimensionless since mg has dimension [MLT−2], and k has dimen-
sion [MT−2] since u has dimension [L]. Since I has the same dimen-
sion as u, kI has the dimension of [MLT−2], which is the dimen-
sion of mg, and α is dimensionless. The β parameter has dimensions
[LT−1M1/2M−1/2TL−1 = [1].

b) Implement the scaled model. Simulate for α= 0,0.05,0.1 and β = 0.

Solution.
We can use the package Odespy to solve the ODE. This requires rewrit-
ing the ODE as a system of two first-order ODEs:

v′ =−αsign(v)− ū,
u′ = v,

with initial conditions v(0) = β and u(0) = 1. Here, u(t) corresponds to
the previous ū(t̄), while v(t) corresponds to dū/t̄(t̄). Appropriate code
is

import matplotlib.pyplot as plt
import numpy as np

def simulate(alpha, beta=0,
num_periods=8, time_steps_per_period=60):

Use oscillations without friction to set dt and T
P = 2*np.pi
dt = P/time_steps_per_period
T = num_periods*P
t = np.linspace(0, T, time_steps_per_period*num_periods+1)
import odespy

def f(u, t, alpha):
Note the sequence of unknowns: v, u (v=du/dt)
v, u = u
return [-alpha*np.sign(v) - u, v]

solver = odespy.RK4(f, f_args=[alpha])
solver.set_initial_condition([beta, 1]) # sequence must match f
uv, t = solver.solve(t)
u = uv[:,1] # recall sequence in f: v, u
v = uv[:,0]
return u, t

https://github.com/hplgit/odespy

96 2 Ordinary differential equation models

if __name__ == ’__main__’:
alpha_values = [0, 0.05, 0.1]
for alpha in alpha_values:

u, t = simulate(alpha, 0, 6, 60)
plt.plot(t, u)
plt.hold(’on’)

plt.legend([r’$\alpha=%g$’ % alpha for alpha in alpha_values])
plt.xlabel(r’$\bar t$’); plt.ylabel(r’$\bar u$’)
plt.savefig(’tmp.png’); plt.savefig(’tmp.pdf’)
plt.show()

We find that simulating for 6 periods is relevant for α= 0,0.05,0.1.

0 5 10 15 20 25 30 35 40
t̄

1.0

0.5

0.0

0.5

1.0

ū

α=0

α=0.05

α=0.1

Filename: sliding_box.

Problem 2.14: Pendulum equations

The equation for a so-called simple pendulum with a mass m at the end is

mLθ̈+mg sinθ = 0, (2.108)

where θ(t) is the angle with the vertical, L is the length of the pendulum,
and g is the acceleration of gravity.

A physical pendulum with moment of inertia I is governed by a similar
equation,

2.3 Exercises 97

Iθ̈+mgLsinθ = 0 . (2.109)

Both equations have the initial conditions θ(0) = Θ and θ′(0) = 0 (start at
rest).

a) Use θ as dimensionless unknown, find a proper time scale, and scale both
differential equations.

Solution.

Introducing t̄= t/tc gives

mL
1
t2c

d2θ

dt̄2
+mg sinθ = 0,

I
1
t2c

d2θ

dt̄2
+mgLsinθ = 0 .

or on dimensionless form,

d2θ

dt̄2
+ t2cg

L
sinθ = 0,

d2θ

dt̄2
+ t2cmgL

I
sinθ = 0 .

An obvious choice to make the terms equal are tc =
√
L/g in the first

equation and tc =
√
I/(mgL) in the second. These choices are also

compatible with the frequencies if the angle is small: θ̈+ g/Lθ = 0 has
solution of the type sin(ωt) with ω =

√
g/L, and then tc = 1/ω is a

natural scale.
The dimensionless equations become equal in this case:

d2θ

dt̄2
+ sinθ = 0 .

b) Some may argue that θ is not dimensionless since it is measured in radians.
One may introduce a truly dimensionless angle θ̄ ∈ [0,1]. Set up the scaled
ODE problem in this case.

Solution.

A θ̄ ∈ [0,1] is obtained by θ̄ = θ/Θ. The resulting equation, keeping the
time scale as in a), then becomes

98 2 Ordinary differential equation models

d2θ̄

dt̄2
+Θ−1 sin(Θθ̄) = 0,

with boundary condition θ̄(0) = 1. That is, the only parameter Θ either
remains in the ODE or in the initial condition.

There is another line of arguing here too, namely that one should
choose the time scale such that the two terms (acceleration and gravity)
balances. First we get

d2θ̄

dt̄2
+ t2cg

LΘ
sin(Θθ̄) = 0 .

Demanding that the coefficient in the second term is also unity, makes
Θ part of the time scale:

tc =

√
LΘ

g
.

However, we know that in the limit of small θ, doubling the initial
condition has no effect on the characteristic time, it only depends on
L/g. Therefore this second line of thought will lead to in an appropri-
ate variation of θ̄ with t̄. This conclusion can easily be tested through
simulations with the two scalings.

c) Simulate the problem in b) for Θ = 1,20,45,60 measured in degrees.

Solution.
We use Odespy to solve the ODE, rewritten as a system of first-order
ODEs: ω̄′ =−Θ−1 sin(Θθ̄) and θ̄′ = ω̄. Appropriate code is

import matplotlib.pyplot as plt
import numpy as np

def simulate(Theta, num_periods=8, time_steps_per_period=60,
scaling=1):

Use oscillations for small Theta to set dt and T
P = 2*np.pi
dt = P/time_steps_per_period
T = num_periods*P
t = np.linspace(0, T, time_steps_per_period*num_periods+1)
import odespy

def f(u, t, Theta):
Note the sequence of unknowns: omega, theta
omega = d(theta)/dt, angular velocity

https://github.com/hplgit/odespy

2.3 Exercises 99

omega, theta = u
return [-Theta**(-1)*np.sin(Theta*theta), omega]

solver = odespy.RK4(f, f_args=[Theta])
solver.set_initial_condition([0, 1]) # sequence must match f
u, t = solver.solve(t)
theta = u[:,1] # recall sequence in f: omega, theta
return theta, t

if __name__ == ’__main__’:
Theta_values_degrees = [1, 20, 45, 60]
for Theta_degrees in Theta_values_degrees:

Theta = Theta_degrees*np.pi/180
theta, t = simulate(Theta, 6, 60)
plt.plot(t, theta)
plt.hold(’on’)

plt.legend([r’$\Theta=%g$’ % Theta
for Theta in Theta_values_degrees],

loc=’lower left’)
plt.xlabel(r’$\bar t$’); plt.ylabel(r’$\bar\theta$’)
plt.savefig(’tmp.png’); plt.savefig(’tmp.pdf’)
plt.show()

0 5 10 15 20 25 30 35 40
t̄

1.0

0.5

0.0

0.5

1.0

θ̄

Θ =1

Θ =20

Θ =45

Θ =60

We clearly see that increasing the amplitude Θ increases the period
of the oscillations.

Remark. The scaling in b) is more suitable for comparing graphs than
the scaling in a) since all the curves have the same amplitude, just

100 2 Ordinary differential equation models

different frequency/period. With the scaling in a), we would also get a
major difference in amplitudes.

Filename: pendulum.

Exercise 2.15: ODEs for a binary star

The equations for a binary star, or a planet and a moon, are

mAẍA = F , (2.110)
mBẍB =−F , (2.111)

where xA is the position of object (star) A, and xB is the position object
B. The corresponding masses are mA and mB . The only force is the gravity
force

F = GmAmB

||r||3
r,

where

r(t) = xB(t)−xA(t),

and G is the gravitational constant: G = 6.674 ·10−11 Nm2/kg2. A problem
with these equations is that the parameters are very large (mA, mB , ||r||)
or very small (G). The rotation time for binary stars can be very small and
large as well.

a) Scale the equations.

Solution.
A natural length scale could be the initial distance between the objects:
L= r(0). We write the dimensionless quantities as

x̄A = xA
L
, x̄B = xB

L
, t̄= t

tc
.

The gravity force is transformed to

F = GmAmB

L2||r̄||3
r̄, r̄ = x̄B− x̄A,

so the first ODE for xA becomes

https://en.wikipedia.org/wiki/Binary_star

2.3 Exercises 101

d2x̄A
dt̄2

= GmBt
2
c

L3
r̄

||r̄||3
.

Assuming that quantities with a bar and their derivatives are around
unity in size, it is natural to choose tc such that the fractionGmBtc/L

2 =
1:

tc =

√
L3

GmB
.

From the other equation for xB we get another candidate for tc with
mA instead of mB . Which mass we choose play a role if mA�mB or
mB �mA. One solution is to use the sum of the masses:

tc =

√
L3

G(mA+mB) .

Taking a look at Kepler’s laws of planetary motion, the orbital period for
a planet around the star is given by the tc above, except for a missing
factor of 2π, but that means that t−1

c is just the angular frequency
of the motion. Our characteristic time tc is therefore highly relevant.
Introducing the dimensionless number

α= mA

mB
,

we can write the dimensionless ODE as

d2x̄A
dt̄2

= 1
1 +α

r̄

||r̄||3
, (2.112)

d2x̄B
dt̄2

= 1
1 +α−1

r̄

||r̄||3
. (2.113)

In the limit mA�mB , i.e., α� 1, object B stands still, say x̄B = 0,
and object A orbits according to

d2x̄A
dt̄2

=− x̄A
||x̄A||3

.

To better see the motion, and that our scaling is reasonable, we intro-
duce polar coordinates r and θ:

x̄A = r cosθi+ r sinθj,

which means x̄A can be written as x̄A = rir. Since

https://en.wikipedia.org/wiki/Kepler%27s_laws_of_planetary_motion

102 2 Ordinary differential equation models

d

dt
ir = θ̇iθ,

d

dt
iθ =−θ̇ir,

we have

d2x̄A
dt̄2

= (r̈− rθ̇2)ir + (rθ̈+ 2ṙθ̇)iθ .

The equation of motion for mass A is then

r̈− rθ̇2 =− 1
r2 ,

rθ̈+ 2ṙθ̇ = 0 .

The special case of circular motion, r= 1, fulfills the equations, since the
latter equation then gives θ̇= const and the former then gives θ̇= 1, i.e.,
the motion is r(t) = 1, θ(t) = t, with unit angular frequency as expected
and period 2π as expected.

b) Solve the scaled equations numerically for two cases:

1. a planet around a star: α= 10−3, xA(0) = (1,0), ẋA(0) = (0,1), xB(0) = 0,
ẋB(0) = 0

2. two stars: α= 1
2 , xA(0) = (1,0), ẋA(0) = (0, 1

2), xB(0) = 0, ẋB(0) = (0,−1
2)

An assumption here is that the orbits are co-planar such that they can be
taken to lie in the xy plane.

Solution.

Here is an appropriate program (using SciTools for simpler animation
code than required by Matplotlib):

#import matplotlib.pyplot as plt
import scitools.std as plt
import odespy
import numpy as np

def solver(alpha, ic, T, dt=0.05):
def f(u, t):

x_A, vx_A, y_A, vy_A, x_B, vx_B, y_B, vy_B = u
distance3 = np.sqrt((x_B-x_A)**2 + (y_B-y_A)**2)**3
system = [

vx_A,
1/(1.0 + alpha)*(x_B - x_A)/distance3,
vy_A,
1/(1.0 + alpha)*(y_B - y_A)/distance3,
vx_B,

https://github.com/hplgit/scitools

2.3 Exercises 103

-1/(1.0 + alpha**(-1))*(x_B - x_A)/distance3,
vy_B,
-1/(1.0 + alpha**(-1))*(y_B - y_A)/distance3,
]

return system

Nt = int(round(T/dt))
t_mesh = np.linspace(0, Nt*dt, Nt+1)

solver = odespy.RK4(f)
solver.set_initial_condition(ic)
u, t = solver.solve(t_mesh)
x_A = u[:,0]
x_B = u[:,2]
y_A = u[:,4]
y_B = u[:,6]
return x_A, x_B, y_A, y_B, t

def demo_circular():
Mass B is at rest at the origin,
mass A is at (1, 0) with vel. (0, 1)
ic = [1, 0, 0, 1, 0, 0, 0, 0]
x_A, x_B, y_A, y_B, t = solver(

alpha=0.001, ic=ic, T=2*np.pi, dt=0.01)
plt.plot(x_A, x_B, ’r2-’, y_A, y_B, ’b2-’,

legend=[’A’, ’B’],
daspectmode=’equal’) # x and y axis have same scaling

plt.savefig(’tmp_circular.png’)
plt.savefig(’tmp_circular.pdf’)
plt.show()

def demo_two_stars(animate=True):
Initial condition
ic = [0.6, 0, 0, 1, # star A: velocity (0,1)

0, 0, 0, -0.5] # star B: velocity (0,-0.5)
Solve ODEs
x_A, x_B, y_A, y_B, t = solver(

alpha=0.5, ic=ic, T=4*np.pi, dt=0.05)
if animate:

Animate motion and draw the objects’ paths in time
for i in range(len(x_A)):

plt.plot(x_A[:i+1], x_B[:i+1], ’r-’,
y_A[:i+1], y_B[:i+1], ’b-’,
[x_A[0], x_A[i]], [x_B[0], x_B[i]], ’r2o’,
[y_A[0], y_A[i]], [y_B[0], y_B[i]], ’b4o’,
daspectmode=’equal’, # axes aspect
legend=[’A’, ’B’, ’A’, ’B’],
axis=[-1, 1, -1, 1],
savefig=’tmp_%04d.png’ % i,
title=’t=%.2f’ % t[i])

else:
Make a simple static plot of the solution
plt.plot(x_A, x_B, ’r-’, y_A, y_B, ’b-’,

104 2 Ordinary differential equation models

daspectmode=’equal’, legend=[’A’, ’B’],
axis=[-1, 1, -1, 1], savefig=’tmp_two_stars.png’)

#plt.axes().set_aspect(’equal’) # mpl
plt.show()

if __name__ == ’__main__’:
import sys
if sys.argv[1] == ’circular’:

demo_circular()
else:

demo_two_stars(True)
raw_input()

We remark that the sequence of unknowns in u must be different if the
odespy.EulerCromer solver is to be chosen. In that case, the velocity
for each degree of freedom must appear before the position.

1.0 0.5 0.0 0.5 1.0
1.0

0.5

0.0

0.5

1.0

1.5
A
B

Planet in circular motion around a star:

2.3 Exercises 105

Filename: binary_star.

Problem 2.16: Duffing’s equation

Duffing’s equation is a vibration equation with linear and cubic spring terms:

mu′′+k0u+k1u
3 = 0, u(0) = U0, u

′(0) = 0 .

Scale this problem.

Solution.

We introduce t̄= t/tc and ū= u/uc:

mt−2
c ucū

′′+k0ucū+k1u
3
c ū

3 =, ucū(0) = U0, ucū
′(0) = 0 .

Choosing tc as in a linear vibration problem, tc =
√
m/k0, and uc =U0,

we get

ū′′+ ū+αu3 = 0, ū(0) = 1, ū′(0) = 0,

where

α= U2
0
k1
k0
,

106 2 Ordinary differential equation models

is a dimensionless parameter reflecting the ratio of the cubic spring term
k1U

3
0 and the linear spring term k0U0 at maximum displacement.

Filename: Duffing_eq.

Problem 2.17: Vertical motion in a varying gravity field

A body (e.g., projectile or rocket) is launched vertically from the surface
of the earth with velocity V . The body’s distance (height) from the earth’s
surface at time t is represented by the function h(t). Unless h is very much
smaller than the earth’s radius R, the motion takes place in a varying gravity
field. The governing ODE problem for h(t) is then

h′′(t) =− R2g

(h+R)2 , h(0) = 0, h′(0) = V, t ∈ (0,T], (2.114)

where g is the acceleration of gravity at the earth’s surface.
The goal is to discuss three scalings of this problem. First we introduce

h̄= h

hc
, t̄= t

tc
,

which gives the dimensionless ODE

d2h̄

dt̄2
=− t

2
c

hc

R2g

(hch̄+R)2 =− t
2
c

h3
c

R2g(
h̄+R/hc

)2
and the dimensionless initial condition

dh̄

dt̄
(0) = tcV

hc
.

The key dimensionless variable in this problem turns out to be

ε= V√
Rg

.

a) Assume we study the motion over long distances such that h may be of
the same size as R. In this case, hc =R is a reasonable choice. Determine tc
from requiring the initial velocity to be unity. Set up the dimensionless ODE
problem.

2.3 Exercises 107

Solution.
The suggested requirement leads to

tcV

hc
= tcV

R
= 1 ⇒ tc = R

V
.

Inserting this tc in the ODE gives the scaled ODE problem

d2h̄

dt̄2
=− 1

ε2
(
1 + h̄

)2 , h̄(0) = 0, dh̄
dt̄

(0) = 1 .

b) As a), but determine tc by demanding both terms in the scaled ODE to
have unit coefficients.

Solution.
We set

t2c
h3
c

R2g = t2cg

R
= 1 ⇒ tc =

√
R

g
.

The initial condition then becomes

dh̄

dt̄
(0) = V√

Rg
= ε .

The scaled ODE problem is now

d2h̄

dt̄2
=− 1(

1 + h̄
)2 , h̄(0) = 0, dh̄

dt̄
(0) = ε .

c) For small initial velocity V , h will be small compared to R. In the limit
h/R→ 0, the governing equation simplifies to the well-known motion in a
constant gravity field: h′′ =−g. Use this model to suggest a time and length
scale, and derive a dimensionless ODE problem.

Solution.

The solution of h′′ =−g with h(0) and h′(0) = V is easily obtained by
integrating twice: h = −1

2gt
2 + V t. The maximum height reached by

the body is found by setting h′(t) = 0: V − gt = 0, which suggests a
corresponding characteristic time tc = V/g. The responding maximum

108 2 Ordinary differential equation models

height h(tc) = 1
2V

2/g can be used as characteristic height: hc = 1
2V

2/g.
The factor 1

2 is not important, and the ODE problem looks nicer without
it, so we simply set hc = V 2/g. Inserted in the initial condition, we get

dh̄

dt̄
(0) = V tc

hc
= 1 .

The scaled ODE takes the form

d2h̄

dt̄2
=− ε−4(

h̄+ 2ε−2
)2 =− 1(

1 + ε2h̄
)2 .

d) Give an interpretation of the dimensionless parameter ε.

Solution.

We know from c) that the characteristic height in the constant gravity
limit is V 2/g. We can therefore write

ε2 = V 2/g

R
,

which shows that ε2 is the ratio of the height for small V , i.e., motion
in a constant gravity field, and the earth’s radius. A small ε means that
we can neglect varying gravity.

e) Solve numerically for h̄(t̄) in each of the three scalings in a), b), and c),
with ε2 = 0.01,0.1,0.5,1,2. When are the various scalings appropriate? (That
is, when are t̄ and h̄ of size unity or at least not very small or big?)

Solution.
For numerical solution we rewrite the ODE as a system of two first-
order ODEs by introducing a new variable v̄ (velocity): h̄′ = v̄, v̄′ =
Here is a code that employs Odespy to solve the system of first-order
ODEs:

import odespy, numpy as np
import matplotlib.pyplot as plt

def varying_gravity(epsilon):
def ode_a(u, t):

h, v = u
return [v, -epsilon**(-2)/(1 + h)**2]

https://github.com/hplgit/odespy

2.3 Exercises 109

def ode_b(u, t):
h, v = u
return [v, -1.0/(1 + h)**2]

def ode_c(u, t):
h, v = u
return [v, -1.0/(1 + epsilon**2*h)**2]

problems = [ode_a, ode_b, ode_c] # right-hand sides
ics = [[0, 1], [0, epsilon], [0, 1]] # initial conditions
for problem, ic, legend in zip(problems, ics, [’a’, ’b’, ’c’]):

solver = odespy.RK4(problem)
solver.set_initial_condition(ic)
t = np.linspace(0, 5, 5001)
Solve ODE until h < 0 (h is in u[:,0])
u, t = solver.solve(t, terminate=lambda u, t, n: u[n,0] < 0)
h = u[:,0]

plt.figure()
plt.plot(t, h)
plt.legend(legend, loc=’upper left’)
plt.title(r’$\epsilon^2=%g$’ % epsilon**2)
plt.xlabel(r’$\bar t$’); plt.ylabel(r’$\bar h(\bar t)$’)
plt.savefig(’tmp_%s.png’ % legend)
plt.savefig(’tmp_%s.pdf’ % legend)

Recall from d) that ε2 is the ratio of the height reached in a constant
gravity field and the earth’s radius. The figures below show the results
for ε2 = 0.01,0.1,0.5,1,2, respectively.

0.000 0.005 0.010 0.015 0.020 0.025
t̄

0.001

0.000

0.001

0.002

0.003

0.004

0.005

0.006

h̄
(̄t

)

ε2 =0.01

a

0.00 0.05 0.10 0.15 0.20 0.25
t̄

0.001

0.000

0.001

0.002

0.003

0.004

0.005

0.006

h̄
(̄t

)

ε2 =0.01

b

0.0 0.5 1.0 1.5 2.0 2.5
t̄

0.1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

h̄
(̄t

)

ε2 =0.01

c

0.00 0.05 0.10 0.15 0.20 0.25
t̄

0.01

0.00

0.01

0.02

0.03

0.04

0.05

0.06

h̄
(̄t

)

ε2 =0.1

a

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
t̄

0.01

0.00

0.01

0.02

0.03

0.04

0.05

0.06

h̄
(̄t

)

ε2 =0.1

b

0.0 0.5 1.0 1.5 2.0 2.5
t̄

0.1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

h̄
(̄t

)

ε2 =0.1

c

110 2 Ordinary differential equation models

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
t̄

0.05

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

h̄
(̄t

)

ε2 =0.5

a

0.0 0.5 1.0 1.5 2.0 2.5
t̄

0.05

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

h̄
(̄t

)

ε2 =0.5

b

0.0 0.5 1.0 1.5 2.0 2.5 3.0
t̄

0.1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

h̄
(̄t

)

ε2 =0.5

c

0 1 2 3 4 5
t̄

0.0

0.2

0.4

0.6

0.8

1.0

h̄
(̄t

)

ε2 =1

a

0 1 2 3 4 5
t̄

0.0

0.2

0.4

0.6

0.8

1.0

h̄
(̄t

)

ε2 =1

b

0 1 2 3 4 5
t̄

0.0

0.2

0.4

0.6

0.8

1.0

h̄
(̄t

)

ε2 =1

c

0 1 2 3 4 5
t̄

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

h̄
(̄t

)

ε2 =2

a

0 1 2 3 4 5
t̄

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

h̄
(̄t

)

ε2 =2

b

0 1 2 3 4 5
t̄

0.0

0.5

1.0

1.5

2.0

2.5

3.0

h̄
(̄t

)

ε2 =2

c

For ε small (ε2 = 0.01,0.1), we see that the scaling in c) is most
relevant since the scalings in a) and b) give small h̄ and t̄. For ε = 1,
all three scalings are equal. For larger ε, the body does not return to
the earth. The scalings in a) and c) become equal in the limit ε→∞,
but they are already quite similar for ε =

√
2 according to the bottom

figure above. The scaling in c) is therefore the most appealing one since
it works for small as well as large ε and become close to the others for
ε around unity.

Remark. The present problem is one of the few problems that is dis-
cussed at length in the literature, see Logan [9] or Lin and Segel [8].
The standard argument is that the scaling in c) is favorable since it is
the only scaling that is valid as ε→ 0. However, that it is robust also
for the larger relevant values of ε is something that is only clear when
we solve the three problems numerically.

Filename: varying_gravity.

2.3 Exercises 111

Problem 2.18: A simplified Schroedinger equation

A simplified stationary Schroedinger’s equation for one electron, assuming
radial symmetry, takes the form

− h̄2

2m
1
r2

d

dr

(
r2 d

dr

)
R+V (r)R= ER, (2.115)

where r is the radial coordinate,R is the wave function, h̄ is Planck’s constant,
m is the mass of the electron, V = is the force potential, which is here taken
as the Coulomb potential V (r) = e2/(8πε0r) (where e is the charge of the
electron and ε0 is the permittivity of free space), and E is the eigenvalue, for
the energy, to be determined along with R(r).

Show that the scaled version of (2.115) can be written

−
(

1
r̄2

d

dr̄
r̄2 d

dr̄

)
R̄+ 1

r̄
R̄= λR̄, (2.116)

where λ is a dimensionless eigenvalue

λ= (4π)2ε20h̄
2E

me4 .

The symbol r̄ is the scaled coordinate, and R̄ is a scaled version of R (the scal-
ing factor drops out of the equation). The length scale, which arises naturally,
is the Bohr radius.

Solution.
We introduce

r̄ = r

rc
, R̄= R

Rc
,

and insert these expressions in the differential equation. Multiplying
with 2mr2

c/h̄
2 we get

−
(

1
r̄2

d

dr̄

(
r̄2 d

dr̄

))
R̄+ me2rc

4πε0h̄2
1
r̄
R̄= 2Emr2

c

h̄2 R.

Note that all the Rc factors cancel.
Balance of the two terms on the left-hand side suggests that the

length scale rc can be determined from requiring

me2rc

4πε0h̄2 = 1,

i.e.,

https://en.wikipedia.org/wiki/Bohr_radius

112 2 Ordinary differential equation models

rc = 4πε0h̄2

me2 ,

which is actually the Bohr radius, demonstrating that the balance of
the terms on the left-hand side automatically determines a very relevant
length scale.

A bit of arithmetics in the right-hand side term gives the given ex-
pression for λ. We then end up with (2.116).

Filename: Schroedinger.

Remarks. Introducing u = r̄R̄ and renaming r̄ to x, (2.116) can be recast
in the simpler form

−u′′(x) + 1
x
u(x) = λu(x),

which is a simpler eigenvalue problem to solve numerically (the boundary
conditions are u(0) = 0 and limx→∞u(x) = 0).

Chapter 3
Basic partial differential equation
models

This chapter extends the scaling technique to well-known partial differential
equation (PDE) models for waves, diffusion, and transport. We start out with
the simplest 1D models of the PDEs and then progress with additional terms,
different types of boundary and initial conditions, and generalizations to 2D
and 3D.

3.1 The wave equation

A standard, linear, one-dimensional wave equation problem in a homogeneous
medium may be written as

∂2u

∂t2
= c2

∂2u

∂x2 , x ∈ (0,L), t ∈ (0,T], (3.1)

where c is the constant wave velocity of the medium. With a briefer notation,
where subscripts indicate derivatives, the PDE (3.1) can be written utt =
c2uxx. This subscript notation will occasionally be used later.

For any number of dimensions in heterogeneous media we have the gener-
alization

∂2u

∂t2
=∇·

(
c2∇u

)
+f, x,y,z ∈Ω, t ∈ (0,T], (3.2)

where f represents a forcing.

3.1.1 Homogeneous Dirichlet conditions in 1D

Let us first start with (3.1), homogeneous Dirichlet conditions in space, and
no initial velocity ut:

113

114 3 Basic partial differential equation models

u(x,0) = I(x), x ∈ [0,L], (3.3)
∂

∂t
u(x,0) = 0, x ∈ [0,L], (3.4)

u(0, t) = 0, t ∈ (0,T], (3.5)
u(L,t) = 0, t ∈ (0,T]. (3.6)

The independent variables are x and t, while u is the dependent variable.
The rest of the parameters, c, L, T , and I(x), are given data.

We start with introducing dimensionless versions of the independent and
dependent variables:

x̄= x

xc
, t̄= t

tc
, ū= u

uc
.

Inserting the x= xcx̄, etc., in (3.1) and (3.3)-(3.6) gives

∂2ū

∂t̄2
= t2cc

2

x2
c

∂2ū

∂x2 , x̄ ∈ (0,L/xc), t̄ ∈ (0,T/tc],

ū(x̄,0) = I(xcx̄)
uc

, x̄ ∈ [0,L/xc],

∂

∂t̄
ū(x̄,0) = 0, x̄ ∈ [0,L/xc],

ū(0, t̄) = 0, t̄ ∈ (0,T/tc],
ū(L/xc, t̄) = 0, t̄ ∈ (0,T/tc].

The key question is how to define the scales. A natural choice is xc = L
since this makes x̄ ∈ [0,1]. For the spatial scale and the problem governed by
(3.1) we have some analytical insight that can help. The solution behaves like

u(x,t) = fR(x− ct) +fR(x+ ct), (3.7)

i.e., a right- and left-going wave with velocity c. The initial conditions con-
strain the choices of fR and fL to fL + fR = I and −cf ′L + cf ′R = 0. The
solution is fR = fL = 1

2 , and consequently

u(x,t) = 1
2I(x− ct) + 1

2I(x+ ct),

which tells that the initial condition splits in two, half of it moves to the
left and half to the right. This means in particular that we can choose
uc = maxx |I(x)| and get |ū| ≤ 1, which is a goal. It must be added that
boundary conditions may result in reflected waves, and the solution is then
more complicated than indicated in the formula above.

3.1 The wave equation 115

Regarding the time scale, we may look at the two terms in the scaled PDE
and argue that if |u| and its derivatives are to be of order unity, then the size
of the second-order derivatives should be the same, and tc can be chosen to
make the coefficient t2cc2/x2

c unity, i.e., tc = L/c. Another reasoning may set
tc as the time it takes the wave to travel through the domain [0,L]. Since the
wave has constant speed c, tc = L/c.

With the described choices of scales, we end up with the dimensionless
initial-boundary value problem

∂2ū

∂t̄2
= ∂2ū

∂x2 , x̄ ∈ (0,1), t̄ ∈ (0, T̄], (3.8)

ū(x̄,0) = I(x̄L)
maxx∈(0,L) |I(x)| , x̄ ∈ [0,1], (3.9)

∂

∂t̄
ū(x̄,0) = 0, x̄ ∈ [0,1], (3.10)

ū(0, t̄) = 0, t̄ ∈ (0, T̄], (3.11)
ū(1, t̄) = 0, t̄ ∈ (0, T̄]. (3.12)

Here, T̄ = Tc/L.
The striking feature of (3.8)-(3.12) is that there are no physical parameters

involved! Everything we need to specify is the shape of the initial condition
and then scale it such that it is less than or equal to 1.

The physical solution with dimension is recovered from ū(x̄, t̄) through

u(x,t) = max
x∈(0,L)

I(x) ū(x̄L, t̄L/c) (3.13)

3.1.2 Implementation of the scaled wave equation

How do we implement (3.8)-(3.12)? As for the simpler mathematical models,
we suggest to implement the model with dimensions and observe how to set
parameters to obtain the scaled model. In the present case, one must choose
L= 1, c= 1, and scale I by its maximum value. That’s all!

Several implementations of 1D wave equation models with different degree
of mathematical and software complexity come along with these notes. The
simplest version is wave1D_u0.py that implements (3.1) and (3.3)-(3.6). This
is the code to be used in the following. It is described in Section 2.3 in [7].
Waves on a string. As an example, we may let the original initial-boundary
value problem (3.1)-(3.6) model vibrations of a string on a string instrument
(e.g., a guitar). With u as the displacement of the string, the boundary con-
ditions u = 0 at the ends are relevant, as well as the zero velocity condition
∂u/∂t= 0 at t= 0. The initial condition I(x) typically has a triangular shape

http://tinyurl.com/o8pb3yy/wave1D_u0.py

116 3 Basic partial differential equation models

for a picked guitar string. The physical problem needs parameters for the am-
plitude of I(x), the length L of the string, and the value of c for the string.
Only the latter is challenging as it involves relating c to the pitch (i.e., time
frequency) of the string. In the scaled problem, we can forget about all this.
We simply set L= 1, c= 1, and let I(x) have a peak of unity at x= x0 ∈ (0,1):

I(x)
maxx I(x) =

{
x/x0, x < x0,
(1−x)/(1−x0), otherwise

The dimensionless coordinate of the peak, x0, is the only dimensionless pa-
rameter in the problem. For fixed x0, one single simulation will capture all
possible solutions with such an initial triangular shape.

Detecting an already computed case. The file wave1D_u0_scaled.py
has functionality for detecting whether a simulation corresponds to a previ-
ously run scaled case, and if so, the solution is retrieved from file. The im-
plementation technique makes use of joblib, but is more complicated than
shown previously in these notes since some of the arguments to the function
that computes the solution are functions, and one must recognized if the
function has been used as argument before or not. There is documentation
in the wave1D_u0_scaled.py file explaining how this is done.

3.1.3 Time-dependent Dirichlet condition

A generalization of (3.1)-(3.6) is to allow for a time-dependent Dirichlet con-
dition at one end, say u(0, t) = UL(t). At the other end we may still have
u = 0. This new condition at x = 0 may model a specified wave that enters
the domain. For example, if we feed in a monochromatic wave Asin(k(x−ct))
from the left end, UL(t) =Asin(kct). This forcing of the wave motion has its
own amplitude and time scale that could affect the choice of uc and tc.

The main difference from the previous initial-boundary value problem is
the condition at x= 0, which now reads

ū(0, t̄) = UL(t̄tc)
uc

in scaled form.

Scaling. Regarding the characteristic time scale, it is natural to base this
scale on the wave propagation velocity, together with the length scale, and not
on the time scale of UL(t), because the time scale of UL basically determines
whether short or long waves are fed in at the boundary. All waves, long
or short, propagate with the same velocity c. We therefore continue to use
tc = L/c.

The solution u will have one wave contribution from the initial condition I
and one from the feeding of waves at x= 0. This gives us three choices of uc:

http://tinyurl.com/o8pb3yy/wave1D_u0_scaled.py

3.1 The wave equation 117

maxx |I|+ maxt |UL|, maxx |I|, or maxt |UL|. The first seems relevant if the
size of I and UL are about the same, but then we can choose either maxx |I|
or maxt |UL| as characteristic size of u since a factor of 2 is not important. If
I is much less than UL, uc = maxt |uL| is relevant, while uc = maxx |I| is the
choice when I has much bigger impact than UL on u.

With uc = maxt |UL(t)|, we get the scaled problem

∂2ū

∂t̄2
= ∂2ū

∂x̄2 , x̄ ∈ (0,1), t̄ ∈ (0, T̄], (3.14)

ū(x̄,0) = I(xcx̄)
maxt |UL(t)| , x̄ ∈ [0,1], (3.15)

∂

∂t̄
ū(x̄,0) = 0, x̄ ∈ [0,1], (3.16)

ū(0, t̄) = UL(t̄tc)
maxt |UL(t)| , t̄ ∈ (0, T̄], (3.17)

ū(1, t̄) = 0, t̄ ∈ (0, T̄]. (3.18)

Also this problem is free of physical parameters like c and L. The input is
completely specified by the shape of I(x) and UL(t).

Software. Software for the original problem with dimensions can be reused
for (3.14)-(3.18) by setting L = 1, c = 1, and scaling UL(t) and I(x) by
maxt |UL(t)|.

Specific case. As an example, consider

UL(t) = asin(ωt) for 0≤ t≤ 2 ω2π , else 0,

I(x) =Ae−(x−L/2)2/σ2
.

That is, we start with a Gaussian peak-shaped wave in the center of the
domain and feed in a sinusoidal wave at the left end for two periods. The
solution will be the sum of three waves: two parts from the initial condition,
plus the wave fed in from the left.

Since maxt |UL|= a we get

ū(x̄,0) = A

a
e−(L/σ)2(x̄− 1

2)2
, (3.19)

ū(0, t̄) = sin(t̄ωL/c) . (3.20)

Here, UL models an incoming wave asin(k(x− ct), with k specified. The re-
sult is incoming waves of length λ= 2π/k. Since ω = kc, ū(0, t̄) = sin(kLt̄) =
sin(2πt̄L/λ). (This formula demonstrates the previous assertion that the time
scale of UL, i.e., 1/ω, determines the wave length 1/ω= λ/(2π) in space.) We

118 3 Basic partial differential equation models

realize from the formulas (3.19) and (3.20) that there are three key dimen-
sionless parameters related to these specific choices of initial and boundary
conditions:

α= A

a
, β = L

σ
, γ = kL= 2πL

λ
.

With α, β, and γ we can write the dimensionless initial and boundary con-
ditions as

ū(x̄,0) = αe−β
2(x̄− 1

2)2
,

ū(0, t̄) = sin(γt̄) .

The dimensionless parameters have the following interpretations:

• α: ratio of initial condition amplitude and amplitude of incoming wave at
x= 0

• β: ratio of length of domain and width of initial condition
• γ: ratio of length of domain and wave length of incoming wave

Again, these dimensionless parameters tell a lot about the interplay of the
physical effects in the problem. And only some ratios count!

We can simulate two special cases:

1. α= 10 (large) where the incoming wave is small and the solution is dom-
inated by the two waves arising from I(x),

2. α = 0.1 (small) where the incoming waves dominate and the solution has
the initial condition just as a small perturbation of the wave shape.

We may choose a peak-shaped initial condition: β = 10, and also a relatively
short incoming wave compared to the domain size: γ = 6π (i.e., wave length of
incoming wave is L/6). A function simulate_Gaussian_and_incoming_wave
in the file session.py applies the general unscaled solver in wave1D_dn.
py for solving the wave equation with constant c, and any time-dependent
function or ∂u/∂x = 0 at the end points. This solver is trivially adapted to
the present case. Figures 3.1 and 3.2 shows snapshots of how ū(x̄, t̄) evolves
due to a large/small initial condition and small/large incoming wave at the
left boundary.

Movie 1: α = 10. https://github.com/hplgit/scaling-book/raw/master/doc/
pub/book/html/mov-scaling/gaussian_plus_incoming/alpha10.mp4

Movie 2: α= 0.1. https://github.com/hplgit/scaling-book/raw/master/doc/
pub/book/html/mov-scaling/gaussian_plus_incoming/alpha01.mp4

http://tinyurl.com/o8pb3yy/session.py
http://tinyurl.com/o8pb3yy/wave1D_dn.py
http://tinyurl.com/o8pb3yy/wave1D_dn.py
https://github.com/hplgit/scaling-book/raw/master/doc/pub/book/html/mov-scaling/gaussian_plus_incoming/alpha10.mp4
https://github.com/hplgit/scaling-book/raw/master/doc/pub/book/html/mov-scaling/gaussian_plus_incoming/alpha10.mp4
https://github.com/hplgit/scaling-book/raw/master/doc/pub/book/html/mov-scaling/gaussian_plus_incoming/alpha01.mp4
https://github.com/hplgit/scaling-book/raw/master/doc/pub/book/html/mov-scaling/gaussian_plus_incoming/alpha01.mp4

3.1 The wave equation 119

Fig. 3.1 Snapshots of solution with large initial condition and small incoming wave
(α= 10).

3.1.4 Velocity initial condition

Now we change the initial condition from u= I and ∂u/∂t= 0 to

u(x,0) = 0, (3.21)
∂

∂t
u(x,0) = V (x) . (3.22)

Impact problems are often of this kind. The scaled version of ut(x,0) = V (x)
becomes

∂

∂t̄
ū(x̄,0) = tc

uc
V (x̄xc) .

Analytical insight. From (3.7) we now get fL+fR = 0 and cf ′L−cf ′R = V .
Introducing W (x) such that W ′(x) = V (x), a solution is fL = 1

2W/c and
−fR = 1

2W/c. We can express this solution through the formula

120 3 Basic partial differential equation models

Fig. 3.2 Snapshots of solution with small initial condition and large incoming wave
(α= 0.1).

u(x,t) = 1
2c

∫ x+ct

x−ct
V (ξ)dξ = 1

2c (W (x+ ct)−W (x− ct)) . (3.23)

Scaling. Since V is the time-derivative of u, the characteristic size of V , call
it Vc, is typically uc/tc. If we, as usual, base tc on the wave speed, tc = L/c,
we get uc = VcL/c. Looking at the solution (3.23), we see that uc has size
mean(V)L/(2c), where mean(V) is the mean value of V (W ∼mean(V)L).
This result suggests Vc = mean(V) and uc = mean(V)L/(2c). One may argue
that the factor 2 is not important, but if we want |ū| ∈ [0,1] it is convenient
to keep it.

The scaled initial condition becomes

∂

∂t̄
ū(x̄,0) = tc

uc
V (x̄xc) = V (x̄xc)

1
2mean(V)

.

Nonzero initial shape. Suppose we change the initial condition u(x,0) = 0
to u(x,0) = I(x). The scaled version of this condition with the above uc based
on V becomes

ū(x̄,0) = 2cI(x̄xc)
Lmean(V) . (3.24)

3.1 The wave equation 121

Check that dimensionless numbers are dimensionless!
Is a dimensionless number really dimensionless? It is easy to make er-
rors when scaling equations, so checking that such fractions are dimen-
sionless is wise. The dimension of I is the same as u, here taken to be
displacement: [L]. Since V is ∂u/∂t, its dimension is [LT−1]. The dimen-
sions of c and L are [LT−1] and [L]. The dimension of the right-hand
side of (3.24) is then

[LT−1][L]
[L][LT−1]

= 1,

demonstrating that the fraction is indeed dimensionless.

One may introduce a dimensionless initial shape, Ī(x̄) = I(x̄L)/maxx |I|.
Then

ū(x̄,0) = αĪ(x̄),

where α the dimensionless number

α= 2c
L

maxx |I(x)|
mean(V) .

If V is much larger than I, one expects that the influence of I is small.
However, it takes time for the initial velocity V to influence the wave motion,
so the speed of the waves c and the length of the domain L also play a
role. This is reflected in α, which is the important parameter. Again, the
scaling and the resulting dimensionless parameter(s) teach us much about
the interaction of the various physical effects.

3.1.5 Variable wave velocity and forcing

The next generalization regards wave propagation in a non-homogeneous
medium where the wave velocity c depends on the spatial position: c= c(x).
To simplify the notation we introduce λ(x) = c2(x). We introduce homoge-
neous Neumann conditions at x = 0 and x = L. In addition, we add a force
term f(x,t) to the PDE, modeling wave generation in the interior of the
domain. For example, a moving slide at the bottom of a fjord will generate
surface waves and is modeled by such an f(x,t) term (provided the length of
the waves is much larger than the depth so that a simple wave equation like
(3.25) applies). The initial-boundary value problem can be then expressed as

122 3 Basic partial differential equation models

∂2u

∂t2
= ∂

∂x

(
λ(x)∂u

∂x

)
+f(x,t), x ∈ (0,L), t ∈ (0,T], (3.25)

u(x,0) = I(x), x ∈ [0,L], (3.26)
∂

∂t
u(x,0) = 0, x ∈ [0,L], (3.27)

∂

∂x
u(0, t) = 0, t ∈ (0,T], (3.28)

∂

∂x
u(L,t) = 0, t ∈ (0,T]. (3.29)

Non-dimensionalization. We make the coefficient λ non-dimensional by

λ̄(x̄) = λ(x̄xc)
λc

, (3.30)

where one normally chooses the characteristic size of λ, λc, to be the maxi-
mum value such that |λ| ≤ 1:

λc = max
x∈(0,L)

λ(x) .

Similarly, f has a scaled version

f̄(x̄, t̄) = f(x̄xc, t̄tc)
fc

,

where normally we choose

fc = max
x,t
|f(x,t)| .

Inserting dependent and independent variables expressed by their non-
dimensional counterparts yields

∂2ū

∂t̄2
= t2cλc

L2
∂

∂x̄

(
λ̄(x̄)∂ū

∂x̄

)
+ t2cfc

uc
f̄(x̄, t̄), x̄ ∈ (0,1), t̄ ∈ (0, T̄],

ū(x̄,0) = I(x)
uc

, x̄ ∈ [0,1],

∂

∂t̄
ū(x̄,0) = 0, x̄ ∈ [0,1],

∂

∂x̄
ū(0, t̄) = 0, t̄ ∈ (0, T̄],

∂

∂x̄
ū(1, t̄) = 0, t̄ ∈ (0, T̄],

with T̄ = Tc/L.

3.1 The wave equation 123

Choosing the time scale. The time scale is, as before, chosen as tc =
L/
√
λc. Note that the previous (constant) wave velocity c now corresponds

to
√
λ(x). Therefore,

√
λc is a characteristic wave velocity.

One could wonder if the time scale of the force term, f(x,t), should influ-
ence tc, but as we reasoned for the boundary condition u(0, t) =UL(t), we let
the characteristic time be governed by the signal speed in the medium, i.e.,
by
√
λc here and not by the time scale of the excitation f , which dictates the

length of the generated waves and not their propagation speed.
Choosing the spatial scale. We may choose uc as maxx |I(x)|, as before,
or we may fit uc such that the coefficient in the source term is unity, i.e., all
terms balance each other. This latter idea leads to

uc = L2fc
λc

and a PDE without parameters,

∂2ū

∂t̄2
= ∂

∂x̄

(
λ̄(x̄)∂ū

∂x̄

)
+ f̄(x̄, t̄) .

The initial condition u(x,0) = I(x) becomes in dimensionless form

ū(x̄,0) = u−1
c max

x
|I(x)|Ī(x̄) = β−1Ī(x̄),

where

β = L2

λc

maxx,t |f(x,t)|
maxx |I(x)| .

In the case uc = maxx |I(x)|, ū(x̄,0) = Ī(x̄) and the β parameter appears
in the PDE instead:

∂2ū

∂t̄2
= ∂

∂x̄

(
λ̄(x̄)∂ū

∂x̄

)
+βf̄(x̄, t̄) .

With V = 0, and u = 0 or ux = 0 on the boundaries x = 0,L, this scaling
normally gives |ū| ≤ 1, since initially |I| ≤ 1, and no boundary condition can
increase the amplitude. However, the forcing, f̄ , may inherit spatial and tem-
poral scales of its own that may complicate the matter. The forcing may, for
instance, be some disturbance moving with a velocity close to the propaga-
tion velocity of the free waves. This will have an effect akin to the resonance
for the vibration problem discussed in section 2.2.2 and the waves produced
by the forcing may be much larger than indicated by β. On the other hand,
the forcing may also consist of alternating positive and negative parts (ret-
rogressive slides constitute an example). These may interfere to reduce the
wave generation by an order of magnitude.
Scaling the velocity initial condition. The initial condition ut(x,0) =
V (x) has its dimensionless variant as

124 3 Basic partial differential equation models

V̄ (x̄) = tc
uc

V (Lx̄)
maxx |V (x)| ,

which becomes

∂ū

∂t̄
(x̄,0) = L√

λc

maxx |V (x)|
maxx |I(x)| V̄ (x̄), if uc = max

x
|I(x)|,

or

∂ū

∂t̄
(x̄,0) =

√
λc
L

maxx |V (x)|
maxx,t |f(x,t)| V̄ (x̄), if uc = t2cfc = L2

λc
max
x,t
|f(x,t)| .

Introducing the dimensionless number α (cf. Section 3.1.4),

α−1 =
√
λc
L

maxx |V (x)|
maxx,t |f(x,t)| ,

we can write

∂ū

∂t̄
(x̄,0) =

{
α−1V̄ (x̄), uc = maxx |I|
α−1β−1V̄ (x̄), uc = t2cfc

3.1.6 Damped wave equation

A linear damping term b∂u/∂t is often added to the wave equation to model
energy dissipation and amplitude reduction. Our PDE then reads

∂2u

∂t2
+ b

∂u

∂t
= ∂

∂x

(
λ(x)∂u

∂x

)
+f(x,t) . (3.31)

The scaled equation becomes

∂2ū

∂t̄2
+ tc
b

∂ū

∂t̄
= t2cλc

L2
∂

∂x̄

(
λ̄(x̄)∂ū

∂x̄

)
+ t2cfc

uc
f̄(x̄, t̄) .

The damping term is usually much smaller than the two other terms involv-
ing ū. The time scale is therefore chosen as in the undamped case, tc =L/

√
λc.

As in Section 3.1.5, we have two choices of uc: uc = maxx |I| or uc = t2cfc.
The former choice of uc gives a PDE with two dimensionless numbers,

∂2ū

∂t̄2
+γ

∂ū

∂t̄
= ∂

∂x̄

(
λ̄(x̄)∂ū

∂x̄

)
+βf̄(x̄, t̄), (3.32)

where

3.2 The diffusion equation 125

γ = bL√
λc
,

measures the size of the damping, and β is as given in Section 3.1.5. With
uc = t2cfc we get a PDE where only γ enters,

∂2ū

∂t̄2
+γ

∂ū

∂t̄
= ∂

∂x̄

(
λ̄(x̄)∂ū

∂x̄

)
+ f̄(x̄, t̄) . (3.33)

The scaled initial conditions are as in Section 3.1.5, so in this latter case β
appears in the initial condition for u.

To summarize, the effects of V , f , and damping are reflected in the di-
mensionless numbers α, β, and γ, respectively.

3.1.7 A three-dimensional wave equation problem

To demonstrate how the scaling extends to in three spatial dimensions, we
consider

∂2ū

∂t̄2
= ∂

∂x

(
λ
∂u

∂x

)
+ ∂

∂y

(
λ
∂u

∂y

)
+ ∂

∂z

(
λ
∂u

∂z

)
. (3.34)

Introducing

x̄= x

xc
, ȳ = y

yc
, z̄ = z

zc
, t̄= t

tc
, ū= u

uc
,

and scaling λ as λ̄= λ(x̄xc, ȳyc, z̄zc)/λc, we get

∂2ū

∂t̄2
= t2cλc

x2
c

∂

∂x̄

(
λ̄
∂ū

∂x̄

)
+ t2cλc

y2
c

∂

∂ȳ

(
λ̄
∂ū

∂ȳ

)
+ t2cλc

z2
c

∂

∂z̄

(
λ̄
∂ū

∂z̄

)
.

Often, we will set xc = yc = zc = L where L is some characteristic size of the
domain. As before, tc = L/

√
λc, and these choices lead to a dimensionless

wave equation without physical parameters:

∂2ū

∂t̄2
= ∂

∂x̄

(
λ̄
∂ū

∂x̄

)
+ ∂

∂ȳ

(
λ̄
∂ū

∂ȳ

)
+ ∂

∂z̄

(
λ̄
∂ū

∂z̄

)
. (3.35)

The initial conditions remain the same as in the previous one-dimensional
examples.

3.2 The diffusion equation

The diffusion equation in a one-dimensional homogeneous medium reads

126 3 Basic partial differential equation models

∂u

∂t
= α

∂2u

∂x2 , x ∈ (0,L), t ∈ (0,T], (3.36)

where α is the diffusion coefficient. The multi-dimensional generalization to
a heterogeneous medium and a source term takes the form

∂u

∂t
=∇· (α∇u) +f, x,y,z ∈Ω, t ∈ (0,T] . (3.37)

We first look at scaling of the PDE itself, and thereafter we discuss some
types of boundary conditions and how to scale the complete initial-boundary
value problem.

3.2.1 Homogeneous 1D diffusion equation

Choosing the time scale. To make (3.36) dimensionless, we introduce, as
usual, dimensionless dependent and independent variables:

x̄= x

xc
, t̄= t

tc
, ū= u

uc
.

Inserting the dimensionless quantities in the one-dimensional PDE (3.36)
results in

∂ū

∂t̄
= tcα

L2
∂2ū

∂x̄2 , x̄ ∈ (0,1), t̄ ∈ (0, T̄ = T/tc] .

Arguing, as for the wave equation, that the scaling should result in

∂ū

∂t̄
and ∂2ū

∂x̄2

of the same size (about unity), implies tcα/L2 = 1 and therefore tc = L2/α.

Analytical insight. The best way to obtain the scales inherent in a problem
is to obtain an exact analytic solution, as we have done in many of the ODE
examples in this booklet. However, as a rule this is not possible. Still, often
highly simplified analytic solutions can be found for parts of the problem, or
for some closely related problem. Such solutions may provide crucial guidance
to the nature of the complete solution and to the appropriate scaling of the
full problem. We will employ such solutions now to learn about scales in
diffusion problems.

One can show that u=Ae−pt sin(kx) is a solution of (3.36) if p= αk2, for
any k. This is the typical solution arising from separation of variables and
reflects the dynamics of the space and time in the PDE. Exponential decay
in time is a characteristic feature of diffusion processes, and the e-folding
time can then be taken as a time scale. This means tc = 1/p∼ k−2. Since k

3.2 The diffusion equation 127

is related to the spatial wave length λ through k = 2π/λ, it means that tc
depends strongly on the wave length of the sine term sin(kx). In particular,
short waves (as found in noisy signals) with large k decay very rapidly. For
the overall solution we are interested in how the longest meaningful wave
decays and use that time scale for tc. The longest wave typically has half a
wave length over the domain [0,L]: u=Ae−pt sin(πx/L) (k = π/L), provided
u(0, t) = u(L,t) = 0 (with ux(L,t) = 0, the longest wave is L/4, but we look
at the case with the wave length L/2). Then tc = L2/απ−2, but the factor
π−2 is not important and we simply choose tc =L2/α, which equals the time
scale we arrived at above. We may say that tc is the time it takes for the
diffusion to significantly change the solution in the entire domain.

Another fundamental solution of the diffusion equation is the diffusion of a
Gaussian function: u(x,t) =K(4παt)−1/2 exp(−x2/(4αt)), for some constant
K with the same dimension as u. For the diffusion to be significant at a
distance x = L, we may demand the exponential factor to have a value of
e−1 ≈ 0.37, which implies t= L2/(4α), but the factor 4 is not of importance,
so again, a relevant time scale is tc = L2/α.

Choosing other scales. The scale uc is chosen according to the initial
condition: uc = maxx∈(0,L) |I(x)|. For a diffusion equation ut =αuxx with u=
0 at the boundaries x= 0,L, the solution is bounded by the initial condition
I(x). Therefore, the listed choice of uc implies that |u| ≤ 1. (The solution
u = Ae−pt sin(kx) is such an example if k = nπ/L for integer n such that
u= 0 for x= 0 and x= L.)

The resulting dimensionless PDE becomes

∂ū

∂t̄
= ∂2ū

∂x̄2 , x̄ ∈ (0,1), t̄ ∈ (0, T̄], (3.38)

with initial condition

ū(x̄,0) = Ī(x̄) = I(xcx̄)
maxx |I(x)| .

Notice that (3.38) is without physical parameters, but there may be param-
eters in I(x).

3.2.2 Generalized diffusion PDE

Turning the attention to (3.37), we introduce the dimensionless diffusion
coefficient

ᾱ(x̄, ȳ, z̄) = α−1
c α(xcx̄,ycȳ, zcz̄),

typically with

128 3 Basic partial differential equation models

αc = max
x,y,z

α(x,y,z) .

The length scales are

x̄= x

xc
, ȳ = y

yc
, z̄ = z

zc
.

We scale f in a similar fashion:

f̄(x̄, ȳ, z̄, t̄) = f−1
c f(x̄xc, ȳycz̄zc, t̄tc),

with

fc = max
x,y,z,t

|f(x,y,z, t)| .

Also assuming that xc = yc = zc = L, and uc = maxx,y,z(I(x,y,z), we end up
with the scaled PDE

∂ū

∂t̄
= ∇̄ ·

(
ᾱ∇̄ū

)
+βf̄ , x̄, ȳ, z̄ ∈ Ω̄, t̄ ∈ (0, T̄] . (3.39)

Here, ∇̄ means differentiation with respect to dimensionless coordinates x̄,
ȳ, and z̄. The dimensionless parameter β takes the form

β = tcfc
uc

= L2

α

maxx,y,z,t |f(x,y,z, t)|
maxx,y,z |I(x,y,z)| .

The scaled initial condition is ū= Ī as in the 1D case.
An alternative choice of uc is to make the coefficient tcfc/uc in the source

term unity. The scaled PDE now becomes

∂ū

∂t̄
= ∇̄ ·

(
ᾱ∇̄ū

)
+f, (3.40)

but the initial condition features the β parameter:

ū(x̄, ȳ, z̄,0) = I

tcfc
= β−1Ī(x̄, ȳ, z̄) .

The β parameter can be interpreted as the ratio of the source term and
the terms with u:

β = fc
uc/tc

∼ |f |
|ut|

, β = fc
uc/tc

= fc
L2/tcuc/L2 ∼

|fc|
|α∇2u|

.

We may check that β is really non-dimensional. From the PDE, f must
have the same dimensions as ∂u/∂t, i.e., [ΘT−1]. The dimension of α is more
intricate, but from the term αuxx we know that uxx has dimensions [ΘL−2],
and then α must have dimension [L2T−1] to match the target [ΘT−1]. In the
expression for β we get [L2ΘT−1(L2T−1Θ)−1], which equals 1 as it should.

3.2 The diffusion equation 129

3.2.3 Jump boundary condition

A classical one-dimensional heat conduction problem goes as follows. An
insulated rod at some constant temperature U0 is suddenly heated from one
end (x = 0), modeled as a constant Dirichlet condition u(0, t) = U1 6= U0 at
that end. That is, the boundary temperature jumps from U0 to U1 at t= 0. All
the other surfaces of the rod are insulated such that a one-dimensional model
is appropriate, but we must explicitly demand ux(L,t) = 0 to incorporate the
insulation condition in the one-dimensional model at the end of the domain
x = L. Heat cannot escape, and since we supply heat at x = 0, all of the
material will eventually be warmed up to the temperature U1: u→ U1 as
t→∞.

The initial-boundary value problem reads

%c
∂u

∂t
= k

∂2u

∂x2 , x ∈ (0,L), t ∈ (0,T], (3.41)

u(x,0) = U0, x ∈ [0,L], (3.42)
u(0, t) = U1, t ∈ (0,T], (3.43)

∂

∂x
u(L,t) = 0, t ∈ (0,T]. (3.44)

The PDE (3.41) arises from the energy equation in solids and involves three
physical parameters: the density %, the specific heat capacity parameter c,a
nd the heat conduction coefficient (from Fourier’s law). Dividing by %c and
introducing α = k/(%c) brings (3.41) on the standard form (3.36). We just
use the α parameter in the following.

The natural dimensionless temperature for this problem is

ū= u−U0
U1−U0

,

since this choice makes ū∈ [0,1]. The reason is that u is bounded by the initial
and boundary conditions (in the absence of a source term in the PDE), and
we have ū(x̄,0) = 0, ū(x̄,∞) = 1, and ū(0, t̄) = 1.

The choice of tc is as in the previous cases. We arrive at the dimensionless
initial-boundary value problem

∂ū

∂t̄
= ∂2ū

∂x̄2 , x̄ ∈ (0,1), t̄ ∈ (0, T̄], (3.45)

ū(x̄,0) = 0, x̄ ∈ [0,1], (3.46)
ū(0, t̄) = 1, t̄ ∈ (0, T̄], (3.47)

∂

∂x̄
ū(1, t̄) = 0, t̄ ∈ (0, T̄]. (3.48)

130 3 Basic partial differential equation models

The striking feature is that there are no physical parameters left in this
problem. One simulation can be carried out for ū(x̄, t̄), see Figure 3.3, and the
temperature in a rod of any material and any constant initial and boundary
temperature can be retrieved by

u(x,t) = U0 + (U1−U0)ū(x/L,tα/L2) .

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.2

0.4

0.6

0.8

1.0

u

t=0.0010
t=0.0080
t=0.0200
t=0.0600
t=0.2000
t=0.6000
t=1.0000

Fig. 3.3 Scaled temperature in an isolated rod suddenly heated from the end.

3.2.4 Oscillating Dirichlet condition

Now we address a heat equation problem where the temperature is oscillating
on the boundary x= 0:

∂u

∂t
= α

∂2u

∂x2 , x ∈ (0,L), t ∈ (0,T], (3.49)

u(x,0) = U0, x ∈ [0,L], (3.50)
u(0, t) = U0 +Asin(ωt), t ∈ (0,T], (3.51)

∂

∂x
u(L,t) = 0, t ∈ (0,T]. (3.52)

3.2 The diffusion equation 131

One important physical application is temperature oscillations in the ground,
either day and night variations at a short temporal and spatial scale, or
seasonal variations in the Earth’s crust. An important modeling assumption
is (3.52), which means that the boundary x=L is placed sufficiently far from
x= 0 such that the solution is much damped and basically constant so ux = 0
is a reasonable condition.

Scaling issues. Since the boundary temperature is oscillating around the
initial condition, we expect u ∈ [U0−A,U0 +A]. The dimensionless temper-
ature is therefore taken as

ū= u−U0
A

,

such that ū ∈ [−1,1].
What is an appropriate time scale? There will be two time scales in-

volved, the oscillations sin(ωt) with period P = 2π/ω at the boundary and
the “speed of diffusion”, or more specifically the “speed of heat conduction”
in the present context, where tc = x2

c/α is the appropriate scale, xc being
the length scale. Choosing the right length scale is not obvious. As we shall
see, the standard choice xc = L is not a good candidate, but to understand
why, we need to examine the solution, either through simulations or through
a closed-form formula. We are so lucky in this relatively simple pedagogical
problem that one can find an exact solution of a related problem.

Exact solution. As usual, investigating the exact solution of the model
problem can illuminate the involved scales. For this particular initial-boundary
value problem the exact solution as t→∞ (such that the initial condition
u(x,0) =U0 is forgotten) and L→∞ (such that (3.52) is certainly valid) can
be shown to be

u(x,t) = U0−Ae−bx sin(bx−ωt), b=
√

ω

2α . (3.53)

This solution is of the form e−bxg(x− ct), i.e., a damped wave that moves
to the right with velocity c and a damped amplitude e−bx. This is perhaps
more easily seen if we make a rewrite

u(x,t) = U0−Ae−bx sin(b(x− ct)) , c= ω/b=
√

2αω, b=
√

ω

2α .

Time and length scales. The boundary oscillations lead to the time scale
tc = 1/ω. The speed of the wave suggests another time scale: the time it
takes to propagate through the domain, which is L/c, and hence tc = L/c=
L/
√

2αω.
One can argue that L is not the appropriate length scale, because u is

damped by e−bx. So, for x > 4/b, u is close to zero. We may instead use

132 3 Basic partial differential equation models

1/b as length scale, which is the e-folding distance of the damping factor,
and base tc on the time it takes a signal to propagate one length scale,
t−1
c = bc = ω. Similarly, the time scale based on the “speed of diffusion”
changes to t−1

c = b2α= 1
2ω if we employ 1/b as length scale.

To summarize, we have three candidates for the time scale: tc = L2/α
(diffusion through the entire domain), tc = 2/ω (diffusion through a distance
1/b where u is significantly different from zero), and tc = 1/ω (wave movement
over a distance 1/b).

Let us look at the dimensionless exact solution to see if it can help with
the choice of scales. We introduce the dimensionless parameters

β = bxc = xc

√
ω

2α, γ = ωtc .

The scaled solution becomes

ū(x̄, t̄;β,γ) = e−βx̄ sin(γt̄−βx̄) .

The three choices of γ, implied by the three choices of tc, are

γ =

1, tc = 1/ω,
2, tc = 2/ω,
2β2, tc = L2/α, xc = L

(3.54)

The former two choices leave only β as parameter in ū, and with xc = 1/b
as length scale, β becomes unity, and there are no parameters in the dimen-
sionless solution:

ū(x̄, t̄) = e−x̄ sin(t̄− x̄) . (3.55)

Therefore, xc = 1/b and tc = 1/ω (or tc = 2/ω, but the factor 2 is of no
importance) are the most appropriate scales.

To further argue why (3.55) demonstrates that these scales are preferred,
think of ω as large. Then the wave is damped over a short distance and there
will be a thin boundary layer of temperature oscillations near x = 0 and
little changes in u in the rest of the domain. The scaling (3.55) resolves this
problem by using 1/b ∼ ω−1/2 as length scale, because then the boundary
layer thickness is independent of ω. The length of the domain can be chosen
as, e.g., 4/b such that ū≈ 0 at the end x= L. The length scale 1/b helps us
to zoom in on the part of u where significant changes take place.

In the other limit, ω small, b becomes small, and the wave is hardly damped
in the domain [0,L] unless L is large enough. The imposed boundary condition
on x = L in fact requires u to be approximately constant so its derivative
vanishes, and this property can only be obtained if L is large enough to
ensure that the wave becomes significantly damped. Therefore, the length
scale is dictated by b, not L, and L should be adapted to b, typically L≥ 4/b if
e−4 ≈ 0.018 is considered enough damping to consider ū≈ 0 for the boundary

3.3 Reaction-diffusion equations 133

condition. This means that x ∈ [0,4/b] and then x̄ ∈ [0,4]. Increasing the
spatial domain to [0,6] implies a damping e−6 ≈ 0.0025, if more accuracy is
desired in the boundary condition.
The scaled problem. Based on the discussion of scales above, we arrive at
the following scaled initial-boundary value problem:

∂ū

∂t̄
= 1

2
∂2ū

∂x2 , x̄ ∈ (0,4), t̄ ∈ (0, T̄], (3.56)

ū(x̄,0) = 0, x̄ ∈ [0,1], (3.57)
ū(0, t̄) = sin(t̄), t̄ ∈ (0, T̄], (3.58)

∂

∂x̄
ū(L̄, t̄) = 0, t̄ ∈ (0, T̄]. (3.59)

The coefficient in front of the second-derivative is 1
2 because

tcα

1/b2 = b2α

ω
= 1

2 .

We may, of course, choose tc = 2/ω and get rid of the 1
2 factor, if desired, but

then it turns up in (3.58) instead, as sin(2t̄).
The boundary condition at x̄ = L̄ is only an approximation and relies on

sufficient damping of ū to consider it constant (∂/∂x̄= 0) in space. We could,
therefore, assign the condition ū= 0 instead at x̄= L̄.
Simulations. The file session.py contains a function solver_diffusion_FE
for solving a diffusion equation in one dimension. This function can be used
to solve the system (3.56)-(3.59), see diffusion_oscillatory_BC.

Movie 3: Diffusion wave. https://github.com/hplgit/scaling-book/raw/master/
doc/pub/book/html/mov-scaling/diffusion_osc_BC/movie.mp4

3.3 Reaction-diffusion equations

3.3.1 Fisher’s equation

Fisher’s equation is essentially the logistic equation at each point for popula-
tion dynamics (see Section 2.1.9) combined with spatial movement through
ordinary diffusion:

∂u

∂t
= α

∂2u

∂x2 +%u(1−u/M) . (3.60)

This PDE is also known as the KPP equation after Kolmogorov, Petrovsky,
and Piskynov (who introduced the equation independently of Fisher).

http://tinyurl.com/o8pb3yy/session.py
https://github.com/hplgit/scaling-book/raw/master/doc/pub/book/html/mov-scaling/diffusion_osc_BC/movie.mp4
https://github.com/hplgit/scaling-book/raw/master/doc/pub/book/html/mov-scaling/diffusion_osc_BC/movie.mp4

134 3 Basic partial differential equation models

Setting

x̄= x

xc
, t̄= t

tc
, ū= u

uc
,

results in

∂ū

∂t̄
= tcα

x2
c

∂2ū

∂x̄2 + tc%ū(1−ucū/M) .

Balance of all terms. If all terms are equally important, the scales can be
determined from demanding the coefficients to be unity. Reasoning as for the
logistic ODE in Section 2.1.9, we may choose tc = 1/%. Then the coefficient
in the diffusion term dictates the length scale xc =

√
tcα. A natural scale for

u is M , since M is the upper limit of u in the model (cf. the logistic term).
Summarizing,

uc =M, tc = 1
%
, xc =

√
α

%
,

and the scaled PDE becomes

∂ū

∂t̄
= ∂2ū

∂x̄2 + ū(1− ū) . (3.61)

With this scaling, the length scale xc =
√
α/% is not related to the domain

size, so the scale is particularly relevant for infinite domains.
An open question is whether the time scale should be based on the diffusion

process rather than the initial exponential growth in the logistic term. The
diffusion time scale means tc = x2

c/α, but demanding the logistic term then
to have a unit coefficient forces x2

c%/α = 1, which implies xc =
√
α/% and

tc = 1/%. That is, equal balance of the three terms gives a unique choice of
the time and length scale.

Fixed length scale. Assume now that we fix the length scale to be L, either
the domain size or some other naturally given length. With xc =L, tc = %−1,
uc =M , we get

∂ū

∂t̄
= β

∂2ū

∂x̄2 + ū(1− ū), (3.62)

where β is a dimensionless number

β = α

%L2 = %−1

L2/α
.

The last equality demonstrates that β measures the ratio of the time scale for
exponential growth in the beginning of the logistic process and the time scale
of diffusion L2/α (i.e., the time it takes to transport a signal by diffusion
through the domain). For small β we can neglect the diffusion and spatial

3.3 Reaction-diffusion equations 135

movements, and the PDE is essentially a logistic ODE at each point, while
for large β, diffusion dominates, and tc should in that case be based on the
diffusion time scale L2/α. This leads to the scaled PDE

∂ū

∂t̄
= ∂2ū

∂x̄2 +β−1ū(1− ū), (3.63)

showing that a large β encourages omission of the logistic term, because
the point-wise growth takes place over long time intervals while diffusion is
rapid. The effect of diffusion is then more prominent and it suffices to solve
ūt̄ = ūx̄x̄. The observant reader will in this latter case notice that uc =M is an
irrelevant scale for u, since logistic growth with its limit is not of importance,
so we implicitly assume that another scale uc has been used, but that scale
cancels anyway in the simplified PDE ūt̄ = ūx̄x̄.

3.3.2 Nonlinear reaction-diffusion PDE

A general, nonlinear reaction-diffusion equation in 1D looks like

∂u

∂t
= α

∂2u

∂x2 +f(u) . (3.64)

By scaling the nonlinear reaction term f(u) as fcf̄(ucū), where fc is a charac-
teristic size of f(u), typically the maximum value, one gets a non-dimensional
PDE like

∂ū

∂t̄
= tcα

x2
c

∂2ū

∂x̄2 + tcfc
uc

f̄(ucū) .

The characteristic size of u can often be derived from boundary or initial
conditions, so we first assume that uc is given. This fact uniquely determines
the space and time scales by demanding that all three terms are equally
important and of unit size:

tc = uc
fc
, xc =

√
αuc
fc

.

The corresponding PDE reads

∂ū

∂t̄
= ∂2ū

∂x̄2 + f̄(ucū) . (3.65)

If xc is based on some known length scale L, balance of all three terms
can be used to determine uc and tc:

tc = L2

α
, uc = L2fc

α
.

136 3 Basic partial differential equation models

This scaling only works if f is nonlinear, otherwise uc cancels and there is no
freedom to constrain this scale.

With given L and uc, there are two choices of tc since it can be based on
the diffusion or the reaction time scales. With the reaction scale, tc = uc/fc,
one arrives a the PDE

∂ū

∂t̄
= β

∂2ū

∂x̄2 + f̄(ucū), (3.66)

where

β = αuc
L2fc

= uc/fc
L2/α

is a dimensionless number reflecting the ratio of the reaction time scale and
the diffusion time scale. On the contrary, with the diffusion time scale, tc =
L2/α, the scaled PDE becomes

∂ū

∂t̄
= ∂2ū

∂x̄2 +β−1f̄(ucū) . (3.67)

The size of β in an application will determine which of the scalings that is
most appropriate.

3.4 The convection-diffusion equation

3.4.1 Convection-diffusion without a force term

We now add a convection term v ·∇u to the diffusion equation to obtain the
well-known convection-diffusion equation:

∂u

∂t
+v ·∇u= α∇2u, x,y,z ∈Ω, t ∈ (0,T] . (3.68)

The velocity field v is prescribed, and its characteristic size V is normally
clear from the problem description. In the sketch below, we have some given
flow over a bump, and u may be the concentration of some substance in the
fluid. Here, V is typically maxy v(y). The characteristic length L could be
the entire domain, L = c+ `, or the height of the bump, L = D. (The latter
is the important length scale for the flow.)

3.4 The convection-diffusion equation 137

v(y)
D

`c

Inserting

x̄= x

xc
, ȳ = y

yc
, z̄ = z

zc
, t̄= t

tc
, v̄ = v

V
, ū= u

uc

in (3.68) yields

uc
tc

∂ū

∂t̄
+ ucV

L
v̄ · ∇̄ū= αuc

L2 ∇̄
2ū, x̄, ȳ, z̄ ∈Ω, t̄ ∈ (0, T̄] .

For uc we simply introduce the symbol U , which we may estimate from an
initial condition. It is not critical here, since it vanishes from the scaled equa-
tion anyway, as long as there is no source term present. With some velocity
measure V and length measure L, it is tempting to just let tc = L/V . This is
the characteristic time it takes to transport a signal by convection through
the domain. The alternative is to use the diffusion length scale tc = L2/α. A
common physical scenario in convection-diffusion problems is that the con-
vection term v ·∇u dominates over the diffusion term α∇2u. Therefore, the
time scale for convection (L/V) is most appropriate of the two. Only when the
diffusion term is very much larger than the convection term (corresponding
to very small Peclet numbers, see below) tc = L2/α is the right time scale.

The non-dimensional form of the PDE with tc = L/V becomes

∂ū

∂t̄
+ v̄ · ∇̄ū= Pe−1∇̄2ū, x̄, ȳ, z̄ ∈Ω, t̄ ∈ (0, T̄], (3.69)

where Pe is the Peclet number,

Pe = LV

α
.

Estimating the size of the convection term v ·∇u as V U/L and the diffusion
term α∇2u as αU/L2, we see that the Peclet number measures the ratio of
the convection and the diffusion terms:

Pe = convection
diffusion = V U/L

αU/L2 = LV

α
.

138 3 Basic partial differential equation models

In case we use the diffusion time scale tc = L2/α, we get the non-
dimensional PDE

∂ū

∂t̄
+Pe v̄ · ∇̄ū= ∇̄2ū, x̄, ȳ, z̄ ∈Ω, t̄ ∈ (0, T̄] . (3.70)

Discussion of scales and balance of terms in the PDE

We see that (3.69) and (3.70) are not equal, and they are based on two
different time scales. For moderate Peclet numbers around 1, all terms
have the same size in (3.69), i.e., a size around unity. For large Peclet
numbers, (3.69) expresses a balance between the time derivative term
and the convection term, both of size unity, and then there is a very
small Pe−1∇̄2ū term because Pe is large and ∇̄2ū should be of size
unity. That the convection term dominates over the diffusion term is
consistent with the time scale tc = L/V based on convection transport.
In this case, we can neglect the diffusion term as Pe goes to infinity and
work with a pure convection (or advection) equation

∂ū

∂t̄
+ v̄ · ∇̄ū= 0 .

For small Peclet numbers, Pe−1∇̄2ū becomes very large and can only
be balanced by two terms that are supposed to be unity of size. The
time-derivative and/or the convection term must be much larger than
unity, but that means we use suboptimal scales, since right scales imply
that ∂ū/∂t̄ and v̄ · ∇̄ū are of order unity. Switching to a time scale based
on diffusion as the dominating physical effect gives (3.70). For very small
Peclet numbers this equation tells that the time-derivative balances
the diffusion. The convection term v̄ · ∇̄ū is around unity in size, but
multiplied by a very small coefficient Pe, so this term is negligible in
the PDE. An approximate PDE for small Peclet numbers is therefore

∂ū

∂t̄
= ∇̄2ū .

Scaling can, with the above type of reasoning, be used to neglect
terms from a differential equation under precise mathematical condi-
tions.

3.4 The convection-diffusion equation 139

3.4.2 Stationary PDE

Suppose the problem is stationary and that there is no need for any time
scale. How is this type of convection-diffusion problem scaled? We get

V U

L
v̄ · ∇̄ū= αU

L2 ∇̄
2ū,

or

v̄ · ∇̄ū= Pe−1∇̄2ū . (3.71)

This scaling only “works” for moderate Peclet numbers. For very small or
very large Pe, either the convection term v̄ · ∇̄ū or the diffusion term ∇̄2ū
must deviate significantly from unity.

Consider the following 1D example to illustrate the point: v = vi, v > 0
constant, a domain [0,L], with boundary conditions u(0) = 0 and u(L) =UL.
(The vector i is a unit vector in x direction.) The problem with dimensions
is now

vu′ = αu′′, u(0) = 0, u(L) = UL .

Scaling results in

dū

dx̄
= Pe−1 d

2ū

dx̄2 , x̄ ∈ (0,1), ū(0) = 0, ū(1) = 1,

if we choose U = UL. The solution of the scaled problem is

ū(x̄) = 1−ex̄Pe

1−ePe
.

Figure 3.4 indicates how ū depends on Pe: small Pe values give approximately
a straight line while large Pe values lead to a boundary layer close to x= 1,
where the solution changes very rapidly.

We realize that for large Pe,

max
x̄

dū

dx̄
≈ Pe, max

x̄

d2ū

dx̄2 ≈ Pe2,

which are consistent results with the PDE, since the double derivative term
is multiplied by Pe−1. For small Pe,

max
x̄

dū

dx̄
≈ 1, max

x̄

d2ū

dx̄2 ≈ 0,

which is also consistent with the PDE, since an almost vanishing second-order
derivative is multiplied by a very large coefficient Pe−1. However, we have a
problem with very large derivatives of ū when Pe is large.

140 3 Basic partial differential equation models

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
Pe=1
Pe=50

Fig. 3.4 Solution of scaled problem for 1D convection-diffusion.

To arrive at a proper scaling for large Peclet numbers, we need to remove
the Pe coefficient from the differential equation. There are only two scales at
our disposals: uc and xc for u and x, respectively. The natural value for uc is
the boundary value UL at x= L. The scaling of V ux = αuxx then results in

dū

dx̄
= α

V xc

d2ū

dx̄2 , x̄ ∈ (0, L̄), ū(0) = 0, ū(L̄) = 1,

where L̄= L/xc. Choosing the coefficient α/(V xc) to be unity results in the
scale xc =α/V , and L̄ becomes Pe. The final, scaled boundary-value problem
is now

dū

dx̄
= d2ū

dx̄2 , x̄ ∈ (0,Pe), ū(0) = 0, ū(Pe) = 1,

with solution

ū(x̄) = 1−ex̄

1−ePe
.

Figure 3.5 displays ū for some Peclet numbers, and we see that the shape
of the graphs are the same with this scaling. For large Peclet numbers we
realize that ū and its derivatives are around unity (1− ePe ≈−ePe), but for
small Peclet numbers dū/dx̄∼ Pe−1.

3.4 The convection-diffusion equation 141

0 10 20 30 40 50
0.0

0.2

0.4

0.6

0.8

1.0

Pe=1
Pe=10
Pe=25
Pe=50

Fig. 3.5 Solution of scaled problem where the length scale depends on the Peclet
number.

The conclusion is that for small Peclet numbers, xc = L is an appropriate
length scale. The scaled equation Pe ū′ = ū′′ indicates that ū′′ ≈ 0, and the
solution is close to a straight line. For large Pe values, xc = α/V is an appro-
priate length scale, and the scaled equation ū′ = ū′′ expresses that the terms
ū′ and ū′′ are equal and of size around unity.

3.4.3 Convection-diffusion with a source term

Let us add a force term f(x, t) to the convection-diffusion equation:

∂u

∂t
+v ·∇u= α∇2u+f . (3.72)

The scaled version reads

∂ū

∂t̄
+ tcV

L
v̄ · ∇̄ū= tcα

L2 ∇̄
2ū+ tcfc

uc
f̄ .

We can base tc on convective transport: tc = L/V . Now, uc could be chosen
to make the coefficient in the source term unity: uc = tcfc = Lfc/V . This
leaves us with

142 3 Basic partial differential equation models

∂ū

∂t̄
+ v̄ · ∇̄ū= Pe−1∇̄2ū+ f̄ .

In the diffusion limit, we base tc on the diffusion time scale: tc = L2/α,
and the coefficient of the source term set to unity determines uc according to

L2fc
αuc

= 1 ⇒ uc = L2fc
α

.

The corresponding PDE reads

∂ū

∂t̄
+Pe v̄ · ∇̄ū= ∇̄2ū+ f̄ ,

so for small Peclet numbers, which we have, the convective term can be
neglected and we get a pure diffusion equation with a source term.

What if the problem is stationary? Then there is no time scale and we get

V uc
L
v̄ · ∇̄ū= ucα

L2 ∇̄
2ū+fcf̄ ,

or

v̄ · ∇̄ū= Pe−1∇̄2ū+ fcL

V uc
f̄ .

Again, choosing uc such that the source term coefficient is unity leads to
uc = fcL/V . Alternatively, uc can be based on the initial condition, with
similar results as found in the sections on the wave and diffusion PDEs.

3.5 Exercises

Problem 3.1: Stationary Couette flow

A fluid flows between two flat plates, with one plate at rest while the other
moves with velocity U0. This classical flow case is known as stationary Cou-
ette flow.

a) Directing the x axis in the flow direction and letting y be a coordinate
perpendicular to the walls, one can assume that the velocity field simplifies to
u = u(y)i. Show from the Navier-Stokes equations that the boundary-value
problem for u(y) is

u′′(u) = 0, u(0) = 0, u(H) = U0 .

We have here assumed at y= 0 corresponds to the plate at rest and that y=H
represents the plate that moves. There are no pressure gradients present in
the flow.

https://en.wikipedia.org/wiki/Couette_flow
https://en.wikipedia.org/wiki/Couette_flow

3.5 Exercises 143

b) Scale the problem in a) and show that the result has no physical param-
eters left in the model:

d2ū

dȳ2 = 0, ū(0) = 0, ū(1) = 1 .

c) We can compute ū(ȳ) from one numerical simulation (or a straightfor-
ward integration of the differential equation). Set up the formula that finds
u(y;H,u0) from ū(ȳ) for any values of H and U0.
Filename: stationary_Couette.
Remarks. The problem for u is a classical two-point boundary-value prob-
lem in applied mathematics and arises in a number of applications, where
Couette flow is just one example. Heat conduction is another example: u is
temperature, and the heat conduction equation for an insulated rod reduces
to u′′ = 0 under stationary conditions and no heat source. Controlling the
end x = 0 at 0 degrees Celsius the other end x = L at U0 degrees Celsius,
gives the same boundary conditions as in the above flow problem. The scaled
problem is of course the same whether we have flow of fluid or heat.

Exercise 3.2: Couette-Poiseuille flow

Viscous fluid flow between two infinite flat plates z = 0 and z =H is governed
by

µu′′(z) =−β (3.73)
u(0) = 0, (3.74)
u(H) = U0 . (3.75)

Here, u(z) is the fluid velocity in x direction (perpendicular to the z axis), µ is
the dynamic viscosity of the fluid, β is a positive constant pressure gradient,
and U0 is the constant velocity of the upper plate z =H in x direction. The
model represents Couette flow for β = 0 and Poiseuille flow for U0 = 0.

a) Find the exact solution u(z). Point out how β and U0 influence the mag-
nitude of u.

Solution.
SymPy can integrate the differential equation twice and fit the integra-
tion constants to the boundary conditions:

import sympy as sym
mu, beta, z, H = sym.symbols(’mu beta z H’,

https://en.wikipedia.org/wiki/Couette_flow
https://en.wikipedia.org/wiki/Hagen-Poiseuille_equation

144 3 Basic partial differential equation models

real=True, positive=True)
U0, C1, C2 = sym.symbols(’U0 C1 C2’, real=True)

Integrate u’’(z) = -beta/mu twice and add integration constants
u = sym.integrate(sym.integrate(-beta/mu, z) + C1, z) + C2

Use the boundary conditions
eq = [sym.Eq(u.subs(z, 0), 0),

sym.Eq(u.subs(z, H), U0)]
s = sym.solve(eq, [C1, C2])
print s
u = u.subs(C1, s[C1]).subs(C2, s[C2])
u = sym.simplify(sym.expand(u))

The result becomes

u(z) = z

2Hµ (Hβ (H−z) + 2U0µ) .

The maximum value of u is found by

Find max u
dudz = sym.diff(u, z)
s = sym.solve(dudz, z)
print s
umax = u.subs(z, s[0])
umax = sym.simplify(sym.expand(umax))

and reads

max
z
u= H2β

8µ + U0
2 + U2

0µ

2H2β
.

If the pressure gradient is the dominating driving force, we can neglect
the U0 terms: maxz u=H2β/(8µ). In case the movement of the upper
plate is much more important than the pressure gradient for driving the
flow, we can neglect the β terms. However, we must then resort to the
u(z) expression for β = 0, u(z) = zU0/H, and realize that the maximum
then is obtained at the boundary for z =H: maxz h=U0 (as intuitively
obvious).

b) Scale the problem.

Solution.
Introducing

z̄ = z

zc
, ū(z̄) = u(zcz̄)

uc
,

3.5 Exercises 145

in the equation gives

d2ū

dz̄2 =−z
2
cβ

µuc
.

The natural scale for zc is H since that makes z̄ ∈ [0,1]. For the two
terms in the differential equation to be of order unity (with a correct
scaling, the left-hand side should be of order unity), we must have

uc = H2β

µ
.

The boundary value problem is

d2ū

dz̄2 =−1, z̄ ∈ (0,1),

ū(0) = 0,
ū(1) = α,

where α is a dimensionless number

α= µU0
H2β

.

This is meaningful only for β 6= 0.
Looking at the exact solution, we see that maxz u=H2β/(8µ), and

with this maxz u as uc we get a differential equation ū′′ = −8 instead,
and ū ∈ [0,1] (if U0 = 0). However, the factor 1 or 8 on the right-hand
side is not significant, neither if ū ∈ [0,1] or ū ∈ [0,8].

The scale uc used above is relevant if the pressure gradient is the
dominating force. If U0 is more important than β, or β = 0, we choose
uc = U0 and get instead

d2ū

dz̄2 =−α−1, z̄ ∈ (0,1), (3.76)

ū(0) = 0, (3.77)
ū(1) = 1 . (3.78)

Filename: Couette_wpressure.

146 3 Basic partial differential equation models

Exercise 3.3: Pulsatile pipeflow

The flow of a viscous fluid in a straight pipe with circular cross section with
radius R is governed by

%
∂u

∂t
= µ

r

∂

∂r

(
r
∂u

∂r

)
−P (t),r ∈ (0,R), t ∈ (0,T], (3.79)

∂u

∂r
(0, t) = 0, t ∈ (0,T], (3.80)

u(R,t) = 0, t ∈ (0,T], (3.81)
u(r,0) = 0, r ∈ [0,R]. (3.82)

The quantity u(r, t) is the fluid velocity, P (t) is a given pressure gradient, %
is the fluid density, and µ is the dynamic viscosity.

Assume P (t) =Acosωt. Scale the problem and identify appropriate dimen-
sionless numbers. Thereafter, assume P (t) is a more complicated function,
but still period with period p. Discuss how the scaling can be extended to
this case.

Solution.
We introduce dimensionless quantities:

r̄ = r

R
, t̄= t

tc
, ū= u

uc
.

The function P (t) can be scaled as

P̄ (t̄) = P (tct̄)
A

= sin(tcωt̄) .

Inserted in the PDE, we get

∂ū

∂t̄
= tcν

R2
1
r̄

∂

∂r̄

(
r̄
∂ū

∂r̄

)
− tcA
%uc

sin(tcωt̄),

where µ= µ/%.
The scale for u can be explored by seeking an analytical solution of

the problem. Such solutions do exist, they are typically series expansions
of Bessel functions, and it is not so easy to extract a simple expression
for the maximum value of |u(r, t)|. A simpler approach is to estimate
uc by demanding the coefficient in the pressure term to be of unit size:

uc = tcA

%
.

3.5 Exercises 147

There are two choices of time scales: the pressure time scale tc = 1/ω
and the viscosity (or diffusion) time scale tc =R2/nu. With the latter,
we get uc =R2A/µ and

∂ū

∂t̄
= 1
r̄

∂

∂r̄

(
r̄
∂ū

∂r̄

)
− sin(αt̄),

where

α= R2ω

ν
= R2/ν

1/ω ,

showing that α is the ratio of the viscosity time scale and the pressure
oscillation time scale.

With the pressure time scale we have

uc = %A

ω
,

and the scaled PDE becomes

∂ū

∂t̄
= α−1 1

r̄

∂

∂r̄

(
r̄
∂ū

∂r̄

)
− sin(t̄) .

In both cases the scaled boundary conditions become

∂ū

∂t̄
= 0, ū(1, t̄) = 0,

for t ∈ (0,T/tc], and ū(r̄,0) = 0 for r̄ ∈ [0,1].
If P (t) is not sinusoidal but periodic with period p, we have that P

is a function of ωt as above, with ω = 2π/p. Everything in the scaling
remains the same, just the sin term changes to P (αt̄) if the time scale
is based on viscosity (diffusion), and P (t̄) if the time scale is based on
the pressure oscillations.

Filename: pipeflow.

Exercise 3.4: The linear cable equation

A key PDE in neuroscience is the cable equation, here given in its simplest
linear form:

τ
∂u

∂t
= λ2 ∂

2u

∂x2 −u. (3.83)

https://en.wikipedia.org/wiki/Cable_theory

148 3 Basic partial differential equation models

The unknown u is the voltage (measured in volt) associated with an electric
current along one-dimensional dendrites (“cables”) in neural networks, while
τ and λ are given parameters.

Scale (3.83) in three ways: 1) let all terms in the scaled equation have unit
coefficients, 2) use the domain size L as spatial scale and base the time scale
on diffusion, 3) use the domain size L as spatial scale and base the time scale
on reaction, i.e., the −u term.

Solution.
Straightforward scaling, with scales uc, tc, and xc, leads in the first step
to

∂ū

∂t̄
= tcλ

2

τx2
c

∂2ū

∂x̄2 −
tc
τ
ū .

Assuming that all terms are equally important and of unit size in the
scaled PDE, we get a uniquely determined length and space scale:

tc = τ, xc = λ.

The scaled cable equation is then

∂ū

∂t̄
= ∂2ū

∂x̄2 − ū .

Let now the spatial scale be fixed as xc = L. Basing tc on diffusion
means tc = τ(L/λ)2, and the scaled PDE becomes

∂ū

∂t̄
= ∂2ū

∂x̄2 −βū,

where

β =
(
L

λ

)2
.

Basing tc on the reaction scale, i.e., the balance of the time derivative
and the reaction term, gives tc = τ and the scaled PDE

∂ū

∂t̄
= β−1 ∂

2ū

∂x̄2 − ū .

In neuroscience applications of the cable equation to dendrites, it
appears that λ is about 1 mm and of the same order of magnitude
as the cable length, so β is around 1 in size. Then there are not big
differences in these scalings, and the first one is to be preferred. The
two others are more suitable when β is small or large, e.g., such that
the term with β can be left out of the PDE.

3.5 Exercises 149

Filename: cable_eq.

Exercise 3.5: Heat conduction with discontinuous initial
condition

Two pieces of metal at different temperature are brought in contact at t= 0.
The following initial-boundary value problem governs the temperature evo-
lution in the two pieces:

∂u

∂t
= α∇2u, x ∈Ω, t ∈ (0,T], (3.84)

u(x,0) = I(x), x ∈Ω, (3.85)

−α∂u
∂n

= h(u−uS),x ∈ ∂Ω, t ∈ (0,T]. (3.86)

Here, u(x, t) is the temperature, α the effective heat diffusion coefficient (as-
suming both pieces are homogeneous and of the same type of metal), and uS
is the surrounding temperature. The domain Ω consists of the two pieces Ω1
and Ω2: Ω =Ω1∪Ω2. The initial condition can be specified as

I(x) =
{
U1, x ∈Ω1,
U2, x ∈Ω2,

where U1 and U2 are the constant initial temperatures in each piece.
Thinking of two identical pieces Ω1 and Ω2 with shapes as bricks, it is

tempting to develop a one-dimensional model, especially if the pieces are
somewhat slender. We then expect the main temperature variations to take
place in the x direction, where the x axis is perpendicular to the contact
surface between the pieces. A simplified PDE problem, neglecting variations
in the y and z directions, takes the form

∂v

∂t
= α

∂2v

∂x2 −
hP

A
(v(x,t)−uS), x ∈ (0,L), t ∈ (0,T], (3.87)

v(x,0) = I(x), x ∈ (0,L), (3.88)

α
∂v

∂x
= h(v(x,t)−uS), x= 0, t ∈ (0,T], (3.89)

−α∂v
∂x

= h(v(x,t)−uS), x= L, t ∈ (0,T], (3.90)

with

I(x) =
{
U1, x ∈ [0,L/2),
U2, x ∈ [L/2,L] .

150 3 Basic partial differential equation models

The parameter P is the perimeter of the cross section and A is the area of
the cross section. Scale this problem.

Solution.
We expect the temperature to start from the discontinuous state with
U1 and U2 and approach the surrounding temperature uS in the cooling
law as t→∞. One suitable scaling is then

v̄ = v−min(U1,U2)
uS−min(U1,U2) ,

since this implies that u varies from 0 to 1. Without loss of generality
we number the bricks such that U1 < U2, so

v̄ = v−U1
uS−U1

.

Furthermore,

x̄= x

L
, t̄= t

tc
.

Inserted in the governing PDE, we have

∂v̄

∂t̄
= tcα

L2
∂2v̄

∂x̄2 −
tchP

A(uS−U1) (U1 + (uS−U1)v̄(x,t)−uS),

which simplifies to

∂v̄

∂t̄
= tcα

L2
∂2v̄

∂x̄2 −
tchP

A
(v̄(x,t)−1) .

The natural time scale is that of diffusion: tc =L2/α. This choice results
in the scaled PDE

∂v̄

∂t̄
= ∂2v̄

∂x̄2 −Bi (v̄(x,t)−1),

where the dimensionless number

Bi = hL2P

αA

can be interpreted as a modified Biot number (if A/P = L, it would an
ordinary Biot number, but here this is not an appropriate approxima-
tion: for bricks with square cross section of length a, A/P = a/4, and
for a circular cross section, A/P = R/2). This modified Biot number

https://en.wikipedia.org/wiki/Biot_number

3.5 Exercises 151

governs the significance of lateral heat loss/gain to/from the environ-
ment.

The scaled initial condition becomes

v̄(x̄,0) = 0 if 0≤ x < 1/2 else β,

where β is the dimensionless number

β = U2−U1
Us−U1

.

The scaled boundary conditions take the form

∂

∂x̄
v̄(0, t) = Bi(v̄(0, t)−1), − ∂

∂x̄
v̄(L,t) = Bi(v̄(L,t)−1),

where Bi is the standard Biot number for heat conduction from solids:

Bi = Lh

α
.

Here is a simulation with Bi = 0.01, Bi = 0.2, and β = 1.5 (using the
diffusion_two_metal_pieces function in session.py).

Movie 4: https://github.com/hplgit/scaling-book/raw/master/doc/pub/
book/html/mov-scaling/metal_pieces/movie.mp4

Another temperature scaling is also possible:

v̄ = v−Us
U2−Us

.

The initial condition is then

v̄(x̄,0) = γ if 0≤ x < 1/2 else 1,

where γ is the dimensionless number

γ = U1−Us
U2−Us

.

Note that γ < 1 if U1 < U2, and we expect v̄ ∈ [0,1] (v̄→ 0 as t̄→∞).
The PDE now becomes homogeneous,

∂v̄

∂t̄
= ∂2v̄

∂x̄2 −Bi v̄(x,t),

and the boundary conditions take the form

∂

∂x̄
v̄(0, t) = Bi v̄(0, t), − ∂

∂x̄
v̄(L,t) = Bi v̄(L,t) .

http://tinyurl.com/o8pb3yy/session.py
https://github.com/hplgit/scaling-book/raw/master/doc/pub/book/html/mov-scaling/metal_pieces/movie.mp4
https://github.com/hplgit/scaling-book/raw/master/doc/pub/book/html/mov-scaling/metal_pieces/movie.mp4

152 3 Basic partial differential equation models

Many will find the homogeneous PDE and boundary conditions of the
latter scaling attractive, especially for analytical solution of the prob-
lem.

Filename: metal_pieces.

Remarks. We can derive (3.87)-(3.90) from (3.85)-(3.86). The idea is to
integrate the governing PDE (3.87) in the two directions where we expect
negligible variations, use the Gauss divergence theorem in these directions,
and apply the cooling boundary condition. Let A be the cross section of the
bricks. Integrating over A gives

∫
A

∂u

∂t
dydz =

∫
A

α

(
∂2u

∂x2 + ∂2u

∂y2 + ∂2u

∂z2

)
dydz

=
∫
A

α
∂2u

∂x2 dydz+
∫
A

α

(
∂2u

∂y2 + ∂2u

∂z2

)
dydz

=
∫
A

α
∂2u

∂x2 dydz+α

∫
∂A

∂u

∂n
ds

=
∫
A

α
∂2u

∂x2 dydz−h(v(x,t)−uS)P .

The parameter P is the perimeter of the cross section A. The function v(x,t)
means u(x, t) evaluated at the boundary ∂A. Assuming u to vary little across
the cross section A, we can approximate the integrals by u evaluated at ∂A
as v: ∫

A

∂u

∂t
dydz ≈A ∂

∂t
v(x,t),

∫
A

α
∂2u

∂x2 dydz ≈Aα
∂2v

∂x2 ,

where A now is the cross-section area. The result is the 1D initial-boundary
value problem (3.87)-(3.90).

Problem 3.6: Scaling a welding problem

Welding equipment makes a very localized heat source that moves in time.
We shall investigate the heating due to welding and choose, for maximum
simplicity, a one-dimensional heat equation with a fixed temperature at the
ends (a 2D or 3D model with cooling conditions at the boundaries would be
of greater physical significance, but now the scaling is in focus). The effect

3.5 Exercises 153

of melting is not included in the heat equation. Our goal is to investigate
alternative scalings through numerical experimentation.

The governing PDE problem reads

%c
∂u

∂t
= k

∂2u

∂x2 +f,x ∈ (0,L), t ∈ (0,T),

u(x,0) = Us, x ∈ [0,L],
u(0, t) = u(L,t) = Us, t ∈ (0,T].

Here, u is the temperature, % the density of the material, c a heat capac-
ity, k the heat conduction coefficient, f is the heat source from the welding
equipment, and Us is the initial constant (room) temperature in the material.

The boundary conditions at x = 0,L are set for convenience – some sort
of heat flux out of the boundary, modeled in terms of a cooling condition
−kux = h(u−Us), for a heat transfer coefficient h, would yield a more phys-
ically relevant model. Also, only a full 3D geometry with such heat loss at
the boundary is physically relevant, as neglecting a space dimension means
insulated boundaries perpendicular to this direction. However, since the fo-
cus is on scaling, we prefer to work with the simplest possible model, which
is one-dimensional, has Dirichlet boundary conditions, and neglects melting.
The latter effect is very local and just stalls the temperature field locally –
it does not affect the transport of heat away from the welding source in a
significant way.

A possible model for the heat source is a moving Gaussian function:

f =Aexp
(
−1

2

(
x−vt
σ

)2
)
,

where A is the strength, σ is a parameter governing how peak-shaped (or
localized in space) the heat source is, and v is the velocity (in positive x
direction) of the source.

a) Let xc, tc, uc, and fc be scales, i.e., characteristic sizes, of x, t, u, and f ,
respectively. The natural choice of xc and fc is L and A, since these make the
scaled x and f in the interval [0,1]. If each of the three terms in the PDE are
equally important, we can find tc and uc by demanding that the coefficients
in the scaled PDE are all equal to unity. Perform this scaling. Use scaled
quantities in the arguments for the exponential function in f too and show
that

f̄ = exp(−1
2β

2(x̄−γt̄)2),

where β and γ are dimensionless numbers. Give an interpretation of β and
γ.

154 3 Basic partial differential equation models

Solution.
We introduce

x̄= x

L
, t̄= t

tc
, ū= u−Us

uc
, f̄ = f

A
.

Inserted in the PDE and dividing by %cuc/tc such that the coefficient
in front of ∂ū/∂t̄ becomes unity, and thereby all terms become dimen-
sionless, we get

∂ū

∂t̄
= ktc
%cL2

∂2ū

∂x̄2 + Atc
%cuc

f̄ .

Demanding that all three terms are equally important, it follows that

ktc
%cL2 = 1, Atc

%cuc
= 1 .

These constraints imply the diffusion time scale

tc = %cL2

k
,

and a scale for uc,

uc = AL2

k
.

The scaled PDE reads

∂ū

∂t̄
= ∂2ū

∂x̄2 + f̄ .

Scaling f results in

f̄ = exp
(
−1

2

(
x−vt
σ

)2
)

= exp
(
−1

2
L2

σ2

(
x̄− vtc

L
t̄

)2
)

= exp
(
−1

2β
2 (x̄−γt̄)2),

where β and γ are dimensionless numbers:

β = L

σ
, γ = vtc

L
= v%cL

k
.

3.5 Exercises 155

The σ parameter measures the width of the Gaussian peak, so β is the
ratio of the domain and the width of the heat source (large β implies a
very peak-formed heat source). The γ parameter arises from tc/(L/v),
which is the ratio of the diffusion time scale and the time it takes for the
heat source to travel through the domain. Equivalently, we can multiply
by tc/tc to get γ = v/(tcL) as the ratio between the velocity of the heat
source and the diffusion velocity.

b) Argue that at least for large γ we should base the time scale on the
movement of the heat source. Using L as length scale, show that this gives
rise to the scaled PDE

∂ū

∂t̄
= γ−1 ∂

2ū

∂x̄2 + f̄ ,

and

f̄ = exp(−1
2β

2(x̄− t̄)2) .

Discuss when the scalings in a) and b) are appropriate.

Solution.

We perform the scaling as in a), but this time we determine tc such
that the heat source moves with unit velocity. This means that

vtc
L

= 1 ⇒ tc = L

v
.

Scaling of the PDE gives, as before,

∂ū

∂t̄
= ktc
%cL2

∂2ū

∂x̄2 + Atc
%cuc

f̄ .

Inserting the expression for tc, we have

∂ū

∂t̄
= kL

%cL2v

∂2ū

∂x̄2 + AL

v%cuc
f̄ .

We recognize the first coefficient as γ−1, while uc can be determined
from demanding the second coefficient to be unity:

uc = AL

v%c
.

The scaled PDE is therefore

156 3 Basic partial differential equation models

∂ū

∂t̄
= γ−1 ∂

2ū

∂x̄2 + f̄ .

If the heat source moves very fast, there is little time for the diffusion to
transport the heat away from the source, and the heat conduction term
becomes insignificant. This is reflected in the coefficient γ−1, which is
small when γ, the ratio of the heat source velocity and the diffusion
velocity, is large.

The scaling in a) is therefore appropriate if diffusion is a significant
process, i.e., the welding equipment moves at a slow speed so heat can
efficiently spread out by diffusion. For large γ, the scaling in b) is appro-
priate, and t= 1 corresponds to having the heat source traveled through
the domain (with the scaling in a), the heat source will leave the domain
in short time).

c) For fast movement of the welding equipment, i.e., when heat transfer is
less important than the local heating by the equipment, the typical length
scale of the local heating is the size of the source, reflected by the σ parameter.
Modify the scaling in b) when σ is chosen as length scale.

Solution.
With σ as length scale, the scaled PDE has the initial form

∂ū

∂t̄
= ktc
%cσ2

∂2ū

∂x̄2 + Atc
%cuc

f̄ .

The scaling of f becomes

f̄ = exp
(
−1

2

(
x−vt
σ

)2
)

= exp
(
−1

2

(
x̄− vtc

σ
t̄

)2
)

= exp
(
−1

2
(
x̄− t̄

)2)
,

where we have chosen tc as σ/v. Inserting tc in the PDE leads to a
coefficient

k

v%cσ
= γ−1β .

3.5 Exercises 157

As before, we chose uc to make the other coefficient equal unity, modulo
a scaling factor. We then obtain uc = tcA/ρc, which may be read as the
time each point feels the source times source strength divided to the
volumetric heat capacity that includes the density. The γ−1β parameter
is the ratio of the moving heat source time scale v/σ and the diffusion
time scale σ2/(k/%c).

The equations are as in), except that β = 1 and ε replaces γ. More-
over, the length of the domain is now L/σ, i.e., β enters the problem in
the domain size.

d) A fourth kind of possible scaling is to say that for small γ, the problem is
quasi-stationary and the heat transfer balances the heat source. Determine
uc from this assumption. Use L as length scale and a time scale as in b), i.e.,
based on the movement of the welding equipment.

Solution.
We insert the dimensionless quantities in the PDE, but this time we
make the factor in the source term unity:

%cuc
Atc

∂ū

∂t̄
= kuc
AL2

∂2ū

∂x̄2 + f̄ .

Assuming the two terms on the right-hand side balance, we must
have kuc/(AL2) = 1 and hence uc = L2A/k. This gives the coefficient
%cL2/(ktc) on the left-hand side. From b) we have that a time scale
based the movement of the heat source: tc = L/v. Now the scaled PDE
becomes

γ
∂ū

∂t̄
= ∂2ū

∂x̄2 + f̄ .

The scaling of f becomes identical to the one in b).

e) One aim with scaling is to get a solution that lies in the interval [−1,1].
This is not always the case when uc is based on a scale involving a source
term, as we do in a)-c). However, from the scaled PDE we realize that if
we replace f̄ with δf̄ , where δ is a dimensionless factor, this corresponds to
replacing uc by uc/δ. So, if we observe that ū ∼ 1/δ in simulations, we can
just replace f̄ by δf̄ in the scaled PDE.

Use this trick and implement the four scaled models in a)-d). Reuse
some software for the 1D diffusion equation. Make a function run(gamma,
beta=10, delta=40, scaling=1, animate=False) that runs an implemen-
tation of the unscaled model with the given γ, β, and δ parameters as well as

158 3 Basic partial differential equation models

an indicator scaling that is ’a’, ’b’, and so forth. The last argument can
be used to turn screen animations on or off.

Perform experiments to find the proper value of δ for each γ and for each
scaling.

Equip the run function with visualization, both animation of ū and f̄ , and
plots with ū and f̄ for t= 0.2 and t= 0.5.

Hint. Since the amplitudes of ū and f̄ differs by a factor δ, it is attractive
to plot f̄/δ together with ū.

Solution.
Here is a possible general solver function for solving the 1D diffusion
equation

∂u

∂t
= ∂

∂x

(
α(x)∂u

∂x

)
+f,

by the θ-rule in time and centered finite differences in space. The θ-rule
in time is actually just a notational convenience that gives Forward
Euler explicit time stepping for θ = 0, Backward Euler implicit time
stepping for θ = 0, and a centered implicit Crank-Nicolson scheme for
θ= 1

2 . The boundary conditions is of Dirichlet type: u(0, t) =UL(t) and
u(L,t) = UR(t).

import numpy as np
import scipy.sparse
import scipy.sparse.linalg
import time, sys

def solver(I, a, f, L, Nx, D, T, theta=0.5, u_L=1, u_R=0,
user_action=None):

"""
The a variable is an array of length Nx+1 holding the values of
a(x) at the mesh points.

Method: (implicit) theta-rule in time.

Nx is the total number of mesh cells; mesh points are numbered
from 0 to Nx.
D = dt/dx**2 and implicitly specifies the time step.
T is the stop time for the simulation.
I is a function of x.

user_action is a function of (u, x, t, n) where the calling code
can add visualization, error computations, data analysis,
store solutions, etc.
"""
import time

3.5 Exercises 159

t0 = time.clock()

x = np.linspace(0, L, Nx+1) # mesh points in space
dx = x[1] - x[0]
dt = D*dx**2
#print ’dt=%g’ % dt
Nt = int(round(T/float(dt)))
t = np.linspace(0, T, Nt+1) # mesh points in time

if isinstance(a, (float,int)):
a = np.zeros(Nx+1) + a

if isinstance(u_L, (float,int)):
u_L_ = float(u_L) # must take copy of u_L number
u_L = lambda t: u_L_

if isinstance(u_R, (float,int)):
u_R_ = float(u_R) # must take copy of u_R number
u_R = lambda t: u_R_

u = np.zeros(Nx+1) # solution array at t[n+1]
u_1 = np.zeros(Nx+1) # solution at t[n]

"""
Basic formula in the scheme:

0.5*(a[i+1] + a[i])*(u[i+1] - u[i]) -
0.5*(a[i] + a[i-1])*(u[i] - u[i-1])

0.5*(a[i+1] + a[i])*u[i+1]
0.5*(a[i] + a[i-1])*u[i-1]
-0.5*(a[i+1] + 2*a[i] + a[i-1])*u[i]
"""
Dl = 0.5*D*theta
Dr = 0.5*D*(1-theta)

Representation of sparse matrix and right-hand side
diagonal = np.zeros(Nx+1)
lower = np.zeros(Nx)
upper = np.zeros(Nx)
b = np.zeros(Nx+1)

Precompute sparse matrix (scipy format)
diagonal[1:-1] = 1 + Dl*(a[2:] + 2*a[1:-1] + a[:-2])
lower[:-1] = -Dl*(a[1:-1] + a[:-2])
upper[1:] = -Dl*(a[2:] + a[1:-1])
Insert boundary conditions
diagonal[0] = 1
upper[0] = 0
diagonal[Nx] = 1
lower[-1] = 0

A = scipy.sparse.diags(
diagonals=[diagonal, lower, upper],
offsets=[0, -1, 1],

160 3 Basic partial differential equation models

shape=(Nx+1, Nx+1),
format=’csr’)

#print A.todense()

Set initial condition
for i in range(0,Nx+1):

u_1[i] = I(x[i])

if user_action is not None:
user_action(u_1, x, t, 0)

Time loop
for n in range(0, Nt):

b[1:-1] = u_1[1:-1] + Dr*(
(a[2:] + a[1:-1])*(u_1[2:] - u_1[1:-1]) -
(a[1:-1] + a[0:-2])*(u_1[1:-1] - u_1[:-2])) + \
dt*theta*f(x[1:-1], t[n+1]) + \
dt*(1-theta)*f(x[1:-1], t[n])

Boundary conditions
b[0] = u_L(t[n+1])
b[-1] = u_R(t[n+1])
Solve
u[:] = scipy.sparse.linalg.spsolve(A, b)

if user_action is not None:
user_action(u, x, t, n+1)

Switch variables before next step
u_1, u = u, u_1

t1 = time.clock()
return t1-t0

And here is our run function tailored to the problem:

def run(gamma, beta=10, delta=40, scaling=1, animate=False):
"""Run the scaled model for welding."""
gamma = float(gamma) # avoid integer division
if scaling == ’a’:

v = gamma
a = 1
L = 1.0
b = 0.5*beta**2

elif scaling == ’b’:
v = 1
a = 1.0/gamma
L = 1.0
b = 0.5*beta**2

elif scaling == ’c’:
v = 1
a = beta/gamma
L = beta
b = 0.5

3.5 Exercises 161

elif scaling == ’d’:
PDE: u_t = gamma**(-1)u_xx + gamma**(-1)*delta*f
v = 1
a = 1.0/gamma
L = 1.0
b = 0.5*beta**2
delta *= 1.0/gamma

ymin = 0
Need global ymax to be able change ymax in closure process_u
global ymax
ymax = 1.2

I = lambda x: 0
f = lambda x, t: delta*np.exp(-b*(x - v*t)**2)

import time
import scitools.std as plt
plot_arrays = []
if scaling == ’c’:

plot_times = [0.2*beta, 0.5*beta]
else:

plot_times = [0.2, 0.5]

def process_u(u, x, t, n):
"""
Animate u, and store arrays in plot_arrays if
t coincides with chosen times for plotting (plot_times).
"""
global ymax
if animate:

plt.plot(x, u, ’r-’,
x, f(x, t[n])/delta, ’b-’,
axis=[0, L, ymin, ymax], title=’t=%f’ % t[n],
xlabel=’x’, ylabel=’u and f/%g’ % delta)

if t[n] == 0:
time.sleep(1)
plot_arrays.append(x)

dt = t[1] - t[0]
tol = dt/10.0
if abs(t[n] - plot_times[0]) < tol or \

abs(t[n] - plot_times[1]) < tol:
plot_arrays.append((u.copy(), f(x, t[n])/delta))
if u.max() > ymax:

ymax = u.max()

Nx = 100
D = 10
if scaling == ’c’:

T = 0.5*beta
else:

T = 0.5
u_L = u_R = 0

162 3 Basic partial differential equation models

theta = 1.0
cpu = solver(

I, a, f, L, Nx, D, T, theta, u_L, u_R, user_action=process_u)
x = plot_arrays[0]
plt.figure()
for u, f in plot_arrays[1:]:

plt.plot(x, u, ’r-’, x, f, ’b--’, axis=[x[0], x[-1], 0, ymax],
xlabel=’x’, ylabel=r’$u, \ f/%g$’ % delta)

plt.hold(’on’)
plt.legend([’$u,\\ t=%g$’ % plot_times[0],

’$f/%g,\\ t=%g$’ % (delta, plot_times[0]),
’$u,\\ t=%g$’ % plot_times[1],
’$f/%g,\\ t=%g$’ % (delta, plot_times[1])])

filename = ’tmp1_gamma%g_%s’ % (gamma, scaling)
plt.title(r’$\beta = %g,\ \gamma = %g,\ $’ % (beta, gamma)

+ ’scaling=%s’ % scaling)
plt.savefig(filename + ’.pdf’); plt.savefig(filename + ’.png’)
return cpu

Note that we have dropped the bar notation in the plots. It is common
to drop the bars as soon as the scaled problem is established.

f) Use the software in e) to investigate γ = 0.2,1,5,40 for the four scalings.
Discuss the results.

Solution.
For these investigations, we compare the three scalings for each of the
different γ values. An appropriate function for automating the tasks is

def investigate():
"""Do scienfic experiments with the run function above."""
Clean up old files
import glob, os
for filename in glob.glob(’tmp1_gamma*’) + \

glob.glob(’welding_gamma*’):
os.remove(filename)

scaling_values = ’abcd’
gamma_values = 1, 40, 5, 0.2, 0.025
delta_values = {} # delta_values[scaling][gamma]
delta_values[’a’] = {0.025: 140, 0.2: 60, 1: 20, 5: 40, 40: 800}
delta_values[’b’] = {0.025: 700, 0.2: 100, 1: 20, 5: 8, 40: 5}
delta_values[’c’] = {0.025: 80, 0.2: 10, 1: 2, 5: 0.8, 40: 0.5}
delta_values[’d’] = {0.025: 20, 0.2: 20, 1: 20, 5: 40, 40: 200}
for gamma in gamma_values:

for scaling in scaling_values:
run(gamma=gamma, beta=10,

delta=delta_values[scaling][gamma],
scaling=scaling)

3.5 Exercises 163

Combine images
for gamma in gamma_values:

for ext in ’pdf’, ’png’:
cmd = ’doconce combine_images -2’
for s in scaling_values:

cmd += ’ tmp1_gamma%(gamma)g_%(s)s.%(ext)s ’ % vars()
cmd += ’ welding_gamma%(gamma)g.%(ext)s’ % vars()
os.system(cmd)
pdflatex doesn’t like a dot (as in 0.2) in filenames...
if ’.’ in str(gamma):

os.rename(
’welding_gamma%(gamma)g.%(ext)s’ % vars(),
(’welding_gamma%(gamma)g’ % vars()).replace(’.’, ’_’)
+ ’.’ + ext)

Note that for each γ value and each scaling, we have found a δ value
such that the maximum u value is around unity in size. We did this first
by trial and error, and thereafter filled out the delta_values dictionary.

The scalings in b)-d) are illustrated at the same physical times. The
scaling in a) is plotted at the same non-dimensional time as used in the
other scalings, but observe that this is a different physical time than
used for the b)-d) scalings.

We get the following plots, with the a) and c) scalings to the left
and the b) and d) scalings to the right, starting with γ = 0.025 and
increasing its value to γ = 40:

γ = 0.025. For small γ, 0.025 and 0.2, the scales b)-d) are equally ap-
plicable, while the diffusion time scale, which is much longer, does not
fit with the heat source motion.

164 3 Basic partial differential equation models

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.2

0.4

0.6

0.8

1.0

1.2

u
,
f/

14
0

β=10, γ=0.025, scaling=a

u, t=0.2

f/140, t=0.2

u, t=0.5

f/140, t=0.5

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.2

0.4

0.6

0.8

1.0

1.2

u
,
f/

70
0

β=10, γ=0.025, scaling=b

u, t=0.2

f/700, t=0.2

u, t=0.5

f/700, t=0.5

0 2 4 6 8 10
x

0.0

0.2

0.4

0.6

0.8

1.0

1.2

u
,
f/

80

β=10, γ=0.025, scaling=c

u, t=2

f/80, t=2

u, t=5

f/80, t=5

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.2

0.4

0.6

0.8

1.0

1.2

u
,
f/

8
0
0

β=10, γ=0.025, scaling=d

u, t=0.2

f/800, t=0.2

u, t=0.5

f/800, t=0.5

Below are the results for γ = 0.02.

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.2

0.4

0.6

0.8

1.0

1.2

u
,
f/

6
0

β=10, γ=0.2, scaling=a

u, t=0.2

f/60, t=0.2

u, t=0.5

f/60, t=0.5

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.2

0.4

0.6

0.8

1.0

1.2

u
,
f/

1
00

β=10, γ=0.2, scaling=b

u, t=0.2

f/100, t=0.2

u, t=0.5

f/100, t=0.5

0 2 4 6 8 10
x

0.0

0.2

0.4

0.6

0.8

1.0

1.2

u
,
f/

10

β=10, γ=0.2, scaling=c

u, t=2

f/10, t=2

u, t=5

f/10, t=5

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.2

0.4

0.6

0.8

1.0

1.2

u
,
f/

10
0

β=10, γ=0.2, scaling=d

u, t=0.2

f/100, t=0.2

u, t=0.5

f/100, t=0.5

3.5 Exercises 165

For γ = 1, all the scalings are equal and provide identical results.

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.2

0.4

0.6

0.8

1.0

1.2

u
,
f/

20

β=10, γ=1, scaling=a

u, t=0.2

f/20, t=0.2

u, t=0.5

f/20, t=0.5

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.2

0.4

0.6

0.8

1.0

1.2

u
,
f/

20

β=10, γ=1, scaling=b

u, t=0.2

f/20, t=0.2

u, t=0.5

f/20, t=0.5

0 2 4 6 8 10
x

0.0

0.2

0.4

0.6

0.8

1.0

1.2

u
,
f/

2

β=10, γ=1, scaling=c

u, t=2

f/2, t=2

u, t=5

f/2, t=5

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.2

0.4

0.6

0.8

1.0

1.2

u
,
f/

2
0

β=10, γ=1, scaling=d

u, t=0.2

f/20, t=0.2

u, t=0.5

f/20, t=0.5

Next we present results for γ = 5.

166 3 Basic partial differential equation models

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.2

0.4

0.6

0.8

1.0

1.2

u
,
f/

40

β=10, γ=5, scaling=a

u, t=0.2

f/40, t=0.2

u, t=0.5

f/40, t=0.5

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.2

0.4

0.6

0.8

1.0

1.2

u
,
f/

8

β=10, γ=5, scaling=b

u, t=0.2

f/8, t=0.2

u, t=0.5

f/8, t=0.5

0 2 4 6 8 10
x

0.0

0.2

0.4

0.6

0.8

1.0

1.2

u
,
f/

0
.8

β=10, γ=5, scaling=c

u, t=2

f/0.8, t=2

u, t=5

f/0.8, t=5

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.2

0.4

0.6

0.8

1.0

1.2

u
,
f/

8

β=10, γ=5, scaling=d

u, t=0.2

f/8, t=0.2

u, t=0.5

f/8, t=0.5

Finally, we have the results for γ = 40.

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.2

0.4

0.6

0.8

1.0

1.2

u
,
f/

8
00

β=10, γ=40, scaling=a

u, t=0.2

f/800, t=0.2

u, t=0.5

f/800, t=0.5

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.2

0.4

0.6

0.8

1.0

1.2

u
,
f/

5

β=10, γ=40, scaling=b

u, t=0.2

f/5, t=0.2

u, t=0.5

f/5, t=0.5

0 2 4 6 8 10
x

0.0

0.2

0.4

0.6

0.8

1.0

1.2

u
,
f/

0.
5

β=10, γ=40, scaling=c

u, t=2

f/0.5, t=2

u, t=5

f/0.5, t=5

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.2

0.4

0.6

0.8

1.0

1.2

u
,
f/

5

β=10, γ=40, scaling=d

u, t=0.2

f/5, t=0.2

u, t=0.5

f/5, t=0.5

3.5 Exercises 167

Discussion. From these plots we see that it does not matter which
of the scalings in b)-d) we choose, as long as we compensate with the
δ parameter to bring u to the size of unity. The scaling a) is suitable
for γ ≤ 1, it seems, but graphs at earlier times for γ = 5,40 should be
investigated before drawing a conclusion.

Looking at the necessary values of δ to bring u around the size of
unity, and noting that the factor used to scale f is δ/γ in scaling d),
we see that for small γ, the scaling in d) requires an adjustment δ =
20, while the scaling in b) requires δ = 700. For the large γ = 40, the
situation is opposite: the scaling in d) requires δ = 200, while the one
in b) only needs δ = 5. The scaling in c) is very similar to the scaling in
b), apart from the factor L/σ (times, δ, etc. are all differ by the factor
L/σ).

We therefore conclude that the scaling in d) is best for small γ and
the scaling b) is best for large γ, but with the δ trick used here, it
really does not matter for practical calculations which scaling we use.
Nevertheless, the insight given by the scalings should not be forgotten:
we see in d) that for large γ the time-derivative term can be neglected
and in b) that the conduction term can be neglected.

We must also remark that the boundary conditions reduce the phys-
ical relevance of the results as we force the scaled temperature down to
zero at the end points. The temperature at the end points are much more
“free”, in reality, resulting in flatter curves than what we achieved above.
This flattening would also demonstrate that the heat from the welding
equipment is more efficiently conducted away toward the boundaries.
However, for investigating the differences between different scalings, the
choice of boundary conditions is not a key issue.

Simulations with a full 3D model. How relevant is it to study scal-
ing in 1D model when we know that the heat loss from the material is
not well modeled? We have implemented a full 3D model in the FEn-
iCS programming system and performed simulations using cooling law
boundary conditions (i.e., conditions of Robin type). In the dimension-
less cooling law, we set the Nusselt number to 1. The other dimensionless
parameters are as in the 1D problem, but the welding equipment moves
in a circle rather along a line as it had to in the 1D problem.

Below is a plot of the heat source (upper left) and temperature dis-
tributions for γ = 0.1 (upper right), γ = 1 (lower left), and γ = 30 (lower
right), after two rotations.

168 3 Basic partial differential equation models

Gearing γ up to 2000 gives the following comet-like temperature
distribution:

3.5 Exercises 169

From the movies below we can clearly see how the temperature is
effectively spreading in 3D for small γ values, while for large values the
temperature hardly reaches the boundary.

Movie 5: γ= 0.1. https://raw.githubusercontent.com/hplgit/fenics-tutorial/
brief/doc/pub/mov/welding/welding_gamma01_3D.ogg

Movie 6: γ= 1. https://raw.githubusercontent.com/hplgit/fenics-tutorial/
brief/doc/pub/mov/welding/welding_gamma1_3D.ogg

Movie 7: γ= 30. https://raw.githubusercontent.com/hplgit/fenics-tutorial/
brief/doc/pub/mov/welding/welding_gamma30_3D.ogg

Movie 8: γ= 2000. https://raw.githubusercontent.com/hplgit/fenics-tutorial/
brief/doc/pub/mov/welding/welding_gamma2000_3D.ogg

Filename: welding.

https://raw.githubusercontent.com/hplgit/fenics-tutorial/brief/doc/pub/mov/welding/welding_gamma01_3D.ogg
https://raw.githubusercontent.com/hplgit/fenics-tutorial/brief/doc/pub/mov/welding/welding_gamma01_3D.ogg
https://raw.githubusercontent.com/hplgit/fenics-tutorial/brief/doc/pub/mov/welding/welding_gamma1_3D.ogg
https://raw.githubusercontent.com/hplgit/fenics-tutorial/brief/doc/pub/mov/welding/welding_gamma1_3D.ogg
https://raw.githubusercontent.com/hplgit/fenics-tutorial/brief/doc/pub/mov/welding/welding_gamma30_3D.ogg
https://raw.githubusercontent.com/hplgit/fenics-tutorial/brief/doc/pub/mov/welding/welding_gamma30_3D.ogg
https://raw.githubusercontent.com/hplgit/fenics-tutorial/brief/doc/pub/mov/welding/welding_gamma2000_3D.ogg
https://raw.githubusercontent.com/hplgit/fenics-tutorial/brief/doc/pub/mov/welding/welding_gamma2000_3D.ogg

Chapter 4
Advanced partial differential
equation models

This final chapter addresses more complicated PDE models, including linear
elasticity, viscous flow, heat transfer, porous media flow, gas dynamics, and
electrophysiology. A range of classical dimensionless numbers are discussed
in terms of the scaling.

4.1 The equations of linear elasticity

To the best of the authors’ knowledge, it seems that mathematical models in
elasticity and structural analysis are almost never non-dimensionalized. This
is probably due to tradition, but the following sections will demonstrate the
usefulness of scaling also in this scientific field.

We start out with the general, time-dependent elasticity PDE with variable
material properties. Analysis based on scaling is used to determine under
what circumstances the acceleration term can be neglected and we end up
with the widely used stationary elasticity PDE. Scaling of different types
of boundary conditions is also treated. At the end, we scale the equations
of coupled thermo-elasticity. All the models make the assumption of small
displacement gradients and Hooke’s generalized constitutive law such that
linear elasticity theory applies.

4.1.1 The general time-dependent elasticity problem

The following vector PDE governs deformation and stress in purely elastic
materials, under the assumption of small displacement gradients:

%
∂2u

∂t2
=∇((λ+µ)∇·u) +∇· (µ∇u) +%f . (4.1)

171

172 4 Advanced partial differential equation models

Here, u is the displacement vector, % is the density of the material, λ and µ
are the Lame elasticity parameters, and f is a body force (gravity, centrifugal
force, or similar).

We introduce dimensionless variables:

ū= u−1
c u, x̄= x

L
ȳ = y

L
z̄ = z

L
, t̄= f

tc
.

Also the elasticity parameters and the density can be scaled, if they are not
constants,

λ̄= λ

λc
, µ̄= µ

µc
, %̄= %

%c
,

where the characteristic quantities are typically spatial maximum values of
the functions:

λc = max
x,y,z

λ, µc = max
x,y,z

µ, %c = max
x,y,z

%.

Finally, we scale f too (if not constant):

f̄ = f−1
c f , fc = max

x,y,z,t
||f || .

Inserting the dimensionless quantities in the governing vector PDE results
in

%cuc
t2c

∂2ū

∂t̄2
= L−2uc∇̄((λcλ̄+µcµ̄)∇̄ · ū) +L−2ucµc∇̄ · (µ̄∇̄ū) +%cfc%̄f̄ .

Making the terms non-dimensional gives the equation

%̄
∂2ū

∂t̄2
= t2cλc
L2%c

∇̄(λ̄∇̄ · ū)+ t2cµc
L2%c

∇̄(µ̄∇̄ · ū)+ t2cµc
L2%c

∇̄ · (µ̄∇̄ū)+ t2cfc
uc

%̄f̄ . (4.2)

We may choose tc to make the coefficient in front of any of the spatial deriva-
tive terms equal unity. Here we choose the µ term, which implies

tc = L

√
%c
µc
.

The scale for u can be chosen from an initial displacement or by making the
coefficient in front of the f̄ term unity. The latter means

uc = µ−1
c %cfcL

2 .

As discussed later, in Section 4.1.4, this might not be the desired uc in ap-
plications.

4.1 The equations of linear elasticity 173

The resulting dimensionless PDE becomes

%̄
∂2ū

∂t̄2
= ∇̄((βλ̄+ µ̄)∇̄ · ū) + ∇̄ · (µ̄∇̄ū) + %̄f̄ . (4.3)

The only dimensionless parameter is

β = λc
µc
.

If the source term is absent, we must use the initial condition or a known
boundary displacement to determine uc.

Software. Given software for (4.1), we can simulate the dimensionless prob-
lem by setting %= %̄, λ= βλ̄, and µ= µ̄.

4.1.2 Dimensionless stress tensor

The stress tensor σ is a key quantity in elasticity and is given by

σ = λ∇·uI+µ(∇u+ (∇u)T) .

This σ can be computed as soon as the PDE problem for u has been solved.
Inserting dimensionless variables on the right-hand side of the above relation
gives

σ = λcucL
−2λ̄∇̄ · ū+µcucL

−1µ̄(∇̄ū+ (∇̄ū)T)

= µcucL
−1
(
βλ̄∇̄ · ū+ µ̄(∇̄ū+ (∇̄ū)T)

)
.

The coefficient on the right-hand side, µcucL−1, has dimension of stress,
since (according to the second table in Section 1.1.2) [MT−2L−1)(L)(L−1)] =
[MT−2L−1], which is the dimension of stress. The quantity µcucL−1 is there-
fore the natural scale of the stress tensor:

σ̄ = σ

σc
, σc = µcucL

−1,

and we have the dimensionless stress-displacement relation

σ̄ = βλ̄∇̄ · ū+ µ̄(∇̄ū+ (∇̄ū)T) . (4.4)

174 4 Advanced partial differential equation models

4.1.3 When can the acceleration term be neglected?

A lot of applications of the elasticity equation involve static or quasi-static
deformations where the acceleration term %utt is neglected. Now we shall see
under which conditions the quasi-static approximation holds.

The further discussion will need to look into the time scales of elastic
waves, because it turns out that the chosen tc above is closely linked to the
propagation speed of elastic waves in a homogeneous body without body
forces. A relevant model for such waves has constant %, λ, and µ, and no
force term:

%
∂2u

∂t2
= (λ+µ)∇∇·u+µ∇2u . (4.5)

S waves. Let us take the curl of this PDE and notice that the curl of a
gradient vanishes. The result is

∂2

∂t2
∇×u= c2S∇2∇×u,

i.e., a wave equation for ∇×u. The wave velocity is

cS =
√
µ

%
.

The corresponding waves are called S waves. The curl of a displacement field
is closely related to rotation of continuum elements. S waves are therefore
rotation waves, also sometimes referred to as shear waves.

The divergence of a displacement field can be interpreted as the volume
change of continuum elements. Suppose this volume change vanishes, ∇·u=
0, which means that the material is incompressible. The elasticity equation
then simplifies to

∂2u

∂t2
= c2S∇2u,

so each component of the displacement field in this case also propagates as
a wave with speed c2S . The time it takes for such a wave to travel one charac-
teristic length L is L/cS , i.e., L

√
%/µ, which is nothing but our characteristic

time tc.

P waves. We may take the divergence of the PDE instead and notice that
∇·∇=∇2 so

∂2

∂t2
∇·u= c2P∇2∇·u,

with wave velocity

https://en.wikipedia.org/wiki/S-wave

4.1 The equations of linear elasticity 175

cP =

√
λ+ 2µ
%

.

That is, the volume change (expansion/compression) propagates as a wave
with speed cP . These types of waves are called P waves. Other names are
pressure and expansion/compression waves.

Suppose now that ∇×u= 0, i.e., there is no rotation (“shear”) of contin-
uum elements. Mathematically this condition implies that ∇2u = ∇(∇·u)
(see any book on vector calculus or Wikipedia). Our model equation (4.5)
then reduces to

∂2u

∂t2
= c2P∇2u,

which is nothing but a wave equation for the expansion component of the
displacement field, just as (4.1.3) is for the shear component.

Time-varying load. Suppose we have some time-varying boundary con-
dition on u or the stress vector (traction), with a time scale 1/ω (some
oscillating movement that goes like sinωt, for instance). We choose tc = 1/ω.
The scaling now leads to

γ
∂2ū

∂t̄2
= ∇̄((βλ̄+ µ̄)∇̄ · ū) + ∇̄ · (µ̄∇̄ū) + %̄f̄ .

where we have set

uc = µ−1
c fcL

2%c,

as before, and γ is a new dimensionless number,

γ = %cL
2ω2

µc
=
(
L
√
%c/µc

1/ω

)2

.

The last rewrite shows that √γ is the ratio of the time scale for S waves and
the time scale for the forced movement on the boundary. The acceleration
term can therefore be neglected when γ � 1, i.e., when the time scale for
movement on the boundary is much larger than the time it takes for the S
waves to travel through the domain. Since the velocity of S waves in solids is
very large and the time scale correspondingly small, γ� 1 is very often the
case in applications involving structural analysis. Exercise 4.1 explores related
models and asks for comparisons of time scales for waves and mechanical
vibrations in structures.

https://en.wikipedia.org/wiki/P-wave
https://en.wikipedia.org/wiki/Vector_calculus_identities

176 4 Advanced partial differential equation models

4.1.4 The stationary elasticity problem

Scaling of the PDE. We now look at the stationary version of (4.1) where
the %utt term is removed. The first step in the scaling is just inserting the
dimensionless variables:

0 = L−2uc∇̄((λcλ̄+µcµ̄)∇̄ · ū) +L−2ucµc∇̄ · (µ̄∇̄ū) +%cfc%̄f̄ .

Dividing by L2ucµc gives

0 = ∇̄((βλ̄+ µ̄)∇̄ · ū) + ∇̄ · (µ̄∇̄ū) + L2%cfc
ucµc

%̄f̄ .

Choosing uc = %L2fc/µc leads to

∇̄((βλ̄+ µ̄)∇̄ · ū) + ∇̄ · (µ̄∇̄ū) + %̄f̄ = 0 . (4.6)

A homogeneous material with constant λ, µ, and % is an interesting case
(this corresponds to µc = µ, λc = λ, %c = %, %̄= λ̄= µ̄= 1):

(1 +β)∇̄(∇̄ · ū) + ∇̄2ū) + f̄ = 0 . (4.7)

Now β is defined as

β = λ

µ
=
(
cp
cs

)2
−2 .

It shows that in standard, stationary elasticity, λ/µ is the only significant
physical parameter.

Remark on the characteristic displacement. The presented scaling may
not be valid for problems where the geometry involves some dimensions that
are much smaller than others, such as for beams, shells, or plates. Then
one more length scale must be defined which gives us non-dimensional ge-
ometrical numbers. Global balances of moments and loads then determine
how characteristic displacements depend on these numbers. As an example,
consider a cantilever beam of length L and square-shaped cross section of
width W , deformed under its own weight. From beam theory one can derive
uc = 3

2%gL
2δ2/E, where δ = L/W (g is the acceleration of gravity). If we

consider E to be of the same size as λ, this implies that γ ∼ δ−2. So, it may
be wise to prescribe a uc in elasticity problems, perhaps from formulas as
shown, and keep γ in the PDE.

Scaling of displacement boundary conditions. A typical boundary con-
dition on some part of the boundary is a prescribed displacement. For sim-
plicity, we set u=U0 for a constant vector U0 as boundary condition. With
uc = %L2fc/µ, we get the dimensionless condition

4.1 The equations of linear elasticity 177

ū= U0
uc

= µU0
%L2fc

.

In the absence of body forces, the expression for uc has no meaning (fc = 0),
so then uc = |U0| is a better choice. This gives the dimensionless boundary
condition

ū= U0
|U0|

,

which is the unit vector in the direction of U0. The new uc changes the
coefficient in front of the body force term, if that term is present, to the
dimensionless number

δ = L2%fc
µ|U0|

.

Scaling of traction boundary conditions. The other type of common
boundary condition in elasticity is a prescribed traction (stress vector) on
some part of the boundary:

σ ·n= T0,

where, to make it simple, we take T0 as a constant vector. From Section 4.1.2
we have a stress scale σc = µuc/L, but we may alternatively use |T0| as stress
scale. In that case,

σ̄ ·n= T0
|T0|

,

which is a unit vector in the direction of T0. Many applications involve large
traction free areas on the boundary, on which we simply have σ̄ ·n= 0.

4.1.5 Quasi-static thermo-elasticity

Heating solids gives rise to expansion, i.e., strains, which may cause stress
if displacements are constrained. The time scale of temperature changes are
usually much larger than the time scales of elastic waves, so the stationary
equations of elasticity can be used, but a term depends on the temperature,
so the equations must be coupled to a PDE for heat transfer in solids. The
resulting system of PDEs is known as the equations of thermo-elasticity and
reads

178 4 Advanced partial differential equation models

∇((λ+µ)∇·u) +∇· (µ∇u) = α∇T −%f , (4.8)

%c
∂T

∂t
=∇· (κ∇T) +%fT , (4.9)

where T is the temperature, α is a coefficient of thermal expansion, c is a heat
capacity, κ is the heat conduction coefficient, and fT is some heat source.
The density % is strictly speaking a function of T and the stress state, but
a widely used approximation is to consider % as a constant. Most thermo-
elasticity applications have fT = 0, so we drop this term. Most applications
also involve some heating from a temperature level T0 to some level T0 +∆T .
A suitable scaling for T is therefore

T̄ = T −T0
∆T

,

so that T̄ ∈ [0,1]. The elasticity equation has already been scaled and so has
the diffusion equation for T . We base the time scale on the diffusion, i.e., the
thermal conduction process:

tc = %cL2/κc .

We imagine that κ is scaled as κ̄= κ/κc. The dimensionless PDE system then
becomes

∇̄((1 +β)µ̄∇̄ · ū) + ∇̄ · (µ̄∇̄ū) = ∇̄T̄ − ε%̄f̄ , (4.10)
∂T̄

∂t̄
= ∇̄ · (κ̄∇̄T̄) . (4.11)

Here we have chosen uc such that the “heating source term” has a unit
coefficient, acknowledging that this thermal expansion balances the stress
terms with ū. The corresponding displacement scale is

uc = αL∆T

µc
.

The dimensionless number in the body force term is therefore

ε= L%cfc
α∆T

,

which measures the ratio of the body force term and the “heating source
term”.

A homogeneous body with constant %, λ, µ, c, and κ is common. The PDE
system reduces in this case to

4.2 The Navier-Stokes equations 179

∇̄((1 +β)∇̄ · ū) + ∇̄2ū) = ∇̄T̄ − εf̄ , (4.12)
∂T̄

∂t̄
= ∇̄2T̄ . (4.13)

In the absence of body forces, β is again the key parameter.
The boundary conditions for thermo-elasticity consist of the conditions

for elasticity and the conditions for diffusion. Scaling of such conditions are
discussed in Section 3.2 and 4.1.4.

4.2 The Navier-Stokes equations

This section shows how to scale various versions of the equations governing
incompressible viscous fluid flow. We start with the plain Navier-Stokes equa-
tions without body forces and progress with adding the gravity force and a
free surface. We also look at scaling low Reynolds number flow and oscillating
flows.

4.2.1 The momentum equation without body forces

The Navier-Stokes equations for incompressible viscous fluid flow, without
body forces, take the form

%

(
∂u

∂t
+u ·∇u

)
=−∇p+µ∇2u, (4.14)

∇·u= 0 . (4.15)

The primary unknowns are the velocity u and the pressure p. Moreover, % is
the fluid density, and µ is the dynamic viscosity.

Scaling. We start, as usual, by introducing a notation for dimensionless
independent and dependent variables:

x̄= x

L
, ȳ = y

L
, z̄ = z

L
, t̄= t

tc
, ū= u

uc
, p̄= p

pc
,

where L is some characteristic distance, tc is some characteristic time, uc is
a characteristic velocity, while pc is a characteristic pressure. Inserted in the
equations,

180 4 Advanced partial differential equation models

%

(
uc
tc

∂ū

∂t̄
+ u2

c

L
ū · ∇̄ū

)
=−pc

L
∇̄p̄+ uc

L2µ∇̄
2ū, (4.16)

uc
L
∇̄ · ū= 0 . (4.17)

For the velocity it is common to just introduce some U for uc. This U is
normally implied by the problem description. For example, in the flow con-
figuration below, with flow over a bump, we have some incoming flow with
a profile v(y) and U can typically be chosen as U = maxy v(y). The height
of the bump influences the wake behind the bump, and is the length scale
that really impacts the flow, so it is natural to set L = D. For numerical
simulations in a domain of finite extent, [0, c+ `], c must be large enough
to avoid feedback on the inlet profile, and ` must be large enough for the
type of outflow boundary condition used. Ideally, c,`→∞, so none of these
parameters are useful as length scales.

v(y)
D

`c

For flow in a channel or tube, we also have some inlet profile, e.g., v(r)
in a tube, where r is the radial coordinate. A natural choice of characteristic
velocity is U = v(0) or to let U be the average flow, i.e.,

U = 1
πR2

∫ R

0
2πv(r)rdr,

if R is the radius of the tube. Other examples may be flow around a body,
where there is some distant constant inlet flow u = U0i, for instance, and
U = U0 is an obvious choice. We therefore assume that the flow problem
itself brings a natural candidate for U .

Having a characteristic distance L and velocity U , an obvious time measure
is L/U so we set tc = L/U . Dividing by the coefficient in front of the time
derivative term, creates a pressure term

pc
%U2 ∇̄p̄ .

4.2 The Navier-Stokes equations 181

The coefficient suggest a choice pc = %U2 if the pressure gradient term is
to have the same size as the acceleration terms. This pc is a very common
pressure scale in fluid mechanics, arising from Bernoulli’s equation

p+ 1
2%u ·u= const

for stationary flow.

Dimensonless PDEs and the Reynolds number. The discussions so far
result in the following dimensionless form of (4.14) and (4.15):

∂ū

∂t̄
+ ū · ∇̄ū=−∇̄p̄+Re−1∇̄2ū, (4.18)

∇̄ · ū= 0, (4.19)

where Re is the famous Reynolds number,

Re = %UL

µ
= UL

ν
.

The latter expression makes use of the kinematic viscosity ν = µ/%. For vis-
cous fluid flows without body forces there is hence only one dimensionless
number, Re.

The Reynolds number can be interpreted as the ratio of convection and
viscosity:

convection
viscosity = |%u ·∇u|

|µ∇2u|
∼ %U2/L

µU/L2 = UL

ν
= Re .

(We have here used that ∇u goes like U/L and ∇2u goes like U/L2.)

4.2.2 Scaling of time for low Reynolds numbers

As we discussed in Section 3.4 for the convection-diffusion equation, there is
not just one scaling that fits all problems. Above, we used tc = L/U , which
is appropriate if convection is a dominating physical effect. In case the con-
vection term %u · ∇u is much smaller than the viscosity term µ∇2u, i.e.,
the Reynolds number is small, the viscosity term is dominating. However, if
the scaling is right, the other terms are of order unity, and Re−1∇2ū must
then also be of unit size. This fact implies that ∇2ū must be small, but then
the scaling is not right (since a right scaling will lead to ū and its derivatives
around unity). Such reasoning around inconsistent size of terms clearly points
to the need for other scales.

In the low-Reynolds number regime, the diffusion effect of∇2ū is dominat-
ing, and we should use a time scale based on diffusion rather than convection.

182 4 Advanced partial differential equation models

Such a time scale is tc = L2/(µ/%) = L2/ν. With this time scale, the dimen-
sionless Navier-Stokes equations look like

∂ū

∂t̄
+Re ū · ∇̄ū=−∇̄p+ ∇̄2ū, (4.20)

∇̄ · ū= 0 . (4.21)

As stated in the box in Section 3.4, (4.20) is the appropriate PDE for very
low Reynolds number flow and suggests neglecting the convection term. If
the flow is also steady, the time derivative term can be neglected, and we end
up with the so-called Stokes problem for steady, slow, viscous flow:

−∇̄p+ ∇̄2ū= 0, (4.22)
∇̄ · ū= 0 . (4.23)

This flow regime is also known as Stokes’ flow or creeping flow.

4.2.3 Shear stress as pressure scale

Instead of using the kinetic energy %U2 as pressure scale, one can use the
shear stress µU/L (U/L reflects the spatial derivative of the velocity, which
enters the shear stress expression µ∂u/∂y). Using U as velocity scale, L/U
as time scale, and µU/L as pressure scale, results in

Re
(
∂ū

∂t̄
+ ū · ∇̄ū

)
=−∇̄p̄+ ∇̄2ū . (4.24)

Low Reynolds number flow now suggests neglecting both acceleration terms.

4.2.4 Gravity force and the Froude number

We now add a gravity force to the momentum equation (4.14):

%

(
∂u

∂t
+u ·∇u

)
=−∇p+µ∇2u−%gk, (4.25)

where g is the acceleration of gravity, and k is a unit vector in the oppo-
site direction of gravity. The new term takes the following form after non-
dimensionalization:

4.2 The Navier-Stokes equations 183

tc
%uc

%gk = Lg

U2k = Fr−2k,

where Fr is the dimensionless Froude number,

Fr = U√
Lg

.

This quantity reflects the ratio of inertia and gravity forces:

|u ·∇u|
|%g|

∼ %U2/L

%g
= Fr2 .

4.2.5 Oscillating boundary conditions and the Strouhal
number

Many flows have an oscillating nature, often arising from some oscillating
boundary condition. Suppose such a condition, at some boundary x= const,
takes the specific form

u= U sin(ωt)i .

The dimensionless counterpart becomes

U ū= U sin(ω L
U
t̄)i,

if tc = L/U is the appropriate time scale. This condition can be written

ū= sin(St t̄), (4.26)

where St is the Strouhal number,

St = ωL

U
. (4.27)

The two important dimensionless parameters in oscillating flows are then the
Reynolds and Strouhal numbers.

Even if the boundary conditions are of steady type, as for flow around a
sphere or cylinder, the flow may at certain Reynolds numbers get unsteady
and oscillating. For 102 < Re < 107, steady inflow towards a cylinder will
cause vortex shedding: an array of vortices are periodically shedded from the
cylinder, producing an oscillating flow pattern and force on the cylinder. The
Strouhal number is used to characterize the frequency of oscillations. The
phenomenon, known as von Karman vortex street, is particularly important
if the frequency of the force on the cylinder hits the free vibration frequency of
the cylinder such that resonance occurs. The result can be large displacements
of the cylinder and structural failure. A famous case in engineering is the

184 4 Advanced partial differential equation models

failure of the Tacoma Narrows suspension bridge in 1940, when wind-induced
vortex shedding caused resonance with the free torsional vibrations of the
bridge.

4.2.6 Cavitation and the Euler number

The dimensionless pressure in (4.18) made use of the pressure scale pc = %U2.
This is an appropriate scale if the pressure level is not of importance, which is
very often the case since only the pressure gradient enters the flow equation
and drives the flow. However, there are circumstances where the pressure
level is of importance. For example, in some flows the pressure may become
so low that the vapor pressure of the liquid is reached and that vapor cavities
form (a phenomenon known as cavitation). A more appropriate pressure scale
is then pc = p∞− pv, where p∞ is a characteristic pressure level far from
vapor cavities and pv is the vapor pressure. The coefficient in front of the
dimensionless pressure gradient is then

p∞−pv
%U2 .

Inspired by Bernoulli’s equation p+ 1
2%u ·u= const in fluid mechanics, a fac-

tor 1
2 is often inserted in the denominator. The corresponding dimensionless

number,

Eu = p∞−pv
1
2%U

2 , (4.28)

is called the Euler number. The pressure gradient term now reads 1
2Eu∇̄p̄.

The Euler number expresses the ratio of pressure differences and the kinetic
energy of the flow.

4.2.7 Free surface conditions and the Weber number

At a free surface, z = η(x,y, t), the boundary conditions are

w = ∂η

∂t
+u ·∇η, (4.29)

p−p0 ≈−σ
(
∂2η

∂x2 + ∂2η

∂y2

)
, (4.30)

https://en.wikipedia.org/wiki/Tacoma_Narrows_Bridge_(1940)

4.3 Thermal convection 185

where w is the velocity component in the z direction, p0 is the atmospheric
air pressure at the surface, and σ represents the surface tension. The approx-
imation in (4.30) is valid under small deformations of the surface.

The dimensionless form of these conditions starts with inserting the di-
mensionless quantities in the equations:

ucw̄ = L

tc

∂η̄

∂t̄
+ucū · ∇̄η̄,

pcp̄≈−
1
L
σ

(
∂2η̄

∂x̄2 + ∂2η̄

∂ȳ2

)
.

The characteristic length L is usually taken as the depth of the fluid when
the surface is flat. We have used p̄ = (p− p0)/pc for making the pressure
dimensionless. Using uc = U , tc = L/U , and pc = %U2, results in

w̄ = ∂η̄

∂t̄
+ ū · ∇̄η̄, (4.31)

p̄≈−We−1
(
∂2η̄

∂x̄2 + ∂2η̄

∂ȳ2

)
, (4.32)

where We is the Weber number,

We = %U2L

σ
. (4.33)

The Weber number measures the importance of surface tension effects and
is the ratio of the pressure scale %U2 and the surface tension force per area,
typically σ/Rx in a 2D problem, which has size σ/L.

4.3 Thermal convection

Temperature differences in fluid flow cause density differences, and since cold
fluid is heavier than hot fluid, the gravity force will induce flow due to den-
sity differences. This effect is called free thermal convection and is key to our
weather and heating of rooms. Forced convection refers to the case where
there is no feedback from the temperature field to the motion, i.e., tempera-
ture differences do not create motion. This fact decouples the energy equation
from the mass and momentum equations.

186 4 Advanced partial differential equation models

4.3.1 Forced convection

The model governing forced convection consists of the Navier-Stokes equa-
tions and the energy equation for the temperature:

%

(
∂u

∂t
+u ·∇u

)
=−∇p+µ∇2u−%gk, (4.34)

∇·u= 0, (4.35)

%c

(
∂T

∂t
+u ·∇T

)
= κ∇2T . (4.36)

The symbol T is the temperature, c is a heat capacity, and κ is the heat
conduction coefficient for the fluid. The PDE system applies primarily for
liquids. For gases one may need a term −p∇ ·u for the pressure work in
(4.36) as well as a modified equation of continuity (4.35).

Despite the fact that % depends on T , we treat % as a constant %0. The ma-
jor effect of the %(T) dependence is through the buoyancy effect caused by the
gravity term −%(T)gk. It is common to drop this term in forced convection,
and assume the momentum and continuity equations to be independent of
the temperature. The flow is driven by boundary conditions (rather than den-
sity variations as in free convection), from which we can find a characteristic
velocity U .

Dimensionless parameters are introduced as follows:

x̄= x

L
, tc = L

U
, ū= u

U
, p̄= p

%0U2 , T̄ = T −T0
Tc

.

Other coordinates are also scaled by L. The characteristic temperature Tc is
chosen as some range∆T , which depends on the problem and is often given by
the thermal initial and/or boundary conditions. The reference temperature
T0 is also implied by prescribed conditions. Inserted in the equations, we get

%0
U2

L

∂ū

∂t̄
+%0

U2

L
ū · ∇̄ū=−%0U

2

L
∇̄p̄+ µU

L2 ∇̄
2ū,

U

L
∇̄ · ū= 0,

%0c

(
TcU

L

∂T̄

∂t̄
+ UTc

L
ū · ∇̄T̄

)
= κTc

L2 ∇̄
2T̄ .

Making each term in each equation dimensionless reduces the system to

4.3 Thermal convection 187

∂ū

∂t̄
+ ū · ∇̄ū=−∇̄p̄+Re−1∇̄2ū, (4.37)

∇̄ · ū= 0, (4.38)
∂T̄

∂t̄
+ ū · ∇̄T̄ = Pe−1∇̄2T̄ . (4.39)

The two dimensionless numbers in this system are given by

Pe = %0cUL

κ
, Re = UL

ν
(ν = µ

%0
) .

The Peclet number is here defined as the ratio of the convection term for
heat %0cU∆T/L and the heat conduction term κU/L2. The fraction κ/(%0c)
is known as the thermal diffusivity, and if this quantity is given a symbol α,
we realize the relation to the Peclet number defined in Section 3.4.

4.3.2 Free convection

Governing equations. The mathematical model for free thermal convec-
tion consists of the Navier-Stokes equations coupled to an energy equation
governing the temperature:

%

(
∂u

∂t
+u ·∇u

)
=−∇p+µ∇2u−%gk, (4.40)

∂ρ

∂t
+∇· (%u) = 0, (4.41)

%c

(
∂T

∂t
+u ·∇T

)
= κ∇2T + 2µεijεij , (4.42)

where Einstein’s summation convention is implied for the εijεij term. The
symbol T is the temperature, c is a heat capacity, κ is the heat conduction
coefficient for the fluid. In free convection, the gravity term −%(T)gk is es-
sential since the flow is driven by temperature differences and the fact that
hot fluid rises while cold fluid falls.

For a slightly compressible gas flow a term −p∇ ·u may be needed in
(4.42).

Heating by viscous effects. We have also included heating of the fluid
due to the work of viscous forces, represented by the term 2µεijεij , where
εij is the strain-rate tensor in the flow, defined by

εij = 1
2

(
∂ui
∂xj

+ ∂uj
∂xi

)
= 1

2(∇u+ (∇u)T),

188 4 Advanced partial differential equation models

where ui is the velocity in direction of xi (i = 1,2,3 measures the space
directions). The term 2µεijεij is actually much more relevant for forced con-
vection, but was left out in Section 4.3.1 for mathematical simplicity. Heating
by the work of viscous forces is often a very small effect and can be neglected,
although it plays a major role in forging and extrusion of metals where the
viscosity is very large (such processes require large external forces to drive
the flow). The reason for including the work by viscous forces under the
heading of free convection, is that we want to scale a more complete, gen-
eral mathematical model for mixed force and free convection, and arrive at
dimensionless numbers that can tell if this extra term is important or not.

Relation between density and temperature. Equation (4.40) and has
already been made dimensionless in the previous section. The major difference
is now that % is no longer a constant, but a function of T . The relationship
between % and T is often taken as linear,

%= %0−%0β(T −T0),

where

β =−1
%

(
∂%

∂t

)
p

,

is known as the thermal expansion coefficient of the fluid, and %0 is a reference
density when the temperature is at T0.

The Boussinesq approximation. A very common approximation, called
the Boussinesq approximation, is to neglect the density variations in all terms
except the gravity term. This is a good approximation unless the change in
% is large. With the linear %(T) formula and the Boussinesq approximation,
(4.40)-(4.42) take the form

%0

(
∂u

∂t
+u ·∇u

)
=−∇p+µ∇2u− (%0−%0β(T −T0))gk, (4.43)

∇·u= 0, (4.44)

%0c

(
∂T

∂t
+u ·∇T

)
= κ∇2T + 2µεijεij . (4.45)

A good justification of the Boussinesq approximation is provided by Tritton
[11, Ch. 13].

Scaling. Dimensionless variables are introduced as

x̄= x

L
, tc = L

U
, ū= u

U
, p̄= p

%U2 , T̄ = T −T0
∆T

.

The dimensionless y and z coordinates also make use of L as scale. As in
forced convection, we assume the characteristic temperature level T0 and the

4.3 Thermal convection 189

scale ∆T are given by thermal boundary and/or initial conditions. Contrary
to Sections 4.2 and 4.3.1, U is now not given by the problem description, but
implied by ∆T .

Replacing quantities with dimensions by their dimensionless counterparts
results in

%0
U2

L

∂ū

∂t̄
+%0

U2

L
ū · ∇̄ū=−pc

L
∇̄p̄+ µU

L2 ∇̄
2ū−%0gk+%0βTcT̄ gk,

U

L
∇̄ · ū= 0,

%0c

(
TcU

L

∂T̄

∂t̄
+ UTc

L
ū · ∇̄T̄

)
= κTc

L2 ∇̄
2T̄ + 2µU

L
ε̄ij ε̄ij .

These equations reduce to

∂ū

∂t̄
+ ū · ∇̄ū=−∇̄p̄+Re−1∇̄2ū−Fr−2k+γT̄k, (4.46)

∇̄ · ū= 0, (4.47)
∂T̄

∂t̄
+ ū · ∇̄T̄ = Pe−1∇̄2T̄ + 2δε̄ij ε̄ij . (4.48)

The dimensionless numbers, in addition to Re and Fr, are

γ = gβL∆T

U2 , Pe−1 = κ

%0cUL
, δ = µU

L%0c∆T
.

The γ number measures the ratio of thermal buoyancy and the convection
term:

γ = %0gβ∆T

%0U2/L
= gβL∆T

U2 .

The Pe parameter is the fraction of the convection term and the thermal
diffusion term:

|%0u ·∇T |
|κ∇2T |

∼ %0cU∆TL
−1

κL−2∆T
= %cUL

κ
= Pe .

The δ parameter is the ratio of the viscous dissipation term and the convection
term:

|µ∇2u|
|%0cu ·∇T |

∼ µU2/L2

%0cU∆T/L
= µU

L%0c∆T
= δ .

190 4 Advanced partial differential equation models

4.3.3 The Grashof, Prandtl, and Eckert numbers

The problem with the above dimensionless numbers is that they involve U ,
but U is implied by ∆T . Assuming that the convection term is much bigger
than the viscous diffusion term, the momentum equation features a balance
between the buoyancy term and the convection term:

|%0u ·∇u| ∼ %0gβ∆T .

Translating this similarity to scales,

%0U
2/L∼ %0gβ∆T,

gives an U in terms of ∆T :

U =
√
βL∆T .

The Reynolds number with this U now becomes

ReT = UL

ν
=
√
gβL3∆T

ν2 = Gr1/2,

where Gr is the Grashof number in free thermal convection:

Gr = Re2
T = gβL3∆T

ν2 .

The Grashof number replaces the Reynolds number in the scaled equations
of free thermal convection. We shall soon look at its interpretations, which
are not as straightforward as for the Reynolds and Peclet numbers.

The above choice of U in terms of ∆T results in γ equal to unity:

γ = gβL∆T

U2 = gβL∆T

gβL∆T
= 1 .

The Peclet number can also be rewritten as

Pe = %cUL

κ
= µc

κ

%UL

µ
= PrRe−1 = PrRe−1

T ,

where Pr is the Prandtl number, defined as

Pr = µc

κ
.

The Prandtl number is the ratio of the momentum diffusivity (kinematic
viscosity) and the thermal diffusivity. Actually, more detailed analysis shows
that Pr reflects the ratio of the thickness of the thermal and velocity boundary
layers: when Pr = 1, these layers coincide, while Pr� 1 implies that the
thermal layer is much thicker than the velocity boundary layer, and vice
versa for Pr� 1.

4.3 Thermal convection 191

The δ parameter is in free convection replaced by a combination of the
Eckert number (Ec) and the Reynolds number. We have that

Ec = U2

c∆T
= δReT ,

and consequently

δ = EcRe−1
T = EcGr−1/2 .

Writing

Ec = %0U
2

%0c∆T
,

shows that the Eckert number can be interpreted as the ratio of the kinetic
energy of the flow and the thermal energy.

We use Gr instead of ReT in the momentum equations and also instead
of Pe in the energy equation (recall that Pe = PrRe = PrReT = PrGr−1/2).
The resulting scaled system becomes

∂ū

∂t̄
+ ū · ∇̄ū=−∇̄p̄+Gr−1/2∇̄2ū−Fr−2k+ T̄k, (4.49)

∇̄ · ū= 0, (4.50)

Gr1/2
(
∂T̄

∂t̄
+ ū · ∇̄T̄

)
= Pr−1∇̄2T̄ + 2EcGr−1/2ε̄ij ε̄ij . (4.51)

The Grashof number plays the same role as the Reynolds number in the
momentum equation in free convection. In particular, it turns out that Gr
governs the transition between laminar and turbulent flow. For example, the
transition to turbulence occurs in the range 108 <Gr< 109 for free convection
from vertical flat plates. Gr is normally interpreted as a dimensionless number
expressing the ratio of buoyancy forces and viscous forces.

Interpretations of the Grashof number. Recall that the scaling leading
to the Grashof number is based on an estimate of U from a balance of the
convective and the buoyancy terms. When the viscous term dominates over
convection, we need a different estimate of U , since in this case, the viscous
force balances the buoyancy force:

µ∇2u∼ %0gβ∆T ⇒ µU/L2 ∼ %0gβ∆T,

This similarity suggests the scale

U = gβL2∆T

ν
.

Now,

192 4 Advanced partial differential equation models

|%0u ·∇u|
|µ∇2u|

∼ UL

ν
= gβL3∆T

ν
= Gr .

The result means that Gr1/2 measures the ratio of convection and viscous
forces when convection dominates, whereas Gr measures this ratio when vis-
cous forces dominate.

The product of Gr and Pr is the Rayleigh number,

Ra = gβL3∆T%0c

νκ
,

since

GrPr = Re2
TPr = gβL3∆T

ν2
µc

κ
= gβL3∆T%0c

νκ
= Ra .

The Rayleigh number is the preferred dimensionless number when studying
free convection in horizontal layers [2, 11]. Otherwise, Gr and Pr are used.

4.3.4 Heat transfer at boundaries and the Nusselt and
Biot numbers

A common boundary condition, modeling heat transfer to/from the surround-
ings, is

−κ∂T
∂n

= h(T −Ts), (4.52)

where ∂/∂n means the derivative in the normal direction (n · ∇), h is an
experimentally determined heat transfer coefficient, and Ts is the temperature
of the surroundings. Scaling (4.52) leads to

−κ∆t
L

∂T̄

∂n̄
= h(∆TT̄ +T0−Ts),

and further to

∂T̄

∂n̄
= hL

κ
(T̄ + Ts−T0

∆T
) = δ(T̄ − T̄s),

where the dimensionless number δ is defined by

δ = hL

κ
,

and T̄s is simply the dimensionless surrounding temperature,

4.4 Compressible gas dynamics 193

T̄s = Ts−T0
∆T

.

When studying heat transfer in a fluid, with solid surroundings, δ is known
as the Nusselt number Nu. The left-hand side of (4.52) represents in this case
heat conduction, while the right-hand side models convective heat transfer
at a boundary. The Nusselt number can then be interpreted as the ratio of
convective and conductive heat transfer at a solid boundary:

|h(T −Ts)|
κT/L

∼ h

κ/L
= Nu .

The case with heat transfer in a solid with a fluid as surroundings gives the
same dimensionless δ, but the number is now known as the Biot number. It
describes the ratio of heat loss/gain with the surroundings at the solid body’s
boundary and conduction inside the body. A small Biot number indicates
that conduction is a fast process and one can use Newton’s law of cooling
(see Section 2.1.7) instead of a detailed calculation of the spatio-temporal
temperature variation in the body. The Biot number also arises in simplified
models of heat conduction in solids, see Exercise 3.5.

Heat transfer is a huge engineering field with lots of experimental investiga-
tions that are summarized by curves relating various dimensionless numbers
such as Gr, Pr, Nu, and Bi.

4.4 Compressible gas dynamics

4.4.1 The Euler equations of gas dynamics

The fundamental equations for a compressible fluid are based on balance of
mass, momentum, and energy. When molecular diffusion effects are negligible,
the PDE system, known as the Euler equations of gas dynamics, can be
written as

∂%

∂t
+∇· (%u) = 0, (4.53)

∂(%u)
∂t

+∇· (%uuT) =−∇p+%f , (4.54)

∂E

∂t
+∇· (u(E+p)) = 0, (4.55)

with E being

E = %e+ 1
2%u ·u . (4.56)

https://en.wikipedia.org/wiki/Nusselt_number
https://en.wikipedia.org/wiki/Biot_number

194 4 Advanced partial differential equation models

In these equations, u is the fluid velocity, % is the density, p is the pressure,
E is the total energy per unit volume, composed of the kinetic energy per
unit volume, 1

2%u ·u, and the internal energy per unit volume, %e.
Assuming the fluid to be an ideal gas implies the following additional

relations:

e= cvT, (4.57)

p= %RT = R

cv
(E− 1

2%u ·u), (4.58)

where cv is the specific heat capacity at constant volume (for dry air cv =
717.5Jkg−1K−1), R is the specific ideal gas constant (R= 287.14Jkg−1K−1),
and T is the temperature.

The common way to solve these equations is to propagate %, %u, and E
by an explicit numerical method in time for (4.53)-(4.55), using (4.58) for p.

We introduce dimensionless independent variables,

x̄= x

L
, ȳ = y

L
, z̄ = z

L
, t̄= t

tc
,

and dimensionless dependent variables,

ū= u

U
, %̄= %

%c
, p̄= p

pc
, Ē = E

Ec
.

Inserting these expressions in the governing equations gives

∂%̄

∂t̄
+ tcU

L
∇̄ · (%̄ū) = 0,

∂(%̄ū)
∂t̄

+ tcU

L
∇̄ · (%̄ūūT) =− tcpc

UL%c
∇p̄+ tcfc

U
%̄f̄ ,

∂Ē

∂t̄
+ tcU

LEc
∇̄ · (ū(EcĒ+pcp̄)) = 0,

p̄= R

cvpc
(EcĒ−

1
2%cuc%̄ū · ū) .

A natural choice of time scale is tc =L/U . A common choice of pressure scale
is pc = %cU

2. The energy equation simplifies if we choose Ec = pc = %cU
2.

With these scales we get

4.4 Compressible gas dynamics 195

∂%̄

∂t̄
+ ∇̄ · (%̄ū) = 0,

∂(%̄ū)
∂t̄

+ ∇̄ · (%̄ūūT) =−∇p̄+α%̄f̄ ,

∂Ē

∂t̄
+ ∇̄ · (ū(Ē+ p̄)) = 0,

p̄= R

cv
(Ē− 1

2 %̄ū · ū),

where α is a dimensionless number:

α= Lfc
U2 .

We realize that the scaled Euler equations look like the ones with dimension,
apart from the α coefficient.

4.4.2 General isentropic flow

Heat transfer can be neglected in isentropic flow, and there is hence an equa-
tion of state involving only % and p:

p= F (%) .

The energy equation is now not needed and the Euler equations simplify to

∂%

∂t
+∇· (u%) = 0, (4.59)

%
∂u

∂t
+%u ·∇u+∇p= 0 . (4.60)

Elimination of the pressure. A common equation of state is

F (%) = p0

(
%

%0

)γ
,

where γ = 5/3 for air. The first step is to eliminate p in favor of % so we get
a system for % and u. To this end, we must calculate ∇p:

∇p= F ′(%)∇%, F ′(%) = c20

(
%

%0

)γ−1
,

where

c0 =
√
γp0
%0

https://en.wikipedia.org/wiki/Isentropic_process

196 4 Advanced partial differential equation models

is the speed of sound within the fluid in the equilibrium state (see the sub-
sequent section). Equation (4.60) with eliminated pressure p reads

%
∂u

∂t
+%u ·∇u+ c20

(
%

%0

)γ−1
∇%= 0 . (4.61)

The governing equations are now (4.59) and (4.61). Space and time are
scaled in the usual way as

x̄= x

L
, ȳ = y

L
, z̄ = z

L
, t̄= t

tc
.

The scaled dependent variables are

%̄= %

%c
, ū= u

U
.

Then F ′(%) = c20%̄
γ−1.

Inserting the dimensionless variables in the two governing PDEs leads to

%c
tc

∂%̄

∂t̄
+ %cU

L
∇̄ · (%̄ū) = 0,

%cU

tc
%̄
∂ū

∂t̄
+ %cU

2

L
%̄ū · ∇̄ū+ %c

L

(
%c
%0

)γ−1
c20%̄

γ−1∇̄%̄= 0 .

The characteristic flow velocity is U so a natural time scale is tc =L/U . This
choice leads to the scaled PDEs

∂%̄

∂t̄
+ ∇̄ · (%̄ū) = 0, (4.62)

%̄
∂ū

∂t̄
+ %̄ū · ∇̄ū+M−2

(
%c
%0

)γ−1
%̄γ−1∇̄%̄= 0, (4.63)

where the dimensionless number

M = U

c0
,

is known as theMach number. The boundary conditions specify the character-
istic velocity U and thereby the Mach number. Observe that (4.63) simplifies
if %c = %0 is an appropriate choice.

4.4 Compressible gas dynamics 197

4.4.3 The acoustic approximation for sound waves

Wave nature of isentropic flow with small perturbations. A model
for sound waves can be based on (4.59) and (4.61), but in this case there
are small pressure, velocity, and density perturbations from a ground state at
rest where u= 0, %= %0, and p= p0 = F (%0). Introducing the perturbations
%̂= %−%0 and û, (4.59) and (4.61) take the form

∂%̂

∂t
+∇· (û(%0 + %̂) = 0,

(%0 + %̂)∂û
∂t

+ (%0 + %̂)û ·∇û+ c20

(
1 + %̂

%0

)γ−1
∇%̂= 0 .

For small perturbations we can linearize this PDE system by neglecting all
products of %̂ and û. Also, 1 + %̂/%0 ≈ 1. This leaves us with the simplified
system

∂%̂

∂t
+%0∇· û= 0,

%0
∂û

∂t
+ c20∇%̂= 0 .

Eliminating û by differentiating the first PDE with respect to t and taking
the divergence of the second PDE gives a standard wave equation for the
density perturbations:

∂2%̂

∂t2
= c20∇2%̂ .

Similarly, %̂ can be eliminated and one gets a wave equation for û, also with
wave velocity c0. This means that the sound perturbations travel with velocity
c0.
Basic scaling for small wave perturbations. Let %c and uc be charac-
teristic sizes of the perturbations in density and velocity. The density will
then vary in [%0−%c,%0 +%c]. An appropriate scaling is

%̄= %−%0
%c

such that %̄ ∈ [−1,1]. Consequently,

%= %0 +%c%̄= %0(1 +α%̄), α= %c
%0
.

Note that the dimensionless α is expected to be a very small number since
%c� %0. The velocity, space, and time are scaled as in the previous section.
Also note that %0 and p0 are known values, but the scales %c and U are

198 4 Advanced partial differential equation models

not known. Usually these can be estimated from perturbations (i.e., sound
generation) applied at the boundary.

Inserting the scaled variables in (4.59) and (4.61) results in

α
%0
tc

∂%̄

∂t̄
+ %0U

L
∇̄ · ((1 +α%̄)ū) = 0,

%0U

tc
(1 +α%̄)∂ū

∂t̄
+ %0U

2

L
(1 +α%̄)ū · ∇̄ū+α

%0
L
c20 (1 +α%̄)γ−1 ∇̄%̄= 0 .

Since we now model sound waves, the relevant time scale is not L/U but
the time it takes a wave to travel through the domain: tc = L/c0. This is a
much smaller time scale than in the previous section because c0� U (think
of humans speaking: the sound travels very fast but one cannot feel the
corresponding very small flow perturbation in the air!). Using tc = L/u0 we
get

α
∂%̄

∂t̄
+M∇̄ · ((1 +α%̄)ū) = 0,

(1 +α%̄)∂ū
∂t̄

+M(1 +α%̄)ū · ∇̄ū+αM−1 (1 +α%̄)γ−1 ∇̄%̄= 0 .

For small perturbations the linear terms in these equations must balance.
This points to M and α being of the same order and we may choose α=M
(implying %c = %0M) to obtain

∂%̄

∂t̄
+ ∇̄ · ((1 +M%̄)ū) = 0,

∂ū

∂t̄
+Mū · ∇̄ū+ (1 +M%̄)γ−2 ∇̄%̄= 0 .

Now the Mach number, M, appears in the nonlinear terms only. Letting
M→ 0 we arrive at the following linearized system of PDEs

∂%̄

∂t̄
+ ∇̄ · ū= 0, (4.64)

∂ū

∂t̄
+ ∇̄%̄= 0, (4.65)

The velocity u can be eliminated by taking the time derivative of (4.64)
and the divergence of (4.65):

∂2%̄

∂t̄2
= ∇̄2%̄, (4.66)

4.5 Water surface waves driven by gravity 199

which is nothing but a standard dimensionless wave equation with unit wave
velocity. Similarly, we can eliminate % by taking the divergence of (4.64) and
the time derivative of (4.65):

∂2ū

∂t̄2
= ∇̄2ū . (4.67)

We also observe that there are no physical parameters in the scaled wave
equations.

4.5 Water surface waves driven by gravity

4.5.1 The mathematical model

Provided the Weber number (see section 4.2.7) is sufficiently small, capillary
effects may be omitted and water surface waves are governed by gravity.
For large Reynolds numbers, viscous effects may also be ignored (except in
boundary layers close to the bottom or the surface of the fluid). The flow of
an incompressible homogeneous fluid under these assumptions is governed by
the Euler equations of motion on the form

∇·u= 0, (4.68)
∂u

∂t
+u ·∇u+ 1

ρ
∇p+gk = 0 . (4.69)

When the free surface position is described as z = η(x,y, t), with z as the
vertical coordinate, the boundary conditions at the surface read

p= ps, (4.70)
∂η

∂t
+u ·∇η = w, (4.71)

where ps is the external pressure applied to the surface. At the bottom,
z =−h(x,y), there is the no-flux condition

∂h

∂x
u+ ∂h

∂y
v =−w.

In addition to ρ and g we assume that a typical depth hc, a typical wavelength
λc, and a typical surface elevation A, which then by definition is a scale
for η, are the given parameters. From these we must derive scales for the
coordinates, the velocity components, and the pressure.

200 4 Advanced partial differential equation models

4.5.2 Scaling

First, it is instructive to define a typical wave celerity, cc, which must be linked
to the length and time scale according to cc = λc/tc. Since there is no other
given parameter that matches the mass dimension of ρ, we express cc in terms
of A, λc, hc, and g. Most of the work on waves in any discipline of physics is
devoted to linear or weakly nonlinear waves, and the wave celerity must be
presumed to remain finite as A goes to zero (see, for instance, Section 4.4.3).
Hence, we may assume that cc must depend on g and either hc or λc. Next,
the two horizontal directions are equivalent with regard to scaling, implying
that we have a common velocity scale, U , for u and v, a common length scale
L for x and y. The obvious choice for L is λc, while the “vertical quantities” w
and z have scalesW and Z, respectively, which may differ from the horizontal
counterparts. However, we assume that also the length scale Z remains finite
as A→ 0 and hence is independent of A. This is less obvious for Z than for cc
and tc, but may eventually be confirmed by the existence of linear solutions
when solving the equation set. From the linear part of (4.71) and (4.68) we
obtain two relations between velocity and coordinate scales by demanding
the non-dimensionalized terms to be of order unity

A

tc
=W,

U

L
= W

Z
. (4.72)

These relations are indeed useful, but they do not suffice to establish the
scaling.

The pressure may be regarded as the sum of a large equilibrium part, bal-
ancing gravity, and a much smaller dynamic part associated with the presence
of waves. To make the latter appear in the equations we define the dynamic
pressure, pd, according to

p= ps−ρgz+pd,

and the pressure scale pc = ρgA for pd then follows directly from the surface
condition (4.70).

The equation set will be scaled according to

t̄= t

tc
, x̄= x

L
, ȳ = y

L
, z̄ = z

Z
, η̄ = η

A
, ū= u

U
, v̄ = v

U
, w̄ = w

W
, p̄d = pd

pc
.

In the further development of the scaling we focus on two limiting cases,
namely deep and shallow water.

4.5 Water surface waves driven by gravity 201

4.5.3 Waves in deep water

Deep water means that hc � λc. Presumably the waves will not feel the
bottom, and h as well as hc are removed from our equations. The bottom
boundary condition is replaced by a requirement of vanishing velocity as
z → −∞. Consequently, cc must depend upon λc and g, leaving us with
cc =

√
gλc and Z = λc = L as the only options. Then, tc =

√
λc/g and (4.72)

implies U =W = c0
A
λc

= εc0, where we have introduced the non-dimensional
number

ε= A

λc
,

which is the wave steepness. The equality of the horizontal and the vertical
scale is consistent with the common knowledge that the particle orbits in
deep water surface waves are circular.

The scaled equations are now expressed with ε as sole dimensionless num-
ber

∇̄ · ū= 0, (4.73)
∂ū

∂t̄
+ εū · ∇̄ū+ ∇̄p̄d = 0 . (4.74)

The surface conditions, at z = εη, become

p̄d = η̄, (4.75)
∂η̄

∂t̄
+ εū · ∇̄η̄ = w̄, (4.76)

while the bottom condition is replaced by

ū→ 0, (4.77)

as z̄→−∞.

4.5.4 Long waves in shallow water

Long waves imply that the wavelength is large compared to the depth: λc�
hc. In analogy with the reasoning above, we presume that the speed of the
waves remains finite as λc→∞. Then, cc must be based on g and hc, which
leads to cc =

√
ghc and tc = λc/

√
ghc. The natural choice for the vertical

length scale is now the depth; Z = hc. Application of (4.72) then leads to
W = ccA/λc and U = ccA/hc.

202 4 Advanced partial differential equation models

Introducing the dimensionless numbers

α= A

hc
, µ= hc

λc
,

we rewrite the velocity scales as

W = µαcc, U = αcc .

We observe that W � U for shallow water and that particle orbits must be
elongated in the horizontal direction.

The equation set is now most transparently written by introducing the
horizontal velocity ūh = ūi+ v̄j and the corresponding horizontal components
of the gradient operator, ∇̄h:

∇̄ · ūh+ ∂w̄

∂z̄
= 0, (4.78)

∂ūh
∂t̄

+αūh · ∇̄hūh+αw̄
∂ūh
∂z̄

+ ∇̄hp̄d = 0, (4.79)

µ2
(
∂w̄

∂t̄
+αūh · ∇̄hw̄+αw̄

∂w̄

∂z̄

)
+ ∂p̄d
∂z̄

= 0. . (4.80)

Surface conditions, at z = αη, now become

p̄d = η̄, (4.81)
∂η̄

∂t̄
+αūh · ∇̄hη̄ = w̄, (4.82)

while the bottom condition is invariant with respect to the present scaling

∇̄h · ūh =−w̄ . (4.83)

An immediate consequence is that p̄d remains equal to η̄ throughout the water
column when µ2 → 0, which implies that the pressure is hydrostatic. The
above set of equations is a common starting point for perturbation expansions
in ε and µ2 that lead to shallow water, KdV, and Boussinesq type equations.

4.6 Two-phase porous media flow

We consider the flow of two incompressible, immiscible fluids in a porous
medium with porosity φ(x). The two fluids are referred to as the wetting and
non-wetting fluid. In an oil-water mixture, water is usually the wetting fluid.
The fraction of the pore volume occupied by the wetting fluid is denoted by

https://en.wikipedia.org/wiki/Wetting

4.6 Two-phase porous media flow 203

S(x, t). The non-wetting fluid then occupies 1−S of the pore volume (or
(1−S)φ of the total volume). The variable P (x, t) represents the pressure
in the non-wetting fluid. It is related to the pressure Pn in the non-wetting
fluid through the capillary pressure pc = Pn −P , which is an empirically
determined function of S.

From mass conservation of the two fluids and from Darcy’s law for each
fluid, one can derive the following system of PDEs and algebraic relations
that govern the two primary unknowns S and P :

∇·v =−(Qn+Qw), (4.84)
v =−λt∇P +λwp

′
c(S)∇S+ (λw%w+λn%n)gk, (4.85)

φ
∂S

∂t
+f ′w(S)v ·∇S =∇· (hw(S)p′c(S)∇S)+

g
∂Gw
∂z

+fw(Qn+Qw)−Qw, (4.86)

Qw = qw
%w

, (4.87)

Qn = qn
%n
, (4.88)

λw(S) = K

µw
krw(S), (4.89)

λn(S) = K

µn
krn(S), (4.90)

λt(S) = λw(S) +λn(S), (4.91)

krw(S) =Kwm

[
S−Swr

1−Snr−Swr

]a
, (4.92)

krn(S) =Knm

[
1−S−Snr

1−Snr−Swr

]b
, (4.93)

fw(S) = λw
λt
, (4.94)

Gw(S) = hw(S)(%n−%w), (4.95)
hw(S) =−λn(S)fw(S) . (4.96)

The permeability of the porous medium is K (usually a tensor, but here
taken as a scalar for simplicity); µw and µn are the dynamic viscosities of the
wetting and non-wetting fluid, respectively; %w and %n are the densities of
the wetting and non-wetting fluid, respectively; qw and qn are the injection
rates of the wetting and non-wetting fluid through wells, respectively; Swr
is the irreducible saturation of the wetting fluid (i.e., S ≥ Swr); Snr is the
corresponding irreducible saturation of the non-wetting fluid (i.e., (1−S)≥
Snr), Kwn and Knr are the maximum values of the relative permeabilities

204 4 Advanced partial differential equation models

krw and krn, respectively, and a and b are given (Corey) exponents in the
expressions for the relative permeabilities.

The two PDEs are of elliptic and hyperbolic/parabolic nature: (4.84) is
elliptic since it is the divergence of a vector field, while (4.86) is parabolic
(hw ≥ 0 because p′c(S) ≥ 0 and λn as well as fw are positive since krn > 0
and krw > 0). Very often, p′c is small so (4.86) is of hyperbolic nature, and
S features very steep gradients that become shocks in the limit p′c→ 0 and
(4.86) is purely hyperbolic. A popular solution technique is based on operator
splitting at each time level in a numerical scheme: (4.84) is solved with respect
to P , given S, and (4.86) is solved with respect to S, given P .

The saturation S is a non-dimensional quantity, and so are φ, krw, krn,
Kwm, Knm, fw, and f ′w. The quantity v is the total filtration velocity, i.e.,
the sum of the velocities of the wetting and non-wetting fluid. An associated
velocity scale vc is convenient to define. It is also convenient to introduce
dimensionless fractions of wetting and non-wetting fluid properties:

%≡ %w,

%n = %α, α= %n
%w

,

µ≡ µw,

µn = µβ, β = µn
µw

,

Q≡Qw = qw
%
,

Qn =Q
γ

α
, γ = qn

qw
.

We will benefit from making λw, λn, and λt dimensionless:

λw(S) = K

µ
krw(S) = λcλ̄w, λc = K

µ
, λ̄w = krw,

λn(S) = K

µ
β−1krn(S) = λcβ

−1λ̄n, λ̄n = krn,

λt(S) = λw(S) +λn(S) = λcλ̄t, λ̄t = λ̄w+β−1λ̄n .

As we see, λc is the characteristic size of any “lambda” quantity, and a bar
indicates as always a dimensionless variable. The above formulas imply

hw(S) =−λcβ−1λ̄n(S)fw(S), Gw(S) = hw(S)%(α−1) .

Furthermore, we introduce dimensionless quantities by

x̄= x

L
, v̄ = v

vc
, P̄ = P

Pc
, p̄c = pc

Pc
.

4.6 Two-phase porous media flow 205

Inserting the above scaled quantities in the governing PDEs results in

∇̄ · v̄ =−LQ
vc

(1 +α−1γ), (4.97)

v̄ =−Pcλc
vcL

λ̄t∇̄P̄ + λcPc
vcL

λ̄wp̄
′
c(S)∇̄S+

gλc%

vc
(λ̄w+αβ−1λ̄n)k, (4.98)

φ
∂S

∂t̄
+ tcvc

L
f ′w(S)v̄ · ∇̄S = tcPcλc

L2 ∇̄ · (−β−1λ̄n(S)fw(S)p̄′c(S)∇̄S)+

tcg

L

∂Gw
∂z̄

+ tcfwQ(1 +α−1γ)− tcQ. (4.99)

As usual, L is taken as the characteristic length of the spatial domain. Since
vc is a velocity scale, a natural time scale is the time it takes to transport a
signal with velocity vc through the domain: tc = L/vc. The diffusion term in
the equation (4.102) then gets a dimensionless fraction

LPcλc
vcL2 .

Forcing this fraction to be unity gives

vc = λc
Pc
L
.

We realize that this is indeed a natural velocity scale if the velocity is given
by the pressure term in Darcy’s law. This term is K/µ times the pressure
gradient:

K

µ
|∇P | ∼ K

µ

Pc
L

= λc
Pc
L

= vc .

We have here dropped the impact of the relative permeabilities λ̄w or λ̄n
since these are quantities that are less than or equal to unity.

The other term in Darcy’s law is the gravity term that goes like λc%g
(again dropping relative permeabilities). The ratio of the gravity term and
the pressure gradient term in Darcy’s law is an interesting dimensionless
number:

δ = λc%g

λcPc/L
= L%g

Pc
.

This number naturally arises when we discuss the term

tcg

L

∂Gw
∂z̄

=−(α−1)β−1δ(λ̄′n(S)fw(S) + λ̄n(S)f ′w(S))∂S
∂z̄

Introducing another dimensionless variable,

206 4 Advanced partial differential equation models

ε= tcQ= L2Q

λcPc
,

we can write (4.97)-(4.99) in the final dimensionless form as

∇̄ · v̄ =−ε(1 +α−1γ), (4.100)
v̄ =−λ̄t∇̄P̄ + λ̄wp̄

′
c(S)∇̄S+ δ(λ̄w+αβ−1λ̄n)k, (4.101)

φ
∂S

∂t̄
+f ′w(S)v̄ · ∇̄S =−∇̄ · (−β−1λ̄n(S)fw(S)p̄′c(S)∇̄S)−

(α−1)β−1δ(λ̄′n(S)fw(S) + λ̄n(S)f ′w(S))∂S
∂z̄

+

εfw(1 +α−1γ)− ε . (4.102)

The eight input parameters L, qw, qn, µw, µn, %w, %n, and K are reduced
to five dimensionless parameters α, β, γ, δ, and ε. There are six remaining
dimensionless numbers to be set: Kwm, Knm, Swr, Snr, a, and b.

4.7 The bidomain model in electrophysiology

The mechanical functioning of the heart is crucially dependent on correct
electric signal propagation through the heart tissue. Understanding this sig-
nal propagation via mathematical modeling has therefore been a topic of
increasing interest in the medical research on heart failure, stroke, and other
heart-related diseases [10]. Below we list a common mathematical model, con-
sisting of two PDEs coupled to a system of ODEs at each spatial point in the
domain, and show how this model can be brought to a dimensionless form.

4.7.1 The mathematical model

A widely used mathematical model for the electric signal propagation in the
heart tissue is the bidomain equations:

χCm
∂v

∂t
=∇· (σi∇v) +∇· (σi∇ue)−χIion−χIapp, (4.103)

0 =∇· (σi∇v) +∇· ((σi+σe)∇ue) . (4.104)

These PDEs are posed in a spatial domain H for t ∈ (0,T], and the symbols
have the following meaning: ue is the extracellular electric potential, v is the
transmembrane potential (difference between the extracellular and intracel-

4.7 The bidomain model in electrophysiology 207

lular potential), Cm is the capacitance of the cell membrane, χ is a membrane
area to cell volume ratio, σi is an electric conductivity tensor for the intra-
cellular space, and σe is an electric conductivity tensor for the extracellular
space.

The boundary conditions are of Neumann type, but we drop these from
the discussion, just to make things a bit simpler. The initial condition is
typically ue = 0,v = vr, where vr is a constant resting potential.

The PDE system is driven by Iion + Iapp, where Iion is a reaction term
describing ionic currents across the cell membrane, and Iapp is an externally
applied stimulus current. The applied current is a prescribed function, typi-
cally piecewise constant in time and space, while Iion = Iion(v,s), where s is
a state vector describing the electro-chemical state of the cells. Typical com-
ponents of s are intracellular ionic concentrations and so-called gate variables
that describe the permeability of the cell membrane. The dynamics of s is
governed by a system of ODEs, see for instance [10] for details. The total
current Iion is often written as a sum of individual ionic currents:

Iion(s,v) =
n∑
j=1

Ij(s,v), (4.105)

where n is typically between 10 and 20 in recent models of cardiac cells. Most
of the individual currents will be on the form Ij(s,v) = gj(s)(v− vj), where
vj is the equilibrium potential of the specific ion, and gj(s) describes the
membrane conductance of the particular ion channel. Without much loss of
generality we can assume that this formulation is valid for all Ij , and the
total ionic current can then be written in the general form

Iion(s,v) =
n∑
j=1

Ij(s,v) = g(s)(v−veq(s)),

where g(s) =
∑n
j=1 gj(s) and veq(s) = (

∑n
j=1 gjvj)/(

∑n
j=1 gj).

As noted above, the dynamics of s is governed by an ODE system on the
form

ds

dt
= f(v,s) .

and the individual components of s typically have very different time scales,
making any scaling of this system highly dependent on the component under
study. For the present text, the focus is on tissue-level electrophysiology as
described by (4.103)-(4.104), and we will proceed to scale these equations.
The equations are of reaction-diffusion type, and the scaling will be based on
the general non-linear reaction-diffusion equation in Section 3.2.1.

208 4 Advanced partial differential equation models

4.7.2 Scaling

Dimensionless independent variables are introduced by

x̄= x

L
, ȳ = y

L
, z̄ = z

L
, t̄= t

tc
,

where L is the characteristic length scale, and tc is the characteristic time
scale. Dimensionless dependent variables are expressed as

v̄ = v−vr
vp−vr

, ū= ue
uc
.

As noted above, vr is the resting potential, and vp is the peak transmembrane
potential. The scaling of v ensures v̄ ∈ [0,1]. We introduce the symbol ∆v =
vp−vr to save space in the formulas: v̄ = (v−vr)/∆v. The scale for ue is uc,
to be determined either from simplicity of the equations or from available
analysis of its magnitude.

The variable tensor coefficients σi and σe depend on the spatial coordinates
and are also scaled:

σ̄i = σi
σc
, σ̄e = σe

σc
.

For simplicity, we have chosen a common scale σc, but the two tensors may
employ different scales, and we may also choose different scales for differ-
ent directions, to reflect the anisotropic conductivity of the tissue. A typical
choice of σc is a norm of σi+σe, e.g., the maximum value.

Finally, we introduce a scaling of the parameters entering the ionic current
term

v̄eq = (veq−vr)/∆v, ḡ = g/gc .

For the characteristic membrane conductance, gc, a common choice is gc =
1/Rm, where Rm is the membrane resistance at rest, but we will instead set
gc = gmax, the maximum conductance of the membrane. These choices will
ensure v̄eq, ḡ ∈ [0,1].

Inserting the dimensionless variables in (4.103)-(4.104), the system of gov-
erning equations becomes

∆v

tc
χCm

∂v̄

∂t̄
= σc∆v

L2 ∇· (σ̄i∇̄v̄) + σcuc
L2 ∇· (σ̄i∇̄ū)−

−χgc∆vḡ(s)(v̄− v̄eq(s))−χIapp,

0 = σc∆v

L2 ∇̄ · (σ̄i∇̄v̄) + σcuc
L2 ∇· ((σ̄i+ σ̄e)∇̄ū),

4.7 The bidomain model in electrophysiology 209

Multiplying the equations by appropriate factors leads to equations with
dimensionless terms only:

∂v̄

∂t̄
= tcσc
χCmL2∇· (σ̄i∇̄v̄) + tcσcuc

∆vχCmL2∇· (σ̄i∇̄ū)−

gctc
Cm

ḡ(s)(v̄− v̄eq(s))−
tc

Cm∆v
Iapp,

0 = ∇̄ · (σ̄i∇̄v̄) + uc
∆v
∇· ((σ̄i+ σ̄e)∇̄ū),

The time scale is not so obvious to choose. As noted above, the ODE
system that governs s and thereby ḡ(s), v̄eq(s) may feature a wide range of
temporal scales. Furthermore, even if we focus on the tissue equations and
on the dynamics of v and ue, the choice of natural time and length scales is
not trivial. The equations are of reaction-diffusion nature, and the solution
takes the form of a narrow wavefront of activation that propagates through
the tissue. The region immediately surrounding the wavefront is character-
ized by large spatial and temporal gradients, while in most of the domain the
variations are quite slow. The primary interest is usually on the wavefront
phenomenon, so for now, we choose the time scale based on balancing the
reaction and diffusion components, as described in Section 3.2.1. We conse-
quently set the terms in front of the reaction term and the diffusion term to
unity, which means

tcσc
χCmL2 = 1, tcgc

Cm
= 1,

and this principle determines the time and length scales as

tc = Cm
gc

, L=
√

σc
gcχ

.

Two natural dimensionless variables then arise from the second diffusion
term and the applied current term:

β = uc
∆v

, γ = Iapp
gc∆v

.

In many cases it will be natural to set uc = ∆v, which of course removes
the need for β, but we include the freedom to have uc as some specified
characteristic size of ue (i.e., uc is not a “free parameter”, but is expressed
by the other parameters in the problem).

The final dimensionless system becomes

210 4 Advanced partial differential equation models

∂v̄

∂t̄
=∇· (σ̄i∇̄v̄) +β∇· (σ̄i∇̄ū) (4.106)

− ḡ(s)(v̄− v̄eq(s))−γ (4.107)
0 = ∇̄ · (σ̄i∇̄v̄) +β∇· ((σ̄i+ σ̄e)∇̄ū) . (4.108)

The two dimensionless variables in these equations have straightforward in-
terpretations: β is the ratio of the span in the two electric potentials, and
γ is ratio of the source term Iapp and the time-derivative term of v, or the
source term and the diffusion term in v.

We can insert typical parameter values to get a feel for the chosen scaling.
We have

Cm = 1.0µF cm−2, gc = gmax = 13.0m SµF−1 = 13.0mS cm−2,

χ= 2000cm−1, uc =∆v = 100mV,σc = 3.0mS cm−1 .

This gives the following values of tc and L:

tc = 1.0µ F cm−2

13.0µ F cm−2 = 1.0
13.0

µ F
mS ≈ 0.076 ms,

L=
√

σc
χgc

=

√
3.0 mS cm−2

2000 cm−1µ F cm−2
≈ 0.087 mm .

These values are both very small, which is related to our choice of gc = gmax.
This choice implies that we base the scaling on the upstroke phase of the ac-
tion potential, when both spatial and temporal variations are extremely high.
This may therefore be a “correct” scaling exactly at the wavefront of the elec-
trical potential, but is less relevant elsewhere. Choosing gc to be for instance
the resting conductance, which is the common choice when scaling the cable
equation, may increase tc,L by factors up to 2500 and 50, respectively. The
large difference in scales reflects the difference between active, dynamic signal
conduction and passive signals governed solely by electrodiffusion.

The conduction velocity is often a quantity of interest, and we could obtain
an alternative relation between tc and L by setting CV = L/tc, where CV is
the conduction velocity. In human cardiac tissue CV is known to be about
60 cm/s, while the choices above give

L

tc
= 0.087mm

0.076ms ≈ 144 .cm/s .

Enforcing L/tc = 60cm s−1 gives the constraint gc ≈ 4.8mS cm−2, and yields
L≈ 0.17 mm and tc = 0.21 ms.

4.7 The bidomain model in electrophysiology 211

4.7.3 An alternative Iion

The simplest model that gives a qualitatively realistic description of the car-
diac action potential is the FitzHugh-Nagumo (FHN) model. In contrast to
the model (4.105) discussed above, the FHN model is completely phenomeno-
logical, with no relation to the underlying biophysics. However, the model can
be parameterized to give reasonable values for the voltages, and has the ad-
vantage of giving a self-contained and relatively simple model that does not
depend on externally determined variables like the s vector above. As above,
we have the bidomain model given by

χCm
∂v

∂t
=∇· (σi∇v) +∇· (σi∇ue)−χIion−χIapp, (4.109)

0 =∇· (σi∇v) +∇· ((σi+σe)∇ue), (4.110)

but now with

Iion =−A[(v−vr)(v−vth)(v−vp)−w(v−vr)(vp−vr)2],

where w is governed by an ODE on the form

dw

dt
= k(v−vr)− lw .

ChoosingA= 4.16 ·10−4mS/(mV2),vr =−85mV,vth =−68mV,vp = 40mV,k=
4.0 ·10−5mV−1ms−1, l= 0.013ms−1, gives reasonably physiological values for
v, while w is a dimensionless variable with values in [0,1]. The somewhat
strange choice of parameter units are required because the function is cubic
in v. Typical initial conditions are v = vr,ue = w = 0, and Iapp is piecewise
constant in space and time, with a typical value being Iapp =−50mA applied
for 2 ms in certain regions of the domain.

The equations can be scaled following the same procedure as above. In
addition to the dimensionless variables introduced above, we introduce

α= vth−vr
∆v

,

and in terms of the dimensionless variables, we get

∆v

tc
χCm

∂v̄

∂t̄
= σc∆v

L2 ∇· (σ̄i∇̄v̄) + σcuc
L2 ∇· (σ̄i∇̄ū)−

−χA∆v3(v̄(v̄−α)(v̄−1)− v̄w)−χIapp,

0 = σc∆v

L2 ∇̄ · (σ̄i∇̄v̄) + σcuc
L2 ∇· ((σ̄i+ σ̄e)∇̄ū),

1
tc

dw

dt
= k∆vv̄− lw .

212 4 Advanced partial differential equation models

As above, we multiply with suitable factors to arrive at

∂v̄

∂t̄
= σctc
L2Cmχ

∇· (σ̄i∇̄v̄) + σctcuc
∆vL2Cmχ

∇· (σ̄i∇̄ū)−

− tcA∆v
2

Cm
(v̄(v̄−α)(v̄−1)− v̄w)−χIapp,

0 = σc
L2 ∇̄ · (σ̄i∇̄v̄) + σcuc

∆vL2∇· ((σ̄i+ σ̄e)∇̄ū),

dw

dt
= ktc∆vv̄− tclw .

The time and length scales are again chosen by requiring balance of the
reaction and diffusion term, which gives

tc = Cm
A∆v2 , L=

√
σc

A∆v2χ
,

and we arrive at the final dimensionless system

∂v̄

∂t̄
=∇· (σ̄i∇̄v̄) +α∇· (σ̄i∇̄ū)−

− (v̄(v̄−α)(v̄−1)− v̄w)−β,
0 = ∇̄ · (σ̄i∇̄v̄) +α∇· ((σ̄i+ σ̄e)∇̄ū),

dw

dt
= k̄v̄− l̄w,

where we have introduced the dimensionless numbers

k̄ = ktc∆v, l̄ = tcl .

4.8 Exercises

Exercise 4.1: Comparison of vibration models for elastic
structures

The time scale for displacement in elastic structures is, according to Sec-
tion 4.1.1, tc = L

√
%/µ if we assume constant density % and constant shear

modulus µ for the structure. The purpose of this exercise is to compare this
time scale with the time scales of related models.

a) Longitudinal waves in a bar can be modeled approximately by the PDE

%
∂2u

∂t2
+E

∂2u

∂x2 = 0,

4.8 Exercises 213

where u(x,t) is the displacement along the bar, and E is Young’s modulus,
related to the shear modulus µ through

E = 2µ(1 +ν),

where ν ∈ (0,0.5] is Poisson’s ratio. Find the time scale for the longitudinal
waves and compare with the tc for displacements in a three-dimensional body.

Solution.
Introducing dimensionless dependent and independent variables the
usual way gives us

∂2ū

∂t̄2
+ t2cE

%L2
∂2ū

∂x̄2 = 0,

where L is the length scale, typically the length of the bar. The natural
choice of tc is to make the coefficient unity,

tc = L

√
%

E
= L

√
%

µ

1√
2(1 +ν)

≈ 0.6L
√
%

µ
,

if we take ν = 0.3 as a typical value.

b) Vertical vibrations of a beam are governed by the PDE

ρ
∂2u

∂t2
+EI

∂4u

∂x4 = 0,

where u(x,t) is the vertical displacement along the beam, ρ is the mass per
length of the beam, E is Young’s modulus, and I is the moment of inertia.
For a rectangular cross section of width b and height h, I = 1

12bh
3. Compare

the time scale for these vibrations with the time scale tc for three-dimensional
elasticity.

Solution.
The dimensionless equation becomes

∂2ū

∂t̄2
+ t2cEI

ρL4
∂4ū

∂x̄4 = 0 .

The natural choice of tc is

tc = L2
√

ρ

EI
= L

√
%

µ
L

√
12

2h2(1 +ν) ≈ 2L
2

h

√
%

µ
,

214 4 Advanced partial differential equation models

where we have set ν = 0.3 and used that ρ= %bh for a rectangular cross
section. For a beam, L� h, so the time scale for vertical vibrations
of a beam is much larger than the time scale for elastic waves in a
three-dimensional body.

Exercise 4.2: A model for quasi-static poro-elasticity

Flow through a porous elastic medium may induce stress and deformation.
This process is known as poro-elasticity and is governed by the following
equations for a homogeneous medium:

(λ+µ)∇(∇·u) +µ∇2u=−α∇p−%f , (4.111)

S
∂p

∂t
= K

µf
∇2p+α

∂

∂t
∇·u, (4.112)

where u(x, t) is the displacement field, λ and µ are Lame’s elasticity param-
eters, α ∈ [0,1], f is the body force, here assumed constant (usually gravity,
f = −gk, S is a so-called storage coefficient, p(x, t) is the fluid pressure, K
is the medium’s permeability, µf is the dynamic viscosity of the fluid, and %
is the density of the fluid-solid mixture:

%= (1−φ)%s+φ%f ,

with %f being the density of the fluid, %s the density of the solid, and φ the
porosity of the elastic medium. The equations are known as Biot’s equations
of poro-elasticity and written here in a quasi-static form where elastic waves
are neglected.

Scale this partial differential equation model, assuming that λ, µ, α, f , %,
φ, %s, %f , S, µf , and K are all constants.

Hint. The model is very similar to the equations of thermo-elasticity in
Section 4.1.5.
Filename: poroelasticity.

Problem 4.3: Starting Couette flow

A fluid is confined in a channel with two planar walls z = 0 and z = H.
The fluid is at rest. At time t = 0 the upper wall is suddenly set in motion
with a velocity Ui. We assume that the velocity is directed along the x
axis: u = u(x,z, t)i. From the equation of continuity, ∇·u = 0, we get that

4.8 Exercises 215

∂u/∂x= 0 such that u= u(z, t)i. The boundary conditions are u= 0 at the
lower wall z = 0 and u = Ui at the upper wall z = H. Assume that the
pressure is constant everywhere and that there are no body forces.

a) Start with the incompressible Navier-Stokes equations and the assumption
u = u(z, t)i. Derive an initial-boundary value problem for u(z, t). Scale the
problem.

Solution.
Inserting the simplified velocity in the original Navier-Stokes equations
makes the convection term u · ∇u vanish and ∇p vanishes since p is
assumed constant (only the upper wall drives the flow). The result be-
comes

%
∂u

∂t
= µ

∂2u

∂z
,

or using µ/%= ν,

∂u

∂t
= ν

∂2u

∂z
,

with u(z,0) = 0, u(0, t) = 0 and u(H,t) =U . This is a standard diffusion
problem. The natural length scale is H, so z̄ = z/H. Using the well-
established time scale tc =H2/ν and the velocity scale uc = U , we get
the dimensionless problem

∂ū

∂t̄
= ∂2ū

∂z̄
,

with ū(z̄,0) = 0, u(0, t̄) = 0, u(1, t) = 1. There are no physical param-
eters. Having computed ū(z̄, t̄), the physical solution can be retrieved
as

u(z, t) = Uū(z̄H, t̄H2/ν) .

b) Start with the dimensionless Navier-Stokes equations and use the assump-
tion ū= ū(z̄, t̄)i to reduce the problem. The resulting equation now contains
a Reynolds number, i.e., one more physical parameter than in a). Why is this
an inferior approach to scaling the problem?

Solution.
Inserting the simplified velocity in the scaled Navier-Stokes equations
leads to

216 4 Advanced partial differential equation models

∂ū

∂t̄
= 1

Re
∂2ū

∂z̄
.

Here we have the Reynolds number as parameter.
The major difference is the scaling used in time: tc = H/U (length

scale is H here) versus tc =H2/ν. The latter is much more suitable as
it is based on a diffusion problem and the present problem is indeed a
diffusion problem. Normally, ν is very small, so tc based on diffusion is
usually much larger thanH/U . With an inappropriate time scale, ∂ū/∂t̄
is not of unit size, and we need a dimensionless number on the right-
hand side to adjust the spatial derivative term to a non-unity size. The
wrong scaling thereby introduces an extra (unnecessary) parameter.

c) Can you construct a heat conduction problem that has the same solution
ū(z̄, t̄) as in a)?

Solution.
Consider a long rod with length H aligned with the z axis. The rod is
isolated on the curved circular surface and kept at fixed temperatures
U0 and UH at the ends z = 0 and z =H, respectively. The initial tem-
perature is U0. Because of the insulated curved surface, heat can only
propagate in the z direction, and a one-dimensional heat conduction
equation is appropriate:

∂u

∂t
= α

∂2u

∂z
,

with u(z,0) = U0, u(0, t) = U0, and u(H,t) = UH . We introduce a di-
mensionless temperature

ū= u−U0
UH −U0

,

such that ū∈ [0,1]. The standard time scale tc =H2/α is used, notifying
that the length scale is H. Inserting the dimensionless variables in the
governing equation results in the same problem as in a). It means that
we from one solution ū(z̄, t̄) can get solutions for heat conduction in
rods of all lengths and materials, and with all boundary temperatures,
as well as flow of any fluid between two walls with any gap and any
velocity of the upper wall.

d) Describe how the scaled problem in this exercise can be solved by a pro-
gram that solves the following diffusion problem with dimensions:

4.8 Exercises 217

∂u

∂t
= α

∂2u

∂z
+f(x,t),

u(x,0) = I(x),
u(0, t) = U0(t),
u(L,t) = UL(t) .

Solution.

Let z be named x. Set α= 1, f = 0, L= 1, I(x) = 0, U0(t) = 0, UL(t) = 1.
The resulting problem is our scaled problem from a).

Filename: starting_Couette.

Problem 4.4: Channel flow

We look at viscous fluid flow between two flat, infinite plates. Often, one first
reduces such a problem to mathematical one-dimensional problems and then
scale the model (cf. Problem 4.3), but if a general 2D/3D numerical Navier-
Stokes model is to be used to solve the problem, it is more natural to just
scale the full Navier-Stokes equations and then run the solver for the scaled
model.

This is a problem dominated by viscous diffusion and shear stresses and
where there is no convection. Argue why the standard scaling of the Navier-
Stokes equations is inappropriate. Scale the equations and choose the time
scale and pressure scale such that ∂ū/∂t̄, ∇̄2ū, and ∇̄p̄ all have unit coef-
ficients. This naturally gives a time scale based on viscous diffusion and a
pressure scale based on the shear stress µU/H, where H is the width of the
channel, and U a characteristic inlet velocity. Set up the scaled problem and
derive an exact solution in the stationary case.

Solution.

The standard scaling of the Navier-Stokes equations applies L/U as time
scale and %U2 as pressure scale. Both these scales are tightly connected
to convection: L/U is the time scale of convection, and %U2 is the size
of the convection term. In channel flow, the convection is zero, and the
flow is dominated by viscous diffusion and shear stresses. It therefore

218 4 Advanced partial differential equation models

makes more sense to choose a diffusion time scale and a shear stress-
based pressure scale.

We introduce x̄ = x/H, ȳ = y/H, z̄ = z/H, ū = u/U , p̄ = p/pc, and
t̄= t/tc in the equations results in the scaled Navier-Stokes equations:

∂ū

∂t̄
+Re ū · ∇̄ū=−∇̄p̄+ ∇̄2ū,

∇̄ · ū= 0,

if we choose tc = H2%/µ and pc = µU/H. We see that these scales are
exactly the diffusion scale and the shear scale: µ∂U/∂y∼µU/H. Re is as
usual the Reynolds number, here %UH/µ, but it actually has no impact
on the physics (as long as the flow is laminar) since the associated
convective term is zero. A feature of the Navier-Stokes equations is
that the solution can become unstable and result in turbulence if the
Reynolds number is above a critical value. Physical experiments show
that the flow is always laminar for Re< 2000, while the critical Reynolds
number for turbulence depends strongly on the roughness of the walls.

The exact solution (of the scaled problem) is derived by assuming
flow along the channel: u = (ux(x,y,z),0,0), with the x axis pointing
along the channel. Since ∇·u = 0, u cannot depend on x. The physics
of channel flow is also two-dimensional so we can omit the z coordinate
(more precisely: ∂/∂z = 0 as nothing varies in this direction). Inserting
u= (ux(y),0,0) in the (scaled) governing equations gives u′′x(y) = ∂p/∂x.
Differentiating this equation with respect to x shows that ∂p/∂x is
a constant, here called −β. This is the driving force of the flow and
specified as known in the problem.

Integrating u′′x(y) = −β over the width of the channel, [0,1], and
requiring u = 0 at the channel walls, results in ux = 1

2βy(1− y). The
characteristic inlet flow in the channel, U , can be taken as the maximum
inflow at x= 1/2, implying that β = 8. The length of the channel, L/H
in the scaled model, has no impact on the result, so for simplicity we
may just compute on the unit square. The pressure can then be set to
p= 0 at the outlet x= 1, giving p(x) = 8(1−x) and ux = 4y(1−y).

Filename: channel.
Remarks. One may want to implement the Navier-Stokes equations in
scaled form to have only one parameter Re in the PDEs. However, what-
ever we want to compute with the solver, we need to benchmark it on 2D/3D
channel flow to verify that it works, and the proper scaling is different in
this simple application. Therefore, the software should implement the origi-
nal form of the Navier-Stokes equations, as this is the most general form of
the model. In a particular application, one can derive a scaled model and set
parameters in the original PDEs to mimic the scaled model. The present case

https://en.wikipedia.org/wiki/Laminar-turbulent_transition

4.8 Exercises 219

of channel flow faces a problem, however, as there is no unique coefficient in
front of the convective term in the original Navier-Stokes equations. We may
therefore insert such a parameter in the implementation,

ρut+αρu ·∇u=−nablap+ν∇2u+f ,

but the convective term will vanish for channel flow so there is little effect
of Re in front of this term. Our scaling is obtained by setting ρ= ν = 1 and
α= Re.

References

[1] J. F. Douglas, J. M. Gasiorek, and J. A. Swaffield. Fluid Mechanics.
Pitman, 1979.

[2] P. G. Drazin and W. H. Reid. Hydrodynamic Stability. Cambridge, 1982.
[3] H. P. Langtangen. Finite Difference Computing with Exponential Decay

Models. Springer, 2016. http://tinyurl.com/nclmcng/web.
[4] H. P. Langtangen. A Primer on Scientific Programming with Python.

Texts in Computational Science and Engineering. Springer, fifth edition,
2016.

[5] H. P. Langtangen and A. E. Johansen. The Parampool tutorial. http:
//hplgit.github.io/parampool/doc/web/index.html.

[6] H. P. Langtangen and A. E. Johansen. Using web frameworks for scien-
tific applications. http://hplgit.github.io/web4sciapps/doc/web/
index.html.

[7] H. P. Langtangen and S. Linge. Finite Difference Computing with
Partial Differential Equations. Springer, 2016. http://tinyurl.com/
Langtangen-Linge-FDM-book.

[8] C. C. Lin and L. A. Segel. Mathematics Applied to Deterministic Prob-
lems in the Natural Sciences. SIAM, 1988.

[9] J. D. Logan. Applied Mathematics: A Contemporary Approach. Wiley,
1987.

[10] J. Sundnes, G. T. Lines, X. Cai, B. F. Nielsen, K.-A. Mardal, and
A. Tveito. Computing the Electrical Activity in the Heart. Monographs
in Computational Science and Engineering. Springer, 2006.

[11] D. J. Tritton. Physical Fluid Dynamics. Van Nostrand Reinhold, 1977.

221

http://tinyurl.com/nclmcng/web
http://hplgit.github.io/parampool/doc/web/index.html
http://hplgit.github.io/parampool/doc/web/index.html
http://hplgit.github.io/web4sciapps/doc/web/index.html
http://hplgit.github.io/web4sciapps/doc/web/index.html
http://tinyurl.com/Langtangen-Linge-FDM-book
http://tinyurl.com/Langtangen-Linge-FDM-book

Index

angular frequency, 53
assert, 64

base unit, 1
Bernoulli’s equation, 181
bidomain equations, 206
Biot number, 150, 192
Buckingham Pi theorem, 3

characteristic time, 19
creeping flow, 182

dimension of physical quantities, 2
dimensionless number, 27, 31, 34, 38,

121, 141, 179
dimensionless variable, 17, 19

e-folding time, 20
Eckert number, 190
Euler number, 184
exponential decay, 18

forced convection, 186
free convection, 187
frequency, 53
frequency, angular, 53
Froude number, 182

graphical web interface, 14
Grashof number, 190

joblib, 22, 28

length, 1
logistic equation, 38
Lotka-Volterra, competing species model,

88
Lotka-Volterra, predator-prey model,

85
low Reynolds number flow, 181

Mach number, 196
mass, 1
memoize function, 22
multiple software runs, 12

Navier-Stokes equations, 179
non-dimensionalization, 17
Nusselt number, 192

parampool, 9
Peclet number, 136, 186, 190
period (of oscillations), 53
phase shift, 65
PhysicalQuantity, 7
Pi theorem, 3

quality factor Q, 65

radians, 53

223

224 INDEX

Reynolds number, 141, 179, 181, 186,
190

scaling, 17
Stokes problem, 181
Stokes’ flow, 182
Strouhal number, 183

thermo-elasticity, 177
time, 1

units, 1
British, 5
conversion, 7
software, 7
US, 5

vortex shedding, 183

web interface (Parampool), 14
Weber number, 185

	Preface
	Dimensions and units
	Fundamental concepts
	Base units and dimensions
	Dimensions of common physical quantities
	The Buckingham Pi theorem
	Absolute errors, relative errors, and units
	Units and computers
	Unit systems
	Example on challenges arising from unit systems
	PhysicalQuantity: a tool for computing with units

	Parampool: user interfaces with automatic unit conversion
	Pool of parameters
	Fetching pool data for computing
	Reading command-line options
	Setting default values in a file
	Specifying multiple values of input parameters
	Generating a graphical user interface

	Ordinary differential equation models
	Exponential decay problems
	Fundamental ideas of scaling
	The basic model problem
	The technical steps of the scaling procedure
	Making software for utilizing the scaled model
	Scaling a generalized problem
	Variable coefficients
	Scaling a cooling problem with constant temperature in the surroundings
	Scaling a cooling problem with time-dependent surroundings
	Scaling a nonlinear ODE
	SIR ODE system for spreading of diseases
	SIRV model with finite immunity
	Michaelis-Menten kinetics for biochemical reactions

	Vibration problems
	Undamped vibrations without forcing
	Undamped vibrations with constant forcing
	Undamped vibrations with time-dependent forcing
	Damped vibrations with forcing
	Oscillating electric circuits

	Exercises

	Basic partial differential equation models
	The wave equation
	Homogeneous Dirichlet conditions in 1D
	Implementation of the scaled wave equation
	Time-dependent Dirichlet condition
	Velocity initial condition
	Variable wave velocity and forcing
	Damped wave equation
	A three-dimensional wave equation problem

	The diffusion equation
	Homogeneous 1D diffusion equation
	Generalized diffusion PDE
	Jump boundary condition
	Oscillating Dirichlet condition

	Reaction-diffusion equations
	Fisher's equation
	Nonlinear reaction-diffusion PDE

	The convection-diffusion equation
	Convection-diffusion without a force term
	Stationary PDE
	Convection-diffusion with a source term

	Exercises

	Advanced partial differential equation models
	The equations of linear elasticity
	The general time-dependent elasticity problem
	Dimensionless stress tensor
	When can the acceleration term be neglected?
	The stationary elasticity problem
	Quasi-static thermo-elasticity

	The Navier-Stokes equations
	The momentum equation without body forces
	Scaling of time for low Reynolds numbers
	Shear stress as pressure scale
	Gravity force and the Froude number
	Oscillating boundary conditions and the Strouhal number
	Cavitation and the Euler number
	Free surface conditions and the Weber number

	Thermal convection
	Forced convection
	Free convection
	The Grashof, Prandtl, and Eckert numbers
	Heat transfer at boundaries and the Nusselt and Biot numbers

	Compressible gas dynamics
	The Euler equations of gas dynamics
	General isentropic flow
	The acoustic approximation for sound waves

	Water surface waves driven by gravity
	The mathematical model
	Scaling
	Waves in deep water
	Long waves in shallow water

	Two-phase porous media flow
	The bidomain model in electrophysiology
	The mathematical model
	Scaling
	An alternative Iion

	Exercises

	References
	Index

