Study guide: Finite difference methods for wave

motion

2

Hans Petter Langtangen'? Svein Linge3!

Center for Biomedical Computing, Simula Research Laboratory?
Department of Informatics, University of Oslo?

Department of Process, Energy and Environmental Technology, University College
of Southeast Norway?

Jul 14, 2016

(© 2016, Hans Petter Langtangen, Svein Linge. Released under CC Attribution 4.0 license

@ Finite difference methods for waves on a string

Finite difference methods for waves on a string

Waves on a string can be modeled by the wave equation
0%u ,0%u
—_— = —
ot? Ox?

u(x, t) is the displacement of the string

Demo of waves on a string.

http://phet.colorado.edu/sims/wave-on-a-string/wave-on-a-string_en.html

The complete initial-boundary value problem

52 = Cor x€(0,L), te(0,T] (1)
u(x70) = /(X), X € [07 L] (2)

G}

au(x,O) =0, x € [0, L] (3)
u(0,t) =0, te(0,7] (4)
u(L, t) =0, te (07 T] (5)

Input data in the problem

Initial condition u(x,0) = I(x): initial string shape
Initial condition us(x,0) = 0: string starts from rest
¢ = +/ T/o: velocity of waves on the string

(T is the tension in the string, o is density of the string)

e 6 66 o6 o

Two boundary conditions on u: u = 0 means fixed ends (no
displacement)

Rule for number of initial and boundary conditions:

@ u; in the PDE: two initial conditions, on u and u;
@ u; (and no uy) in the PDE: one initial conditions, on u

@ Uy in the PDE: one boundary condition on u at each
boundary point

Demo of a vibrating string (C = 0.8)

@ Our numerical method is sometimes exact (!)

@ Our numerical method is sometimes subject to serious
non-physical effects

Demo of a vibrating string (C = 1.0012)

Ooops!

Step 1: Discretizing the domain

Mesh in time:

O=tH<ti<b< - -<ty_1<ty =T (6)

Mesh in space:

O=xo<x1 <x2 < - <xy—1<xn, =1L (7)

Uniform mesh with constant mesh spacings At and Ax:

xi=iAx, i=0,....,Ny, t;=nAt, n=0,...,N; (8)

The discrete solution

@ The numerical solution is a mesh function: u ~ ue(x;, ty)
o Finite difference stencil (or scheme): equation for u] involving
neighboring space-time points

Stencil at interior point

5
4
0
c 3 ©
x
[]
o
£, 0 0 0
&) &) &5
0
1 &)
0
0 1 2 3 4 5

index i

Step 2: Fulfilling the equation at the mesh points

Let the PDE be satisfied at all interior mesh points:

0? 2
Er a7 (X,, tn) Cc ﬁu(xia tn)a (9)

fori=1,...,Ny—landn=1,... N;—1

For n = 0 we have the initial conditions u = /(x) and u; =0, and
at the boundaries i = 0, N, we have the boundary condition u = 0.

Step 3: Replacing derivatives by finite differences

Widely used finite difference formula for the second-order derivative:

H? oyt 4yt
@U(Xi, tn) ~ — Atlg —— = [D¢Dru]?
and
2 u? , —2u + uf
—u(xj, tn) = rl I =ae [Dx Dy u]f

O0x2

Step 3: Algebraic version of the PDE

Replace derivatives by differences:

n+1 n n—1 n n n
u; —2Ui +UI- - C2 Ui+1 —2U,' +U,‘_1
At? Ax2 ’

(10)

In operator notation:

[D¢Dru = c2Dy Dy " (11)

Step 3: Algebraic version of the initial conditions

o Need to replace the derivative in the initial condition
ut(x,0) = 0 by a finite difference approximation

o The differences for uy and uy, have second-order accuracy

@ Use a centered difference for u;(x,0)
[Daiu]? =0, n=0 = u™l=u" i=0,... N,

The other initial condition u(x,0) = /(x) can be computed by

W =1(x;), i=0,...,Ny

Step 4: Formulating a recursive algorithm

@ Nature of the algorithm: compute v in space at
t = At,2At,3At, ...

@ Three time levels are involved in the general discrete equation:
n+1,nn-1

e uf and u;’*l are then already computed for i = 0,..., Ny, and

n+1 - R
u"" is the unknown quantity

Write out [D;D;u = C2DXDX]I’.’ and solve for u,f’H,

u(7+1 = —Ulpi1 + 2U,n + C2 (U,['+1 - 2uln + ulﬁ—l) (12)

1

The Courant number

is known as the (dimensionless) Courant number

Observe

There is only one parameter, C, in the discrete model: C lumps
mesh parameters At and Ax with the only physical parameter, the
wave velocity ¢. The value C and the smoothness of /(x) govern
the quality of the numerical solution.

The finite difference stencil

Stencil at interior point

5
4
0O
c 3 ©
x
[}
o
£, 0 0O 0
W W W
o
1 &
0
0 1 2 3 4 5

index i

The stencil for the first time level

@ Problem: the stencil for n = 1 involves ufl, but time
t = —At is outside the mesh

@ Remedy: use the initial condition u; = 0 together with the
stencil to eliminate u,-_1

Initial condition:

[Dyu=0% = ul=u!

Insert in stencil [D¢Deu = c2DyDy]? to get

1
up = up — §C2 (ufya — 207 + i y) (14)

The algorithm

@ Compute u,0 =1(xj) for i =0,..., Ny
@ Compute u? by (14) and set u} = 0 for the boundary points
i=0andi= Ny, forn=1,2,...,N—1,
© For each time level n=1,2,..., Nt -1
© apply (12) to find vt fori=1,..., N, — 1
@ set u™! = 0 for the boundary points i =0, i = N,.

Moving finite difference stencil

web page or a movie file.

http://tinyurl.com/pu5uyfn/pub/mov-wave/D_stencil_gpl/index.html
http://tinyurl.com/pu5uyfn/pub/mov-wave/D_stencil_gpl/movie.ogg

Sketch of an implementation (1)

o Arrays:

o u[i] stores u/*!
o u_1[i] stores u}

o u_2[i] stores u] !

Naming convention

u is the unknown to be computed (a spatial mesh function), u_k is
the computed spatial mesh function k time steps back in time.

PDE solvers should save memory

Important to minimize the memory usage

The algorithm only needs to access the three most recent time
levels, so we need only three arrays for uf’“, ul’, and u;’*l,
i=0,...,Ny. Storing all the solutions in a two-dimensional array
of size (Nx + 1) x (N¢ + 1) would be possible in this simple
one-dimensional PDE problem, but not in large 2D problems and

not even in small 3D problems.

Sketch of an implementation (2)

Given mesh points as arrays z and t (z[i], t[n])

dx = x[1] - x[0]

dt = t[1] - t[o0]

C = cxdt/dx # Courant number

Nt = len(t)-1

C2 = Cxx*2 # Help vartable in the scheme

Set initial condition u(z,0) = I(z)
for i in range(0, Nx+1):
u_1[i] = I(x[i])

Apply special formula for first step, imcorporating du/dt=0
for i in range(1, Nx):

ulil = u_1[i] - 0.5#C**2(u_1[i+1] - 2*u_1[i] + u_1[i-1]1)
uf0] = 0; wu[Nx] = 0 # Enforce boundary conditions

Switch variables before next step
u 2[:], u1l:] =ul, u

for n in range(l, Nt):
Update all inner mesh points at time t[n+1]
for i in range(1l, Nx):
uli] = 2u_1[i] - uw_2[i] - \
C*¥*2(u_1[i+1] - 2*%u_1[i] + u_1[i-1])

Insert boundary conditions
uf0] = 0; ulNx] =0

@ Finite difference methods for waves on a string

© Verification

© Implementation

@ Making a solver function (3)

@ Vectorization

© Generalization: reflecting boundaries

@ Generalization: variable wave velocity

@ Building a general 1D wave equation solver

© Finite difference methods for 2D and 3D wave equations

© Implementation of 2D/3D problems

@ Analysis of the difference equations

@ Think about testing and verification before you start
implementing the algorithm!

@ Powerful testing tool: method of manufactured solutions and
computation of convergence rates

@ Will need a source term in the PDE and u¢(x,0) # 0

@ Even more powerful method: exact solution of the scheme

A slightly generalized model problem

Add source term f and nonzero initial condition u¢(x, 0):

U = e + f(x, 1), (15)
u(x,0) = I(x), x €[0,L] (16)
ut(x,0) = (), x € [0, L] (17)
u(0,t) = t >0, (18)
u(L,t) = t>0 (19)

Discrete model for the generalized model problem

[D;Dsu = c*Dy Dy + f]7 (20)
Writing out and solving for the unknown u;’+1:

ul™ = 20! + CP (Ul - 20! + Ul) + APRT (21)

]

Modified equation for the first time level

Centered difference for u:(x,0) = V/(x):

[Dayru=V]? = u7l=u}l —24tV,

1

Inserting this in the stencil (21) for n = 0 leads to

1 1
ub =u) — AtV + 5C2 (ufyy —2ul 4+ ulq) + 5Atzf,-" (22)

Using an analytical solution of physical significance

e Standing waves occur in real life on a string

@ Can be analyzed mathematically (known exact solution)
ue(x,y,t)) = Asin <%x) cos (%ct) (23)

e PDE data: £ =0, boundary conditions ue(0, t) = ue(L,0) =0,
initial conditions /(x) = Asin (Tx) and V =0
o Note: u;’H # ue(xi, th+1, and we do not know the error, so

testing must aim at reproducing the expected convergence
rates

Manufactured solution: principles

o Disadvantage with the previous physical solution: it does not
test V#0and f #0
@ Method of manufactured solution:

o Choose some wue(x,t)

o Insert in PDE and fit f

e Set boundary and initial conditions compatible with the chosen
ue(x, t)

Manufactured solution: example

ue(x,t) = x(L — x)sint

PDE uy = Pug + F:

—x(L—=x)sint=—-2sint+f =1f=(2—x(L—x))sint

Implied initial conditions:

Boundary conditions:

u(x,0) =u(x,L) =0

Testing a manufactured solution

@ Introduce common mesh parameter: h = At, Ax = ch/C

@ This h keeps C and At/Ax constant

@ Select coarse mesh h: hg

@ Run experiments with h; = 277 hg (halving the cell size),
I=0,....,m

@ Record the error E; and h; in each experiment

Compute pariwise convergence rates r; = In Ej11/E;/In hj11/h;

Verification: r; — 2 as i increases

Constructing an exact solution of the discrete equations

@ Manufactured solution with computation of convergence rates:
much manual work

@ Simpler and more powerful: use an exact solution for u?

@ A linear or quadratic ue in x and t is often a good candidate

Analytical work with the PDE problem

Here, choose ue such that we(x,0) = we(L,0) = 0:

ve(x, £) = x(L — x)(1+ %t),

Insert in the PDE and find f:

F(x,t) = 2(1 + t)c?

Initial conditions:

Analytical work with the discrete equations (1)

We want to show that ue also solves the discrete equations!

Useful preliminary result:

—2t2 4 t2
[D:D;t?]" = fhs1 N Len+1)2—n?+(n—12%=2
(

24)

o tir1—2th+tior ((n+1)—n+(n—1))At
[DeDyt]” = INZ - INZ =0
(25)

Hence,

1 1
[DtDtue],r" = X,‘(L - Xi)[DtDt(]- + Et)]n = X,‘(L - Xi)E[DtDtt]n =0

Analytical work with the discrete equations (1)

1 1
[DyDyue]™ = (1 + 5tn)[DXDX(xL -xi=01+ §tn)[LDXDXx — DD, x>

1
= —2(1 + Etn)

Now, f" = 2(1 + 3t,)c? and we get

1 1
[D¢ Dt ue —c? Dy Dytie —]} = 0—c2(—1)2(1+Et,,+2(1+§t,,)c2 =0

Moreover, ue(x;,0) = I(x;), ue/0t = V(x;) at t = 0, and
ue(xo, t) = te(xn,,0) = 0. Also the modified scheme for the first
time step is fulfilled by ve(x;, ts).

Testing with the exact discrete solution

@ We have established that
ulf""1 = ue(xi, tnr1) = xi(L — x;)(1 + tny1/2)
@ Run one simulation with one choice of ¢, At, and Ax

o Check that max; |u"! — ue(x;, tat1)] < € € ~ 1071 (machine
precision + some round-off errors)

o This is the simplest and best verification test

Testing with the exact discrete solution

@ We have established that
ul™t = ve(xi, tas1) = xi(L = x)(L + tay1/2)
@ Run one simulation with one choice of ¢, At, and Ax

o Check that max; |u"! — ue(x;, tat1)] < € € ~ 1071 (machine
precision + some round-off errors)

o This is the simplest and best verification test

Later we show that the exact solution of the discrete equations can
be obtained by C =1 (!)

© Implementation

e Making a solver function (3)

Implementation

The algorithm

@ Compute u,0 =1(xj) for i =0,..., Ny
@ Compute u? by (14) and set u} = 0 for the boundary points
i=0andi= Ny, forn=1,2,...,N—1,
© For each time level n=1,2,..., Nt -1
© apply (12) to find vt fori=1,..., N, — 1
@ set u™! = 0 for the boundary points i =0, i = N,.

What do to with the solution?

e Different problem settings demand different actions with the

computed u,f’+1 at each time step

@ Solution: let the solver function make a callback to a user
function where the user can do whatever is desired with the
solution

@ Advantage: solver just solves and user uses the solution

def user_action(u, x, t, n):
uli] at spatial mesh points z[i] at time t[n]
plot u
or store u

Making a solver function (1)

We specify At and C, and let the solver function compute
Ax = cAt/C.

def solver(I, V, f, ¢, L, dt, C, T, user_action=None):
nmnSolve u_tt=c 2*u_zz + f on (0,L)z(0,T]."""
Nt = int(round(T/dt))
t = linspace(0, Nt*dt, Nt+1) # MNesh points in time

dx = dt*c/float(C)

Nx = int(round(L/dx))

x = linspace(0, L, Nx+1) # Hesh points in space

dx = x[1] - x[0]

C2 = Cx*2 # Help wvariable in the scheme

if £ is None or f == :
f = lambda x, t: O
if V is None or V == 0:

V = lambda x: O
u = zeros(Nx+1) # Solution array at new time level
u_1l = zeros(Nx+1) # Solution at 1 time level back
u_2 = zeros(Nx+1) # Solution at 2 time levels back

import time; t0 = time.clock() # for measuring CPU time

Load inttial condition into u_1
for i in range(0,Nx+1):
u_1[i] = I(x[i])

Making a solver function (2)

def

def

solver(I, V, f, ¢, L, dt, C, T, user_action=None):

Special formula for first time step
n =
for i in range(1l, Nx):
ulil = uw_1[i] + de*V(x[i]) + \
0.5%C2* (u_1[i-1]1 - 2#u_1[i] + u_1[i+11) + \
0.5*dt**2+f (x[i], t[nl)
ul0] = 0; ulNx] =0

if user_action is not None:
user_action(u, x, t, 1)

Switch variables before next step
u_2[:], u_1l:] = u_l, u

solver(I, V, f, ¢, L, Nx, C, T, user_action=None):
Time loop

for n in range(1l, Nt):
Update all inner points at time t[n+1]
for i in range(l, Nx):
uli] = - w_2[i] + 2*%u_1[i] + \
C2*(u_1[i-1] - 2%u_1[i] + uw_1[i+1]) + \
dt**2xf (x[i], t[nl)

Verification: exact quadratic solution

Exact solution of the PDE problem and the discrete equations:
ue(x,t) = x(L — x)(1 + 5t)

def test_quadratic():
"icheck that u(z,t)=z(L-z)(1+t/2) <s ezactly reproduced.”""

def u_exact(x, t):
return x*(L-x)*(1 + 0.5%t)

def I(x):

return u_exact(x, 0)
def V(x):

return 0.5*u_exact(x, 0)
def f(x, t):

return 2*(1 + 0.5%t)*c**2
L=2.5
c=1.5
C=0.75
Nx = 6 # Very coarse mesh for this exzact test
dt = Cx(L/Nx)/c
T = 18

def assert_no_error(u, x, t, n):
ue = u exact(x. t[nl)

Visualization: animating u(x, t)

Make a viz function for animating the curve, with plotting in a
user_action function plot_u:

def viz(
I, Vv, f, ¢, L, dt, C, T, # PDE parameters
umin, umax, # Interval for u 2n plots
animate=True, # Simulation with animation?
tool="matplotlib’, # ’matplotlib’ or ’scitools’
solver_function=solver, # Function with numerical algorithm

""Bun solver and visualize u at each time lewvel."""

def plot_u_st(u, x, t, n):
"yser_action function for solver.”""
plt.plot(x, u, ’r-’,
xlabel=’x’, ylabel=’u’,
axis=[0, L, umin, umax],
title=’t=Yf’ % t[n], show=True)
Let the initial condition stay on the screen for 2
seconds, else insert a pause of 0.2 s between each plot
time.sleep(2) if t[n] == 0 else time.sleep(0.2)
plt.savefig(’frame_704d.png’ % n) # for movie making

class PlotMatplotlib:
def __call__(self, u, x, t, n):
""Muser_action function for solwver."""
if n ==

Making movie files

@ Store spatial curve in a file, for each time level
@ Name files like ?something_%04d.png’ % frame_counter

@ Combine files to a movie

Terminal> scitools movie encoder=html output_file=movie.html \
fps=4 frame_*.png # web page with a player
Terminal> avconv -r 4 -i frame_J04d.png -c:v flv movie.flv

Terminal> avconv -r 4 -i frame_}04d.png -c:v libtheora movie.ogg
Terminal> avconv -r 4 -i frame_),04d.png -c:v 1ibx264 movie.mp4
Terminal> avconv -r 4 -i frame_J04d.png -c:v libpvx movie.webm

@ Zero padding (%044d) is essential for correct sequence of frames
in something_*.png (Unix alphanumeric sort)

@ Remove old frame_x.png files before making a new movie

Running a case

@ Vibrations of a guitar string

@ Triangular initial shape (at rest)

[ax/xo, X < X
I(x) = { a(L _0 x)/(L — xg), otherv(\J/ise (26)

Appropriate data:

@ L=75cm, xp =0.8L, a =5 mm, time frequency v = 440 Hz

Implementation of the case

def

def

guitar(C):

"nTriangular wave (pulled guitar string)."""
L =0.75

x0 = 0.8+L

a = 0.005

freq = 440

wavelength = 2*L

c = freq*wavelength

omega = 2*pi*freq

num_periods = 1

T = 2*pi/omega*num_periods

Choose dt the same as the stability limit for Nz=50
dt = L/50./¢c

def I(x):
return a*x/x0 if x < x0 else a/(L-x0)*(L-x)

umin = -1.2%a; umax = -umin
cpu = viz(I, 0, 0, ¢, L, dt, C, T, umin, umax,
animate=True, tool=’scitools’)

convergence_rates(
u_exact, # Python function for ezact solution
I, v, f, ¢, L, # physical parameters

dt0, num_meshes, C, T): # numerical parameters
nnn

Ul € +heo F+ome ctom momd ooetommteo moamoilommeommeme meotoe Ao

http://tinyurl.com/nu656p2/wave/wave1D/wave1D_u0.py

Resulting movie for C = 0.8

Movie of the vibrating string

http://tinyurl.com/pu5uyfn/pub/mov-wave/guitar_C0.8/index.html

The benefits of scaling

o It is difficult to figure out all the physical parameters of a case

@ And it is not necessary because of a powerful: scaling

Introduce new x, t, and u without dimension:

.
L

_ _ u
X = t, u=-—
a

X
Lv

Insert this in the PDE (with f = 0) and dropping bars

Uit = Uxx

Initial condition: set a=1, L =1, and xo € [0,1] in (26).

In the code: set a=c=L=1, x0=0.8, and there is no need to
calculate with wavelengths and frequencies to estimate c!

Just one challenge: determine the period of the waves and an
appropriate end time (see the text for details).

@ Finite difference methods for waves on a string

@ Verification

© Implementation

@ Making a solver function (3)

@ Vectorization

© Generalization: reflecting boundaries

@ Generalization: variable wave velocity

@ Building a general 1D wave equation solver

© Finite difference methods for 2D and 3D wave equations
© Implementation of 2D/3D problems

@ Analysis of the difference equations

Problem: Python loops over long arrays are slow

One remedy: use vectorized (numpy) code instead of explicit
loops

Other remedies: use Cython, port spatial loops to Fortran or C
Speedup: 100-1000 (varies with Ny)

Next: vectorized loops

Operations on slices of arrays

@ Introductory example: compute di = uj11 — u;

n = u.size
for i in range(0, n-1):
d[i] = uli+1] - u[il

@ Note: all the differences here are independent of each other.

o Therefore d = (u1, up, ..., up) — (Ug, U1,y ..., Up—1)
@ In numpy code: ul1:n] - ul[0:n-1] or just ul1:] -
ul:-1]
0 1 2 3 4

Test the understanding

Newcomers to vectorization are encouraged to choose a small array
u, say with five elements, and simulate with pen and paper both
the loop version and the vectorized version.

Vectorization of finite difference schemes (1)

Finite difference schemes basically contains differences between
array elements with shifted indices. Consider the updating formula

for i in range(l, n-1):
u2lil = uli-11 - 2*ulil + uli+1]

The vectorization consists of replacing the loop by arithmetics on
slices of arrays of length n-2:

u2
u2

ul:-2] - 2*u[1:-1] + u[2:]
ul0:n-2] - 2*u[l:n-1] + u[2:n] # alternative

Note: u2 gets length n-2.

If u2 is already an array of length n, do update on "inner" elements

u2[1:-1]
u2[1:n-1]

ul:-2] - 2*u[i1:-1] + u[2:]
ul[0:n-2] - 2*%ul[1:n-1] + u[2:n] # alternative

Vectorization of finite difference schemes (2)

Include a function evaluation too:

def f(x):
return x**2 + 1

Scalar version
for i in range(l, n-1):
u2[i] = uli-11 - 2*uli] + uli+1] + £(x[i])

Vectorized version
u2[1:-1] = ul[:-2] - 2*ul1:-1] + ul2:]1 + £(x[1:-1])

Vectorized implementation in the solver function

Scalar loop:

for i in range(l, Nx):
uli] = 2%u_1[i] - u_2[i] + \
C2*%(u_1[i-1] - 2*u_1[i] + u_1[i+1])

Vectorized loop:

ul1:-1] = - u_2[1:-1] + 2*%u_1[1:-1] + \
C2x(u_1[:-2] - 2%u_1[1:-11 + u_1[2:]1)

or

ul1:Nx]

1l

2%u_1[1:Nx]- u_2[1:Nx] + \
C2#(u_1[0:Nx-1] - 2%u_1[1:Nx] + u_1[2:Nx+1])

Program: wavelD_uOv.py

http://tinyurl.com/nu656p2/wave/wave1D/wave1D_u0v.py

Verification of the vectorized version

def test_quadratic():
nnn
Check the scalar and vectorized versions for
a quadratic u(z,t)=z(L-z) (1+t/2) that is ezactly reproduced.
nnn
The following function must work for = as array or scalar
u_exact = lambda x, t: x*(L - x)*(1 + 0.5%t)

I = lambda x: u_exact(x, 0)

V = lambda x: 0.5%u_exact(x, 0)

f is a scalar (zeros_like(z) works for scalar z too)
f = lambda x, t: np.zeros_like(x) + 2xc**2%(1 + 0.5%t)
L=2.5

c=1.5

C=0.75

Nx = 3 # Very coarse mesh for this ezact test

dt = C*(L/Nx)/c

T =18

def assert_no_error(u, x, t, n):
u_e = u_exact(x, t[n])
tol = 1E-13
diff = np.abs(u - u_e).max()
assert diff < tol

solver(I, V, f, ¢, L, dt, C, T,
user_action=assert_no_error, version=’scalar’)
ermTwrmw (T AV A -+ o~ T A4+ fal ™

Efficiency measurements

@ Run wavelD_uOv.py for N, as 50,100,200,400,800 and
measuring the CPU time

@ Observe substantial speed-up: vectorized version is about
Ny /5 times faster

Much bigger improvements for 2D and 3D codes!

© Generalization: reflecting boundaries

Generalization: reflecting boundaries

e Boundary condition v = 0: u changes sign
e Boundary condition uy = 0: wave is perfectly reflected

@ How can we implement uy? (more complicated than v = 0)

Demo of boundary conditions

http://phet.colorado.edu/sims/wave-on-a-string/wave-on-a-string_en.html

Neumann boundary condition

For a 1D domain [0, L]:

0 0 0 0

onl,_, Ox on|_, Ox

X

Boundary condition terminology:

@ uy specified: Neumann condition

o u specified: Dirichlet condition

http://en.wikipedia.org/wiki/Neumann_boundary_condition
http://en.wikipedia.org/wiki/Dirichlet_conditions

Discretization of derivatives at the boundary (1)

@ How can we incorporate the condition uy = 0 in the finite
difference scheme?

o We used centeral differences for uy and g O(At?, Ax?)
accuracy

o Also for us(x,0)

@ Should use central difference for uy, to preserve second order
accuracy

uly —uf

Ax 0 (28)

Discretization of derivatives at the boundary (2)

n n
u u
—1 1
—— =0

2Ax

@ Problem: u” is outside the mesh (fictitious value)

@ Remedy: use the stencil at the boundary to eliminate u”,; just
replace u”; by uf

u™ =yt oyr +2C? (ufyy —uf), i=0 (29)

1

Visualization of modified boundary stencil

Discrete equation for computing ug’ in terms of ug, ué, and uf:

Animation in a web page or a movie file.

http://tinyurl.com/pu5uyfn/pub/mov-wave/N_stencil_gpl/index.html
http://tinyurl.com/pu5uyfn/pub/mov-wave/N_stencil_gpl/movie.ogg

Implementation of Neumann conditions

@ Use the general stencil for interior points also on the boundary
® Replace u | by ul) for i =10
e Replace v | by uf! | for i = Ny

i=
ipl = i+l

iml = ipl # i-1 -> i+1

ufil = uw_1[i] + C2*(u_1[im1] - 2*u_1[i] + u_1[ip1]l)

nino

i =
imil i-1

ipl = iml # i+1 -> i-1

ulil = uw_1[i] + C2*(u_1[im1] - 2*u_1[i] + u_1[ip1l)

nn=
e

Or just one loop over all points

for i in range(0, Nx+1):

ipl = i+l if i < Nx else i-1

iml = i-1 if i > 0 else i+l

uli] = w_1[i] + C2*(u_1[iml] - 2*u_1[i] + u_1[ip1l])

Program wave1D_dnO.py

http://tinyurl.com/nu656p2/wave/wave1D/wave1D_dn0.py

Moving finite difference stencil

web page or a movie file.

http://tinyurl.com/pu5uyfn/pub/mov-wave/N_stencil_gpl/index.html
http://tinyurl.com/pu5uyfn/pub/mov-wave/N_stencil_gpl/movie.ogg

Index set notation

o Tedious to write index sets like i = 0,..., Ny and
n=20,...,N;

e Notation not valid if / or n starts at 1 instead...

@ Both in math and code it is advantageous to use index sets

@ i€Z,instead of /1 =0,..., Ny

e Definition: Z, = {0, ..., Ny}

o The first index: i = 70

o The last index: i = Z;*

o All interior points: i € T/, T! = {1,..., N, — 1}

e 7, means {0,..., N, — 1}

e Z,; means {1,..., Ny}

Index set notation in code

Notation Python

Ty Ix

70 1x[0]
Z? Ix[-1]
I Ix[1:]
5 Ix[:-1]

I Ix[1:-1]

Index sets in action (1)

Index sets for a problem in the x, t plane:

IX - {O,...,NX}, Il' - {O,...,Nt}, (30)

Implemented in Python as

Ix
It

range (0, Nx+1)
range (0, Nt+1)

Index sets in action (2)

A finite difference scheme can with the index set notation be
specified as

uf“: ul’71+2u +C2(,+1—2u + ui 1) iEI)';,nEI{
u=0, i=12°% nell
ui=0, i=T;' nell

Corresponding implementation:

for n in It[1:-1]:
for i in Ix[1:-1]:
ufil = - w_2[i] + 2%u_1[i] + \
C2x(u_1[i-1] - 2%u_1[i] + u_1[i+1])
Ix[0]; wul[il =0
Ix[-1]; ul[i] = O

Program wavelD_dn.py

http://tinyurl.com/nu656p2/wave/wave1D/wave1D_dn.py

Alternative implementation via ghost cells

Instead of modifying the stencil at the boundary, we extend
the mesh to cover u”; and up 4

The extra left and right cell are called ghost cells
The extra points are called ghost points
The u"; and u,’\’,XJrl values are called ghost values

Update ghost values as uf | = uf,; for i =0 and i = Ny

e 6 6 o o

Then the stencil becomes right at the boundary

Implementation of ghost cells (1)

Add ghost points:

zeros (Nx+3)
zeros (Nx+3)
zeros (Nx+3)

Il: Il: (=]
N

x = linspace(0, L, Nx+1) # Nesh points without ghost points

@ A major indexing problem arises with ghost cells since Python
indices must start at 0.

@ u[-1] will always mean the last element in u

e Math indexing: —1,0,1,2,... N, +1

@ Python indexing: 0, .. ,Nx+2

@ Remedy: use index sets

Implementation of ghost cells (2)

u = zeros (Nx+3)
Ix = range(1l, u.shape[0]-1)

Boundary values: ul[Ix[0]], ul[Ix[-1]]

Set initial conditioms
for i in Ix:
u_1[i] = I(x[i-Ix[0]1) # Note i-Ix[0]

Loop over all physical mesh points
for i in Ix:
ulil = - w_2[i] + 2*%u_1[i] + \
C2*(u_1[i-1] - 2*u_1[i] + u_1[i+1])

Update ghost values

i = Ix[0] # x=0 boundary
uli-1] = uli+1]
i = Ix[-1] # x=L boundary

uli-1] = uli+1]

Program: wavelD_dn0_ghost.py.

http://tinyurl.com/nu656p2/wave/wave1D/wave1D_dn0_ghost.py

@ Generalization: variable wave velocity

Generalization: variable wave velocity

Heterogeneous media: varying ¢ = c¢(x)
1 Nx=80, t=0.375000 15 Nx=80, t=1.250000
| N
05 ! 05 "\ 1
: M
oo ——— — 00 N
08 10 030 02 04 06 08 To

The model PDE with a variable coefficient

2, u
56 = o (10950) + flx) (31)

This equation sampled at a mesh point (x;j, t,):

82

0 0
@U(Xi, tn) = Ox (q(Xi)aXU(Xh t,,)) + (%, tn),

Discretizing the variable coefficient (1)

The principal idea is to first discretize the outer derivative.

Define
ou

¢ = CI(X)a*X

Then use a centered derivative around x = x; for the derivative of

¢:

99" Pisi — it .
[8)(],- X Ae [Dx9l;

Discretizing the variable coefficient (2)

Then discretize the inner operators:

ul" ulﬂJrl B uI{7 n
Pisy = Gy [ax] P
2
Similarly,
Ou 5 uln ulp—l n
2

Discretizing the variable coefficient (3)

These intermediate results are now combined to

0 ou\1" 1 n n n n
[ax (Cl(X)ax)]i ~ A2 (qi+§ (ufq —ufl) = Gi-1 (uf = U;_1))
(32)

In operator notation:

2 (a5e)] = tocanaty (33)

1

Many are tempted to use the chain rule on the term % (q(x)%),
but this is not a good idea!

Computing the coefficient between mesh points

e Given g(x): compute gjy1 as q(xl-+%)

@ Given g at the mesh points: g;, use an average

1 . .
qGipt ™5 (gi +qiv1) = [@]i (arithmetic mean) (34)
<1 + ! >_1 (harmonic mean) (35)
g 1~2(— rmonic mean
Bk g Qi+l
9jp 1 ~ (qiq,'+1)1/2 (geometric mean) (36)

The arithmetic mean in (34) is by far the most used averaging
technique.

Discretization of variable-coefficient wave equation in

operator notation

[DtDtU = DXEXDXU + f]r (37)

We clearly see the type of finite differences and averaging!

Write out and solve wrt u,f'+1:

At ?
ot = s ()

1 1
(300 + aulufs = o) = @+ a0)of — o)) +

AEP (38)

Neumann condition and a variable coefficient

Consider du/0x =0 at x = L = N, Ax:

n n
“i+1 — u;

i—1 n n :
YA x =0 Ui+1:l.l,'71, I:Nx

Insert v, ; = uf_; in the stencil (38) for i = Ny and obtain

At\?
e+ (50) 20l -)+ A2E

(We have used Gyl + G ™ 2qi.)

Alternative: assume dg/dx = 0 (simpler).

Implementation of variable coefficients

Assume c[i] holds ¢; the spatial mesh points

for i in range(l, Nx):
uli] = - w_2[i] + 2*%u_1[i] + \
C2%(0.5%(q[i] + q[i+1])*(u_1[i+1] - u_1[i]) - \
0.5%(ql[il + q[i-11)*(u_1[il - u_1[i-11)) + \
dt2+£f (x[i], t[n])

Here: C2=(dt/dx) **2
Vectorized version:

ull1:-1] = - w_2[1:-1]1 + 2%u_1[1:-1]1 + \
C2%(0.5%(q[1:-1] + q[2:1)*(u_1[2:] - uw_1[1:-1]) -
0.5%(q[1:-1] + ql:-21)*(u_1[1:-1] - uw_1[:-2])) + \
de2+f (x[1:-11, t[n])

Neumann condition uy = 0: same ideas as in 1D (modified stencil
or ghost cells).

A more general model PDE with variable coefficients

2lJ u
o) 5 = 5 (90052) +) (39)

A natural scheme is

[0D:Diu = Dyq@*Dyu + f]7 (40)

[D¢Diu = 0 DG Dyu + f]7 (41)

No need to average o, just sample at i

Generalization: damping

Why do waves die out?

e Damping (non-elastic effects, air resistance)
@ 2D/3D: conservation of energy makes an amplitude reduction

by 1/+/r (2D) or 1/r (3D)

Simplest damping model (for physical behavior, see demo):
2y

b > 0: prescribed damping coefficient.

Discretization via centered differences to ensure O(At?) error:

[DtDtU + bD2tU = C2DxDxU + f]f (43)

Need special formula for u} + special stencil (or ghost cells) for
Neumann conditions

http://phet.colorado.edu/sims/wave-on-a-string/wave-on-a-string_en.html

@ Building a general 1D wave equation solver

Building a general 1D wave equation solver

The program wavelD_dn_vc.py solves a fairly general 1D wave

equation:
up = (2(X)ux)x + F(x,), x € (0,L), t€ (0, T] (44)
u(x,0) = I(x), x € [0,L] (45)
ur(x,0) = V(¢t), x €[0,L] (46)
u(0,t) = Up(t) or ux(0,t) =0, te (0, T] (47)
u(L, t) = Ur(t) or ux(L, t) =0, te (0, T] (48)

Can be adapted to many needs.

http://tinyurl.com/nu656p2/wave/wave1D/wave1D_dn_vc.py

Collection of initial conditions

The function pulse in wavelD_dn_vc.py offers four initial
conditions:

© a rectangular pulse ("plug")
@ a Gaussian function (gaussian)

© a "cosine hat": one period of 1 + cos(mx, x € [-1,1]

@ half a "cosine hat": half a period of cosmx, x € [—%,%
Can locate the initial pulse at x = 0 or in the middle

>>> import wavelD_dn_vc as w
>>> w.pulse(loc=’left’, pulse_tp=’cosinehat’, Nx=50, every_frame=10)

© Finite difference methods for 2D and 3D wave equations

Finite difference methods for 2D and 3D wave equations

Constant wave velocity c:

d%u

W:c2v2ufc>rxe§2c1R<d, t (0, T] (49)

Variable wave velocity:

d%u

055 =V (qVu)+fforxeQCcR? te(0,7] (50)

Examples on wave equations written out in 2D /3D

3D, constant c:

Pu Pu Hu

2 —_ -
Viu= Ox?2 +8y2 +8z2
2D, variable c:
d%u 0 Ou 0 Ju
Q(Xa)/)w = ox <CI(X7)/)8X> + ay <q(X’y)8y> +f(x,y,t)
(51)
Compact notation:
Upe = c2(uXX + uyy + uzz) + f, (52)

oure = (qux)x + (quz)z + (quz)z + f (53)

Boundary and initial conditions

We need one boundary condition at each point on 0€2:

Q u is prescribed (u = 0 or known incoming wave)
@ Ou/On = n-Vu prescribed (= 0: reflecting boundary)

© open boundary (radiation) condition: u; + ¢ - Vu =0 (let
waves travel undisturbed out of the domain)

PDEs with second-order time derivative need two initial conditions:

Q u=1,
9 Ut:V.

Mesh point: (xi, j, zk, tn)

x direction: xg < x1 < -+ < Xxp,
y direction: yo <y1 <--- < yn,
z direction: zp < z1 < --- < zyp,

u,[:j’k ~ Ue(Xia)/jyzk, tn)

[DtDtU—C (D D U+D D u)+f]l_]k7

Written out in detail:

n+1 n n—1
Ui 2uiJ+uiJ _ 2 ,+1J —2ul; +u 7-+
At2 sz
n
Uiy — 2ui; +u,J L
Ay2 i
u,f’fl and uf 7 are known, solve for uI"JH.

u,.fjjﬂ =2uf; + ufjl + 2 At [DyDyu + Dy Dy ul};

Special stencil for the first time step

@ The stencil for u}; (n = 0) involves ufjl which is outside the

o
time mesh
o Remedy: use discretized us(x,0) = V and the stencil for n =0
to develop a special stencil (as in the 1D case)

[Dayru= V1Y = u =ul;— 201V

1
uf it = ul; =20V + 5c2At2[DxDxu + Dy Dy ul?;

Variable coefficients (1)

3D wave equation:

QUi = (qux)x + (qu)y + (quz)z + f(X7Y7 Z, t)

Just apply the 1D discretization for each term:

[QDtDtU = (DXGXDXU + DyﬁyDyU + DZGZDZU) + f];,,J,k (54)

Need special formula for u,-ljk (use [Da;u = V] and stencil for
n=0).

Variable coefficients (2)

Written out:
1
ulfjj—'i,_k: ’Jk+2ulgk+
1 1)
" oij AX2((91, + Gisr) (U1 i — i) =
i,
1
5 (Gt @iga) (4] — 01 40)+
1 1 1
= e 2 (iik i) (W g — U0
i,

1
§(Qi,j—1,k + qiju) (i, — Ul iy k)t
1 1 1

= o a2 GGk + Gighern) (Wan — i) =
iJ,

1
E(qi,j k-1 + Gij) (Ui — Ul k1))t
+ At? £ k

Neumann boundary condition in 2D

Use ideas from 1D! Example Saty = 0, 2 S = g—;’
Boundary condition discretization:
un oyl
—Dyyu=0]", = 2t Tl
[2y]I,O 2Ay
n+1

Insert uf _; = u’ " in the stencil for ui o to obtain a modified

stencil on the boundary

Pattern: use interior stencil also on the bundary, but replace j — 1
by j+1

Alternative: use ghost cells and ghost values

© Implementation of 2D/3D problems

Implementation of 2D /3D problems

up = (U + uy) +f(x,y,t), (x,y) €Q, te(0,T]

(55)

U(Xa)/70):/(xa)/)7 (X,y)EQ
(56)

ut(XayaO): V(va)’ (Xv.y)EQ
(57)

u=0, (x,y) €09, te (0, T]

(58)

Q=10,Ly] x [0, L]

Discretization:

[D:Dsu = c?(DxDyu + D, Dyu) + f17;,

Algorithm

@ Set initial condition uf; = /(x;, ;)
@ Compute u}J =... fori GIL andjEI)’;
O Set u,-l’j = 0 for the boundaries i = 0, N, j =0, N,
Q Forn=1,2,..., N;:
® Find uf'=... forieTi andj €T}
@ Set u}j}“l = 0 for the boundaries i = 0, N, j =0, N,

Scalar computations: mesh

Program: wave2D_u0.py

def solver(I, V, f, ¢, Lx, Ly, Nx, Ny, dt, T,
user_action=None, version=’scalar’):

Mesh:

x = linspace(0, Lx, Nx+1) # mesh points in z dir
y = linspace(0, Ly, Ny+1) # mesh points in y dir
dx = x[1] - x[0]

dy = y[1]1 - yI[0]

Nt = int(round(T/float(dt)))

t = linspace(0, N*dt, N+1) # mesh points in time

Cx2 = (cxdt/dx)**2; Cy2 = (c*dt/dy)**2 # help variables
dt2 = dt**2

http://tinyurl.com/nu656p2/wave/wave2D_u0/wave2D_u0.py

Scalar computations: arrays

Store u;’fl, u,f'j, and u;”j_l in three two-dimensional arrays:
u = zeros((Nx+1,Ny+1)) # solution array

u_l = zeros((Nx+1,Ny+1)) # solution at t-dt

u_2 = zeros((Nx+1,Ny+1)) # solution at t-2+dt

u!T" corresponds to uli,j], etc.

Scalar computations: initial condition

Ix = range(0, u.shape[0])
Iy = range(0, u.shapel[1])
It = range(0, t.shape[0])

for i in Ix:
for j in Iy

u_1[i, J] = I(x[i], y[jD)

if user_action is not None:
user_action(u_1, x, xv, y, yv, t, 0)

Arguments xv and yv: for vectorized computations

Scalar computations: primary stencil

def advance_scalar(u, u_n, u_nml, f, x, y, t, n, Cx2, Cy2, dt2,
V=None, stepl=False):
Ix = range(0, u.shapel0]); Iy = range(0, u.shapelll)
if stepl:
dt = sqrt(dt2) # save
Cx2 = 0.5%Cx2; Cy2 = 0.5%Cy2; dt2 = 0.5%dt2 # redefine
D1 =1; D2 =0
else:
D1 =2; D2=1
for i in Ix[1:-1]:
for j in Iy[1:-1]:
u_xx = u_nf[i-1,j] - 2*%u_nf[i,j] + u_n[i+1,j]
u_yy = u_n[i,j-11 - 2*%u_n[i,jl + u_nli,j+1]
uli,jl = Dixu_nli,j] - D2*u_nmi[i,j] + \
Cx2*u_xx + Cy2*u_yy + dt2*f(x[i], y[jl, t[nl)
if stepl:
uli,jl += dexV(x[il, y[jD)
Boundary condition u=0

j = Iylo]
for i in Ix: ul[i,j]l =0
j = Iy[-1]
for i in Ix: ufi,jl =0
i = Ix[0]
for j in Iy: uli,jl =0
i = Ix[-1]
for j in Iy: uli,j]l =0

return u

Vectorized computations: mesh coordinates

Mesh with 30 x 30 cells: vectorization reduces the CPU time by a
factor of 70 (!).

Need special coordinate arrays xv and yv such that /(x,y) and
f(x,y,t) can be vectorized:

from numpy import newaxis
xv = x[:,newaxis]
yv = ylnewaxis,:]

:] = I(xv, yv)
= f(xv, yv, t)

Vectorized computations: stencil

def advance_vectorized(u, u_n, u_nml, f_a, Cx2, Cy2, dt2,
V=None, stepl=False):
if stepl:
dt = sqrt(dt2) # save
Cx2 = 0.5%Cx2; Cy2 = 0.5%Cy2; dt2 = 0.5%dt2 # redefine
D1 =1; D2 =0
else:
D1 =2; D2 =1
u_xx = u_nl[:-2,1:-1] - 2*u_n[1:-1,1:-1] + u_n[2:,1:-1]
uyy = unfli:-1,:-2] - 2%u_nf1:-1,1:-1] + u_n[1:-1,2:]
ull:-1,1:-1] = Di*u_n[1:-1,1:-1] - D2%u_nmi[1:-1,1:-1] + \
Cx2*u_xx + Cy2*u_yy + dt2+f_al[1:-1,1:-1]
if stepl:
ull:-1,1:-1] += dt*V[1:-1, 1:-1]

Boundary condition u=0
j=0

ul:,j1 =0

j = u.shape[1]-1

ul:,j1 =0

i=0

uli,:]1 =0

i = u.shape[0]-1

uli,:] =0

return u

Verification: quadratic solution (1)

Manufactured solution:

(v, t) = x(L—xy(ly =)L+ 38) (59)

Requires f = 2c2(1 + 3t)(y(Ly — y) + x(Lx — x)).

This ue is ideal because it also solves the discrete equations!

Verification: quadratic solution (2)

4 [DtDt].]n =0
] [DtDtt]n =0
(*] [DtDtt2] =2

@ DD is a linear operator:
[DtDt(aU + bV)]n = a[DtDtu]" + b[DtDtV]n

n 1 n
[DxDer]i,j = [y(Ly —y)(1+ Et)DxDxX(LX - x) ij

1
—tp)2

= yi(Ly —y))(1 + 5

o Similar calculations for [DyDyue]}’J and [DtDtue]?J- terms

@ Must also check the equation for u,-lj

@ Analysis of the difference equations

Analysis of the difference equations

1 Nx=80, t=0.375000 15, Nx=80, t=1.250000
10 10
N
0s 05 I
\
I\
/ j\ (\
00 00 T~ —N\ﬂs ’ N
vV
o -0

Properties of the solution of the wave equation

0%u ,0%u
—_— = —
ot? Ox?

Solutions:

u(x,t) = gr(x — ct) + grL(x + ct)

If u(x,0)=1(x) and u(x,0) =0:

1 1
u(x,t) = 5/(x —ct)+ 5/(x + ct)

Two waves: one traveling to the right and one to the left

Simulation of a case with variable wave velocity

A wave propagates perfectly (C = 1) and hits a medium with 1/4

of the wave velocity (C = 0.25). A part of the wave is reflected
and the rest is troa(nsmltted

0.375000

N NX=80, t=1.250000

Let us change the shape of the initial condition slightly and

see what happens

1 Nx=80, t=0.375000 15 Nx=80, t=1.250000
B X o
W
05 05 ! ,‘ |
/N A
\ \ : (\
00 / \ 00 r/ g — M/)‘ ’ \

Representation of waves as sum of sine/cosine waves

Build /(x) of wave components e = cos kx + i sin kx:

I(x) ~ Z bye™

Fit by by a least squares or projection method

k is the frequency of a component (A = 27/k is the wave
length in space)

K is some set of all k needed to approximate /(x) well

bx must be computed (Fourier coefficients)
Since u(x,t) = 31(x — ct) + 3/(x + ct), the exact solution is
1 ik(x—ct) | 1 ik(x+ct)
U(X,t)ZEZbke +§Zbke
keK keK

Our interest: one component e (kKx=wt) ", — ke

A similar wave component is also a solution of the finite

difference scheme (!)

i(kxq—0&tn)

Idea: a similar discrete ug = e solution (corresponding to

i(kxfwt))

the exact e solves

[DtDtU = C2DXDXU]Z

Note: we expect numerical frequency @ # w

@ How accurate is & compared to w?

e What about the wave amplitude (can @ become complex)?

Preliminary results

DtDteiwt n __ _i | wAt eiwnAt
At? 2

By w — k, t — x, n — q) it follows that

. 4 kAX\
[DxDxelkX]q _ _AX2 sin2 (2X> e/kqAx

Insertion of the numerical wave component

Inserting a basic wave component u = e/(ka—%t) in the scheme
requires computation of

[DeDye™ et = [D,Dye~ 0] alx
4 5 (OAt\ _is .
- __ Sln2 e lwnAtelkqAx
2
[DXDXeikxefnZzt]g — [DXDXelkx]qefchmAt

B _A4 : Gin? (k?x) oikalix g—iGnAt
X

The equation for @

The complete scheme,

[DtDtelkxeflwt — C2 DXDxelkxeflwt]g

leads to an equation for @ (which can readily be solved):

sin? wAt = C?sin? kAx , C:ﬂ((ﬁourant number)
2 2 Ax

Taking the square root:

. (WAt Csi kAx
sin | ——) = Csin{ ——

The numerical dispersion relation

Can easily solve for an explicit formula for &:

o 2 .1 . kAX
—Esm (Csm(> >)

&

Note:

e This @ = &(k,c, Ax, At) is the numerical dispersion relation
@ Inserting ek*=wt in the PDE leads to w = kc, which is the
analytical/exact dispersion relation
@ Speed of waves might be easier to imagine:
o Exact speed: ¢ = w/k,
o Numerical speed: ¢ = &/k

@ We shall investigate ¢/c to see how wrong the speed of a
numerical wave component is

The special case C = 1 gives the exact solution

ForC=1 0=w

The numerical solution is exact (at the mesh points),
regardless of Ax and At = c 1 Ax!

The only requirement is constant ¢

@ The numerical scheme is then a simple-to-use analytical
solution method for the wave equation

Computing the error in wave velocity

o Introduce p = kAx/2
(the important dimensionless spatial discretization parameter)

@ p measures no of mesh points in space per wave length in
space

@ Shortest possible wave length in mesh: A = 2Ax,
k =27/A\=m/Ax, and p = kAx/2 =7/2 = pe (0,7/2]

@ Study error in wave velocity through ¢/c as function of p

2
kCAx

o 2
¢ sin 1 (Csinp) =
c

r(C,p) = WAt

in~Y(Csinp) = épsin_1 (C

Can plot r(C, p) for p € (0,7/2], C € (0,1]

Visualizing the error in wave velocity

def r(C, p):
return 1/(C*p)*asin(C*sin(p))

Numerical divided by exact wave velocity

1.1
1.0
© 0.9}
g
o
S
o
¢ o8l
*—o =
0.7f c=1
v—v C=0.95
=—a C=0.8
a4 C=0.3
0.6 n
0.2 0.4 0.6 0.8 1.0 1.2 1.4

NAara: +ha chAavkact wnimvvimace hAavia +ha laveaact Aarear ArmAd clhAvd vnrmyrac

Taylor expanding the error in wave velocity

For small p, Taylor expand & as polynomial in p:

>>> C, p = symbols(’C p’)

>>> rs = r(C, p).series(p, 0, 7)

>>> print rs

1 - px*2/6 + p**4/120 - p**6/5040 + C**2xp**2/6 -
Cx*2xpx*4/12 + 13*%Cx*2*p**6/720 + 3*Ck*4*p**4/40 -
Cx*4xp**6/16 + BxCx*x6+p**6/112 + 0(p**7)

>>> # Drop the remainder 0(...) term

>>> rs = rs.remove0()

>>> # Factorize each term

>>> rs = [factor(term) for term in rs.as_ordered_terms()]
>>> rs = sum(rs)

>>> print rs

p¥*¥6x(C - 1)*(C + 1)*(225%C**4 - 90*C**2 + 1)/5040 +
p**¥4*%(C - 1)*(C + 1)*(3*%C - 1)*(3xC + 1)/120 +

p**2%(C - 1)*(C + 1)/6 + 1

Leading error term is £(C? — 1)p? or

2 2

Example on effect of wrong wave velocity (1)

Smooth wave, few short waves (large k) in /(x):

Nx=80, t=1.250000

N Nx=80, t=0.375000 N
‘
:
1.0 1 1.0
:
| [\ :
0s ; 0s |
: [
‘ |
| /\ I\
00 - — 00 -] N
‘
!

Example on effect of wrong wave velocity (1)

Not so smooth wave, significant short waves (large k) in /(x):

Nx=80, t=0.375000 Nx=80, t=1.250000

|
os os b
/\ P
F /\ﬁ m
00 / oo — : W\} R
' v

sin (ajzAt) = Csin <k§X>

Exact w is real

Complex @ will lead to exponential growth of the amplitude
Stability criterion: real &

Then sin(0At/2) € [-1,1]

kAx/2 is always real, so right-hand side is in [-C, C]

Then we must have C <1

e 6 66 6 o o

Stability criterion:

Why C > 1 leads to non-physical waves

Recall that right-hand side is in [-C, C]. Then C > 1 means

. [OAt\ Csi kAx
sin | ——) = Csin{ ——

—_—
>1

@ |sinx| > 1 implies complex x

@ Here: complex & = &, + i;

@ One @; < 0 gives exp(i - i®;) = exp(—&;) and exponential
growth

@ This wave component will after some time dominate the
solution give an overall exponentially increasing amplitude
(non-physicall!)

Extending the analysis to 2D (and 3D)

u(x,y,t) = glkex + kyy — wt)

is a typically solution of

Upe = c2(uxx + uyy)

Can build solutions by adding complex Fourier components of the
form

ei(kXerkyyfwt)

Discrete wave components in 2D

2
[DtDtU =C (DXDXU + DyDyU)]Z’r
This equation admits a Fourier component
ug’r _ ei(kqux—l—kyrAy—d)nAt)

Inserting the expression and using formulas from the 1D analysis:

. DAt . .
sin? (w2) = C2sin’ py + Cf sin p,

where

Stability criterion in 2D

Rreal-valued & requires

CG+C <1

or

1/ 1 1\ 2
At< = —— 4=
e (Ax2 * Ay2)

Stability criterion in 3D

At<E L + L + A
T c\Ax2 Ay? Az

For c® = c?(x) we must use the worst-case value

¢ = /maxxeq ¢?(x) and a safety factor 5 < 1:

1/ 1 1 1\ /2
< BZ
At_ﬁf(Ax2+Ay2+Azz>

Numerical dispersion relation in 2D (1)

&

2 1
— Esin’1 ((Cf sin® py + Cf sin)e)z)

For visualization, introduce 6:

1 1
ke = ksinf, k, = kcos0, pxzikhcosﬁ, py:§khsin9

Also: Ax = Ay =h. Then C, = C, = cAt/h=C.
Now & depends on

o C reflecting the number cells a wave is displaced during a time

step
@ kh reflecting the number of cells per wave length in space

@ 6 expressing the direction of the wave

Numerical dispersion relation in 2D (2)

¢
c

I S G w2(Lhpne)
= Gip Sn (C <S|n (2khc050)+sm (2khsm 9)>)

Can make color contour plots of 1 — €/c in polar coordinates with
0 as the angular coordinate and kh as the radial coordinate.

Numerical dispersion relation in 2D (3)

-0.270

-0.345 3,
-0.420%
-0.495g
-0.570 g
-0.645 3
-0.720 3
f=
-0.795°C
-0.870 £
-0.945 @

	Finite difference methods for waves on a string
	Verification
	Implementation
	Making a solver function (3)

	Vectorization
	Generalization: reflecting boundaries
	Generalization: variable wave velocity
	Building a general 1D wave equation solver
	Finite difference methods for 2D and 3D wave equations
	Implementation of 2D/3D problems
	Analysis of the difference equations

