
Finite Difference Computing for
Oscillatory Phenomena

Hans Petter Langtangen1,2

Svein Linge3,1

1Center for Biomedical Computing, Simula Research Laboratory
2Department of Informatics, University of Oslo

3Department of Process, Energy and Environmental Technology, University College of Southeast Norway

Jul 14, 2016

Contents
1 Finite difference discretization 5

1.1 A basic model for vibrations . 5
1.2 A centered finite difference scheme 5

2 Implementation 8
2.1 Making a solver function . 8
2.2 Verification . 10
2.3 Scaled model . 14

3 Visualization of long time simulations 15
3.1 Using a moving plot window . 16
3.2 Making animations . 17
3.3 Using Bokeh to compare graphs 19
3.4 Using a line-by-line ascii plotter 22
3.5 Empirical analysis of the solution 23

4 Analysis of the numerical scheme 25
4.1 Deriving a solution of the numerical scheme 25
4.2 The error in the numerical frequency 27
4.3 Empirical convergence rates and adjusted ω 27
4.4 Exact discrete solution . 28
4.5 Convergence . 29
4.6 The global error . 29
4.7 Stability . 30
4.8 About the accuracy at the stability limit 32

c© 2016, Hans Petter Langtangen, Svein Linge. Released under CC Attribution 4.0 license

5 Alternative schemes based on 1st-order equations 33
5.1 The Forward Euler scheme . 33
5.2 The Backward Euler scheme . 34
5.3 The Crank-Nicolson scheme . 35
5.4 Comparison of schemes . 36
5.5 Runge-Kutta methods . 38
5.6 Analysis of the Forward Euler scheme 39

6 Energy considerations 41
6.1 Derivation of the energy expression 42
6.2 An error measure based on energy 43

7 The Euler-Cromer method 45
7.1 Forward-backward discretization 46
7.2 Equivalence with the scheme for the second-order ODE 47
7.3 Implementation . 48
7.4 The Störmer-Verlet algorithm . 50

8 Staggered mesh 52
8.1 The Euler-Cromer scheme on a staggered mesh 52
8.2 Implementation of the scheme on a staggered mesh 54

9 Exercises and Problems 56
1: Use linear/quadratic functions for verification 56
2: Show linear growth of the phase with time 57
3: Improve the accuracy by adjusting the frequency 58
4: See if adaptive methods improve the phase error 58
5: Use a Taylor polynomial to compute u1 58
6: Derive and investigate the velocity Verlet method 58
7: Find the minimal resolution of an oscillatory function 59
8: Visualize the accuracy of finite differences for a cosine function . . . 59
9: Verify convergence rates of the error in energy 59
10: Use linear/quadratic functions for verification 60
11: Use an exact discrete solution for verification 60
12: Use analytical solution for convergence rate tests 60
13: Investigate the amplitude errors of many solvers 60
14: Minimize memory usage of a simple vibration solver 61
15: Minimize memory usage of a general vibration solver 61
16: Implement the Euler-Cromer scheme for the generalized model . . 62
17: Interpret [DtDtu]n as a forward-backward difference 63
18: Analysis of the Euler-Cromer scheme 64

10 Generalization: damping, nonlinearities, and excitation 64
10.1 A centered scheme for linear damping 64
10.2 A centered scheme for quadratic damping 65
10.3 A forward-backward discretization of the quadratic damping term 66

2

10.4 Implementation . 67
10.5 Verification . 68
10.6 Visualization . 69
10.7 User interface . 69
10.8 The Euler-Cromer scheme for the generalized model 70
10.9 The Störmer-Verlet algorithm for the generalized model 72
10.10A staggered Euler-Cromer scheme for a generalized model 72
10.11The PEFRL 4th-order accurate algorithm 73

11 Exercises and Problems 74
19: Implement the solver via classes 74
20: Use a backward difference for the damping term 74
21: Use the forward-backward scheme with quadratic damping 75

12 Applications of vibration models 75
12.1 Oscillating mass attached to a spring 75
12.2 General mechanical vibrating system 77
12.3 A sliding mass attached to a spring 79
12.4 A jumping washing machine . 79
12.5 Motion of a pendulum . 80
12.6 Dynamic free body diagram during pendulum motion 82
12.7 Motion of an elastic pendulum 87
12.8 Vehicle on a bumpy road . 92
12.9 Bouncing ball . 94
12.10Two-body gravitational problem 94
12.11Electric circuits . 97

13 Exercises 97
22: Simulate resonance . 97
23: Simulate oscillations of a sliding box 97
24: Simulate a bouncing ball . 98
25: Simulate a simple pendulum . 98
26: Simulate an elastic pendulum . 98
27: Simulate an elastic pendulum with air resistance 100
28: Implement the PEFRL algorithm 100

References 101

Index 103

3

List of Exercises and Problems
Problem 1 Use linear/quadratic functions for verification ... p. 56
Exercise 2 Show linear growth of the phase with time p. 57
Exercise 3 Improve the accuracy by adjusting the frequency ... p. 58
Exercise 4 See if adaptive methods improve the phase ... p. 58
Exercise 5 Use a Taylor polynomial to compute u1 p. 58
Problem 6 Derive and investigate the velocity Verlet ...
Problem 7 Find the largest relevant value of ω∆t p. 59
Exercise 8 Visualize the accuracy of finite differences p. 59
Exercise 9 Verify convergence rates of the error in energy ... p. 59
Exercise 10 Use linear/quadratic functions for verification ... p. 60
Exercise 11 Use an exact discrete solution for verification ... p. 60
Exercise 12 Use analytical solution for convergence rate ... p. 60
Exercise 13 Investigate the amplitude errors of many solvers ... p. 60
Problem 14 Minimize memory usage of a simple vibration ... p. 61
Problem 15 Minimize memory usage of a general vibration ... p. 61
Exercise 16 Implement the Euler-Cromer scheme for the ... p. 62
Problem 17 Interpret [DtDtu]n as a forward-backward ... p. 63
Exercise 18 Analysis of the Euler-Cromer scheme p. 64
Exercise 19 Implement the solver via classes p. 74
Problem 20 Use a backward difference for the damping ... p. 74
Exercise 21 Use the forward-backward scheme with quadratic ... p. 75
Exercise 22 Simulate resonance p. 97
Exercise 23 Simulate oscillations of a sliding box p. 97
Exercise 24 Simulate a bouncing ball p. 98
Exercise 25 Simulate a simple pendulum p. 98
Exercise 26 Simulate an elastic pendulum p. 98
Exercise 27 Simulate an elastic pendulum with air resistance ... p. 100
Exercise 28 Implement the PEFRL algorithm p. 100

4

Vibration problems lead to differential equations with solutions that oscillate
in time, typically in a damped or undamped sinusoidal fashion. Such solutions
put certain demands on the numerical methods compared to other phenomena
whose solutions are monotone or very smooth. Both the frequency and amplitude
of the oscillations need to be accurately handled by the numerical schemes. The
forthcoming text presents a range of different methods, from classical ones
(Runge-Kutta and midpoint/Crank-Nicolson methods), to more modern and
popular symplectic (geometric) integration schemes (Leapfrog, Euler-Cromer,
and Störmer-Verlet methods), but with a clear emphasis on the latter. Vibration
problems occur throughout mechanics and physics, but the methods discussed in
this text are also fundamental for constructing successful algorithms for partial
differential equations of wave nature in multiple spatial dimensions.

1 Finite difference discretization
Many of the numerical challenges faced when computing oscillatory solutions to
ODEs and PDEs can be captured by the very simple ODE u′′+u = 0. This ODE
is thus chosen as our starting point for method development, implementation,
and analysis.

1.1 A basic model for vibrations
The simplest model of a vibrating mechanical system has the following form:

u′′ + ω2u = 0, u(0) = I, u′(0) = 0, t ∈ (0, T] . (1)
Here, ω and I are given constants. Section 12.1 derives (1) from physical
principles and explains what the constants mean.

The exact solution of (1) is

u(t) = I cos(ωt) . (2)
That is, u oscillates with constant amplitude I and angular frequency ω. The
corresponding period of oscillations (i.e., the time between two neighboring
peaks in the cosine function) is P = 2π/ω. The number of periods per second
is f = ω/(2π) and measured in the unit Hz. Both f and ω are referred to as
frequency, but ω is more precisely named angular frequency, measured in rad/s.

In vibrating mechanical systems modeled by (1), u(t) very often represents a
position or a displacement of a particular point in the system. The derivative u′(t)
then has the interpretation of velocity, and u′′(t) is the associated acceleration.
The model (1) is not only applicable to vibrating mechanical systems, but also
to oscillations in electrical circuits.

1.2 A centered finite difference scheme
To formulate a finite difference method for the model problem (1) we follow the
four steps explained in Section ?? in [2].

5

Step 1: Discretizing the domain. The domain is discretized by introducing
a uniformly partitioned time mesh. The points in the mesh are tn = n∆t,
n = 0, 1, . . . , Nt, where ∆t = T/Nt is the constant length of the time steps. We
introduce a mesh function un for n = 0, 1, . . . , Nt, which approximates the exact
solution at the mesh points. (Note that n = 0 is the known initial condition,
so un is identical to the mathematical u at this point.) The mesh function un
will be computed from algebraic equations derived from the differential equation
problem.

Step 2: Fulfilling the equation at discrete time points. The ODE is to
be satisfied at each mesh point where the solution must be found:

u′′(tn) + ω2u(tn) = 0, n = 1, . . . , Nt . (3)

Step 3: Replacing derivatives by finite differences. The derivative
u′′(tn) is to be replaced by a finite difference approximation. A common second-
order accurate approximation to the second-order derivative is

u′′(tn) ≈ un+1 − 2un + un−1

∆t2 . (4)

Inserting (4) in (3) yields

un+1 − 2un + un−1

∆t2 = −ω2un . (5)

We also need to replace the derivative in the initial condition by a finite
difference. Here we choose a centered difference, whose accuracy is similar to
the centered difference we used for u′′:

u1 − u−1

2∆t = 0 . (6)

Step 4: Formulating a recursive algorithm. To formulate the computa-
tional algorithm, we assume that we have already computed un−1 and un, such
that un+1 is the unknown value to be solved for:

un+1 = 2un − un−1 −∆t2ω2un . (7)

The computational algorithm is simply to apply (7) successively for n =
1, 2, . . . , Nt−1. This numerical scheme sometimes goes under the name Störmer’s
method, Verlet integration1, or the Leapfrog method (one should note that
Leapfrog is used for many quite different methods for quite different differential
equations!).

1http://en.wikipedia.org/wiki/Verlet_integration

6

http://en.wikipedia.org/wiki/Verlet_integration

Computing the first step. We observe that (7) cannot be used for n = 0
since the computation of u1 then involves the undefined value u−1 at t = −∆t.
The discretization of the initial condition then comes to our rescue: (6) implies
u−1 = u1 and this relation can be combined with (7) for n = 0 to yield a value
for u1:

u1 = 2u0 − u1 −∆t2ω2u0,

which reduces to

u1 = u0 − 1
2∆t2ω2u0 . (8)

Exercise 5 asks you to perform an alternative derivation and also to generalize
the initial condition to u′(0) = V 6= 0.

The computational algorithm. The steps for solving (1) become

1. u0 = I

2. compute u1 from (8)

3. for n = 1, 2, . . . , Nt − 1: compute un+1 from (7)

The algorithm is more precisely expressed directly in Python:

t = linspace(0, T, Nt+1) # mesh points in time
dt = t[1] - t[0] # constant time step
u = zeros(Nt+1) # solution

u[0] = I
u[1] = u[0] - 0.5*dt**2*w**2*u[0]
for n in range(1, Nt):

u[n+1] = 2*u[n] - u[n-1] - dt**2*w**2*u[n]

Remark on using w for ω in computer code.

In the code, we use w as the symbol for ω. The reason is that the authors
prefer w for readability and comparison with the mathematical ω instead
of the full word omega as variable name.

Operator notation. We may write the scheme using a compact difference
notation (see also Section ?? in [2]). The difference (4) has the operator notation
[DtDtu]n such that we can write:

[DtDtu+ ω2u = 0]n . (9)

7

Note that [DtDtu]n means applying a central difference with step ∆t/2 twice:

[Dt(Dtu)]n = [Dtu]n+ 1
2 − [Dtu]n− 1

2

∆t
which is written out as

1
∆t

(
un+1 − un

∆t − un − un−1

∆t

)
= un+1 − 2un + un−1

∆t2 .

The discretization of initial conditions can in the operator notation be
expressed as

[u = I]0, [D2tu = 0]0, (10)

where the operator [D2tu]n is defined as

[D2tu]n = un+1 − un−1

2∆t . (11)

2 Implementation
2.1 Making a solver function
The algorithm from the previous section is readily translated to a complete
Python function for computing and returning u0, u1, . . . , uNt and t0, t1, . . . , tNt

,
given the input I, ω, ∆t, and T :

import numpy as np
import matplotlib.pyplot as plt

def solver(I, w, dt, T):
"""
Solve u’’ + w**2*u = 0 for t in (0,T], u(0)=I and u’(0)=0,
by a central finite difference method with time step dt.
"""
dt = float(dt)
Nt = int(round(T/dt))
u = np.zeros(Nt+1)
t = np.linspace(0, Nt*dt, Nt+1)

u[0] = I
u[1] = u[0] - 0.5*dt**2*w**2*u[0]
for n in range(1, Nt):

u[n+1] = 2*u[n] - u[n-1] - dt**2*w**2*u[n]
return u, t

We have imported numpy and matplotlib under the names np and plt, respec-
tively, as this is very common in the Python scientific computing community and
a good programming habit (since we explicitly see where the different functions

8

come from). An alternative is to do from numpy import * and a similar “import
all” for Matplotlib to avoid the np and plt prefixes and make the code as close
as possible to MATLAB. (See Section ?? in [2] for a discussion of the two types
of import in Python.)

A function for plotting the numerical and the exact solution is also convenient
to have:

def u_exact(t, I, w):
return I*np.cos(w*t)

def visualize(u, t, I, w):
plt.plot(t, u, ’r--o’)
t_fine = np.linspace(0, t[-1], 1001) # very fine mesh for u_e
u_e = u_exact(t_fine, I, w)
plt.hold(’on’)
plt.plot(t_fine, u_e, ’b-’)
plt.legend([’numerical’, ’exact’], loc=’upper left’)
plt.xlabel(’t’)
plt.ylabel(’u’)
dt = t[1] - t[0]
plt.title(’dt=%g’ % dt)
umin = 1.2*u.min(); umax = -umin
plt.axis([t[0], t[-1], umin, umax])
plt.savefig(’tmp1.png’); plt.savefig(’tmp1.pdf’)

A corresponding main program calling these functions to simulate a given number
of periods (num_periods) may take the form

I = 1
w = 2*pi
dt = 0.05
num_periods = 5
P = 2*pi/w # one period
T = P*num_periods
u, t = solver(I, w, dt, T)
visualize(u, t, I, w, dt)

Adjusting some of the input parameters via the command line can be handy.
Here is a code segment using the ArgumentParser tool in the argparse module
to define option value (–option value) pairs on the command line:

import argparse
parser = argparse.ArgumentParser()
parser.add_argument(’--I’, type=float, default=1.0)
parser.add_argument(’--w’, type=float, default=2*pi)
parser.add_argument(’--dt’, type=float, default=0.05)
parser.add_argument(’--num_periods’, type=int, default=5)
a = parser.parse_args()
I, w, dt, num_periods = a.I, a.w, a.dt, a.num_periods

9

Such parsing of the command line is explained in more detail in Section ?? in
[2].

A typical execution goes like
Terminal

Terminal> python vib_undamped.py --num_periods 20 --dt 0.1

Computing u′. In mechanical vibration applications one is often interested
in computing the velocity v(t) = u′(t) after u(t) has been computed. This can
be done by a central difference,

v(tn) = u′(tn) ≈ vn = un+1 − un−1

2∆t = [D2tu]n . (12)

This formula applies for all inner mesh points, n = 1, . . . , Nt− 1. For n = 0, v(0)
is given by the initial condition on u′(0), and for n = Nt we can use a one-sided,
backward difference:

vn = [D−t u]n = un − un−1

∆t .

Typical (scalar) code is

v = np.zeros_like(u) # or v = np.zeros(len(u))
Use central difference for internal points
for i in range(1, len(u)-1):

v[i] = (u[i+1] - u[i-1])/(2*dt)
Use initial condition for u’(0) when i=0
v[0] = 0
Use backward difference at the final mesh point
v[-1] = (u[-1] - u[-2])/dt

Since the loop is slow for large Nt, we can get rid of the loop by vectorizing
the central difference. The above code segment goes as follows in its vectorized
version (see Problem ?? in [2] for explanation of details):

v = np.zeros_like(u)
v[1:-1] = (u[2:] - u[:-2])/(2*dt) # central difference
v[0] = 0 # boundary condition u’(0)
v[-1] = (u[-1] - u[-2])/dt # backward difference

2.2 Verification
Manual calculation. The simplest type of verification, which is also instruc-
tive for understanding the algorithm, is to compute u1, u2, and u3 with the aid of
a calculator and make a function for comparing these results with those from the
solver function. The test_three_steps function in the file vib_undamped.py2

shows the details of how we use the hand calculations to test the code:
2http://tinyurl.com/nu656p2/vib/vib_undamped.py

10

http://tinyurl.com/nu656p2/vib/vib_undamped.py

def test_three_steps():
from math import pi
I = 1; w = 2*pi; dt = 0.1; T = 1
u_by_hand = np.array([1.000000000000000,

0.802607911978213,
0.288358920740053])

u, t = solver(I, w, dt, T)
diff = np.abs(u_by_hand - u[:3]).max()
tol = 1E-14
assert diff < tol

This function is a proper test function, compliant with the pytest and nose
testing framework for Python code, because

• the function name begins with test_

• the function takes no arguments

• the test is formulated as a boolean condition and executed by assert

See Section ?? in [2] for more details on how to construct test functions and
utilize nose or pytest for automatic execution of tests. Our recommendation is to
use pytest. With this choice, you can run all test functions in vib_undamped.py
by

Terminal

Terminal> py.test -s -v vib_undamped.py
============================= test session starts ======...
platform linux2 -- Python 2.7.9 -- ...
collected 2 items

vib_undamped.py::test_three_steps PASSED
vib_undamped.py::test_convergence_rates PASSED

=========================== 2 passed in 0.19 seconds ===...

Testing very simple polynomial solutions. Constructing test problems
where the exact solution is constant or linear helps initial debugging and verifica-
tion as one expects any reasonable numerical method to reproduce such solutions
to machine precision. Second-order accurate methods will often also reproduce a
quadratic solution. Here [DtDtt

2]n = 2, which is the exact result. A solution
u = t2 leads to u′′+ω2u = 2 + (ωt)2 6= 0. We must therefore add a source in the
equation: u′′ + ω2u = f to allow a solution u = t2 for f = 2 + (ωt)2. By simple
insertion we can show that the mesh function un = t2n is also a solution of the
discrete equations. Problem 1 asks you to carry out all details to show that linear
and quadratic solutions are solutions of the discrete equations. Such results are
very useful for debugging and verification. You are strongly encouraged to do
this problem now!

11

Checking convergence rates. Empirical computation of convergence rates
yields a good method for verification. The method and its computational details
are explained in detail in Section ?? in [2]. Readers not familiar with the concept
should look up this reference before proceeding.

In the present problem, computing convergence rates means that we must

• perform m simulations, halving the time steps as: ∆ti = 2−i∆t0, i =
1, . . . ,m− 1, and ∆ti is the time step used in simulation i;

• compute the L2 norm of the error, Ei =
√

∆ti
∑Nt−1
n=0 (un − ue(tn))2 in

each case;

• estimate the convergence rates ri based on two consecutive experiments
(∆ti−1, Ei−1) and (∆ti, Ei), assuming Ei = C(∆ti)r and Ei−1 = C(∆ti−1)r.
From these equations it follows that r = ln(Ei−1/Ei)/ ln(∆ti−1/∆ti). Since
this r will vary with i, we equip it with an index and call it ri−1, where i
runs from 1 to m− 1.

The computed rates r0, r1, . . . , rm−2 hopefully converge to the number 2 in the
present problem, because theory (from Section 4) shows that the error of the
numerical method we use behaves like ∆t2. The convergence of the sequence
r0, r1, . . . , rm−2 demands that the time steps ∆ti are sufficiently small for the
error model Ei = C(∆ti)r to be valid.

All the implementational details of computing the sequence r0, r1, . . . , rm−2
appear below.

def convergence_rates(m, solver_function, num_periods=8):
"""
Return m-1 empirical estimates of the convergence rate
based on m simulations, where the time step is halved
for each simulation.
solver_function(I, w, dt, T) solves each problem, where T
is based on simulation for num_periods periods.
"""
from math import pi
w = 0.35; I = 0.3 # just chosen values
P = 2*pi/w # period
dt = P/30 # 30 time step per period 2*pi/w
T = P*num_periods

dt_values = []
E_values = []
for i in range(m):

u, t = solver_function(I, w, dt, T)
u_e = u_exact(t, I, w)
E = np.sqrt(dt*np.sum((u_e-u)**2))
dt_values.append(dt)
E_values.append(E)
dt = dt/2

12

r = [np.log(E_values[i-1]/E_values[i])/
np.log(dt_values[i-1]/dt_values[i])
for i in range(1, m, 1)]

return r, E_values, dt_values

The error analysis in Section 4 is quite detailed and suggests that r = 2. It is
also a intuitively reasonable result, since we used a second-order accurate finite
difference approximation [DtDtu]n to the ODE and a second-order accurate
finite difference formula for the initial condition for u′.

In the present problem, when ∆t0 corresponds to 30 time steps per period, the
returned r list has all its values equal to 2.00 (if rounded to two decimals). This
amazingly accurate result means that all ∆ti values are well into the asymptotic
regime where the error model Ei = C(∆ti)r is valid.

We can now construct a proper test function that computes convergence
rates and checks that the final (and usually the best) estimate is sufficiently
close to 2. Here, a rough tolerance of 0.1 is enough. This unit test goes like

def test_convergence_rates():
r, E, dt = convergence_rates(

m=5, solver_function=solver, num_periods=8)
Accept rate to 1 decimal place
tol = 0.1
assert abs(r[-1] - 2.0) < tol
Test that adjusted w obtains 4th order convergence
r, E, dt = convergence_rates(

m=5, solver_function=solver_adjust_w, num_periods=8)
print ’adjust w rates:’, r
assert abs(r[-1] - 4.0) < tol

The complete code appears in the file vib_undamped.py.

Visualizing convergence rates with slope markers. Tony S. Yu has writ-
ten a script plotslopes.py3 that is very useful to indicate the slope of a graph,
especially a graph like lnE = r ln ∆t+lnC arising from the model E = C∆tr. A
copy of the script resides in the src/vib4 directory. Let us use it to compare the
original method for u′′ + ω2u = 0 with the same method applied to the equation
with a modified ω. We make log-log plots of the error versus ∆t. For each curve
we attach a slope marker using the slope_marker((x,y), r) function from
plotslopes.py, where (x,y) is the position of the marker and r and the slope
((r, 1)), here (2,1) and (4,1).

def plot_convergence_rates():
r2, E2, dt2 = convergence_rates(

m=5, solver_function=solver, num_periods=8)
plt.loglog(dt2, E2)

3http://goo.gl/A4Utm7
4http://tinyurl.com/nu656p2/vib

13

http://goo.gl/A4Utm7
http://tinyurl.com/nu656p2/vib

r4, E4, dt4 = convergence_rates(
m=5, solver_function=solver_adjust_w, num_periods=8)

plt.loglog(dt4, E4)
plt.legend([’original scheme’, r’adjusted ω’],

loc=’upper left’)
plt.title(’Convergence of finite difference methods’)
from plotslopes import slope_marker
slope_marker((dt2[1], E2[1]), (2,1))
slope_marker((dt4[1], E4[1]), (4,1))

Figure 1 displays the two curves with the markers. The match of the curve
slope and the marker slope is excellent.

10-2 10-1 10010-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

1
2

1

4

Convergence of finite difference methods

original scheme
adjusted ω

Figure 1: Empirical convergence rate curves with special slope marker.

2.3 Scaled model
It is advantageous to use dimensionless variables in simulations, because fewer
parameters need to be set. The present problem is made dimensionless by
introducing dimensionless variables t̄ = t/tc and ū = u/uc, where tc and uc are
characteristic scales for t and u, respectively. We refer to Section ?? in [3] for
all details about this scaling.

The scaled ODE problem reads

uc
t2c

d2ū

dt̄2
+ ucū = 0, ucū(0) = I,

uc
tc

dū

dt̄
(0) = 0 .

A common choice is to take tc as one period of the oscillations, tc = 2π/w, and
uc = I. This gives the dimensionless model

d2ū

dt̄2
+ 4π2ū = 0, ū(0) = 1, ū′(0) = 0 . (13)

14

Observe that there are no physical parameters in (13)! We can therefore perform
a single numerical simulation ū(t̄) and afterwards recover any u(t;ω, I) by

u(t;ω, I) = ucū(t/tc) = Iū(ωt/(2π)) .

We can easily check this assertion: the solution of the scaled problem is
ū(t̄) = cos(2πt̄). The formula for u in terms of ū gives u = I cos(ωt), which is
nothing but the solution of the original problem with dimensions.

The scaled model can by run by calling solver(I=1, w=2*pi, dt, T). Each
period is now 1 and T simply counts the number of periods. Choosing dt as
1./M gives M time steps per period.

3 Visualization of long time simulations
Figure 2 shows a comparison of the exact and numerical solution for the scaled
model (13) with ∆t = 0.1, 0.05. From the plot we make the following observations:

• The numerical solution seems to have correct amplitude.

• There is an angular frequency error which is reduced by decreasing the
time step.

• The total angular frequency error grows with time.

By angular frequency error we mean that the numerical angular frequency differs
from the exact ω. This is evident by looking at the peaks of the numerical
solution: these have incorrect positions compared with the peaks of the exact
cosine solution. The effect can be mathematically expressed by writing the
numerical solution as I cos ω̃t, where ω̃ is not exactly equal to ω. Later, we shall
mathematically quantify this numerical angular frequency ω̃.

0 1 2 3 4 5
t

1.0

0.5

0.0

0.5

1.0

u

dt=0.1

numerical
exact

0 1 2 3 4 5
t

1.0

0.5

0.0

0.5

1.0

u

dt=0.05

numerical
exact

Figure 2: Effect of halving the time step.

15

3.1 Using a moving plot window
In vibration problems it is often of interest to investigate the system’s behavior
over long time intervals. Errors in the angular frequency accumulate and become
more visible as time grows. We can investigate long time series by introducing a
moving plot window that can move along with the p most recently computed
periods of the solution. The SciTools5 package contains a convenient tool for
this: MovingPlotWindow. Typing pydoc scitools.MovingPlotWindow shows
a demo and a description of its use. The function below utilizes the moving plot
window and is in fact called by the main function in the vib_undamped module
if the number of periods in the simulation exceeds 10.

def visualize_front(u, t, I, w, savefig=False, skip_frames=1):
"""
Visualize u and the exact solution vs t, using a
moving plot window and continuous drawing of the
curves as they evolve in time.
Makes it easy to plot very long time series.
Plots are saved to files if savefig is True.
Only each skip_frames-th plot is saved (e.g., if
skip_frame=10, only each 10th plot is saved to file;
this is convenient if plot files corresponding to
different time steps are to be compared).
"""
import scitools.std as st
from scitools.MovingPlotWindow import MovingPlotWindow
from math import pi

Remove all old plot files tmp_*.png
import glob, os
for filename in glob.glob(’tmp_*.png’):

os.remove(filename)

P = 2*pi/w # one period
umin = 1.2*u.min(); umax = -umin
dt = t[1] - t[0]
plot_manager = MovingPlotWindow(

window_width=8*P,
dt=dt,
yaxis=[umin, umax],
mode=’continuous drawing’)

frame_counter = 0
for n in range(1,len(u)):

if plot_manager.plot(n):
s = plot_manager.first_index_in_plot
st.plot(t[s:n+1], u[s:n+1], ’r-1’,

t[s:n+1], I*cos(w*t)[s:n+1], ’b-1’,
title=’t=%6.3f’ % t[n],

5https://github.com/hplgit/scitools

16

https://github.com/hplgit/scitools

axis=plot_manager.axis(),
show=not savefig) # drop window if savefig

if savefig and n % skip_frames == 0:
filename = ’tmp_%04d.png’ % frame_counter
st.savefig(filename)
print ’making plot file’, filename, ’at t=%g’ % t[n]
frame_counter += 1

plot_manager.update(n)

We run the scaled problem (the default values for the command-line arguments
–I and –w correspond to the scaled problem) for 40 periods with 20 time steps
per period:

Terminal

Terminal> python vib_undamped.py --dt 0.05 --num_periods 40

The moving plot window is invoked, and we can follow the numerical and exact
solutions as time progresses. From this demo we see that the angular frequency
error is small in the beginning, and that it becomes more prominent with time.
A new run with ∆t = 0.1 (i.e., only 10 time steps per period) clearly shows that
the phase errors become significant even earlier in the time series, deteriorating
the solution further.

3.2 Making animations
Producing standard video formats. The visualize_front function stores
all the plots in files whose names are numbered: tmp_0000.png, tmp_0001.png,
tmp_0002.png, and so on. From these files we may make a movie. The Flash
format is popular,

Terminal

Terminal> ffmpeg -r 25 -i tmp_%04d.png -c:v flv movie.flv

The ffmpeg program can be replaced by the avconv program in the above
command if desired (but at the time of this writing it seems to be more momentum
in the ffmpeg project). The -r option should come first and describes the number
of frames per second in the movie (even if we would like to have slow movies,
keep this number as large as 25, otherwise files are skipped from the movie). The
-i option describes the name of the plot files. Other formats can be generated by
changing the video codec and equipping the video file with the right extension:

Format Codec and filename
Flash -c:v flv movie.flv
MP4 -c:v libx264 movie.mp4
WebM -c:v libvpx movie.webm
Ogg -c:v libtheora movie.ogg

17

The video file can be played by some video player like vlc, mplayer, gxine,
or totem, e.g.,

Terminal

Terminal> vlc movie.webm

A web page can also be used to play the movie. Today’s standard is to use the
HTML5 video tag:

<video autoplay loop controls
width=’640’ height=’365’ preload=’none’>

<source src=’movie.webm’ type=’video/webm; codecs="vp8, vorbis"’>
</video>

Modern browsers do not support all of the video formats. MP4 is needed to
successfully play the videos on Apple devices that use the Safari browser. WebM
is the preferred format for Chrome, Opera, Firefox, and Internet Explorer v9+.
Flash was a popular format, but older browsers that required Flash can play
MP4. All browsers that work with Ogg can also work with WebM. This means
that to have a video work in all browsers, the video should be available in the
MP4 and WebM formats. The proper HTML code reads

<video autoplay loop controls
width=’640’ height=’365’ preload=’none’>

<source src=’movie.mp4’ type=’video/mp4;
codecs="avc1.42E01E, mp4a.40.2"’>

<source src=’movie.webm’ type=’video/webm;
codecs="vp8, vorbis"’>

</video>

The MP4 format should appear first to ensure that Apple devices will load the
video correctly.

Caution: number the plot files correctly.

To ensure that the individual plot frames are shown in correct order, it
is important to number the files with zero-padded numbers (0000, 0001,
0002, etc.). The printf format %04d specifies an integer in a field of width 4,
padded with zeros from the left. A simple Unix wildcard file specification
like tmp_*.png will then list the frames in the right order. If the numbers
in the filenames were not zero-padded, the frame tmp_11.png would appear
before tmp_2.png in the movie.

Playing PNG files in a web browser. The scitools movie command can
create a movie player for a set of PNG files such that a web browser can be

18

used to watch the movie. This interface has the advantage that the speed of the
movie can easily be controlled, a feature that scientists often appreciate. The
command for creating an HTML with a player for a set of PNG files tmp_*.png
goes like

Terminal

Terminal> scitools movie output_file=vib.html fps=4 tmp_*.png

The fps argument controls the speed of the movie (“frames per second”).
To watch the movie, load the video file vib.html into some browser, e.g.,

Terminal

Terminal> google-chrome vib.html # invoke web page

Clicking on Start movie to see the result. Moving this movie to some other
place requires moving vib.html and all the PNG files tmp_*.png:

Terminal

Terminal> mkdir vib_dt0.1
Terminal> mv tmp_*.png vib_dt0.1
Terminal> mv vib.html vib_dt0.1/index.html

Making animated GIF files. The convert program from the ImageMagick
software suite can be used to produce animated GIF files from a set of PNG
files:

Terminal

Terminal> convert -delay 25 tmp_vib*.png tmp_vib.gif

The -delay option needs an argument of the delay between each frame, measured
in 1/100 s, so 4 frames/s here gives 25/100 s delay. Note, however, that in this
particular example with ∆t = 0.05 and 40 periods, making an animated GIF file
out of the large number of PNG files is a very heavy process and not considered
feasible. Animated GIFs are best suited for animations with not so many frames
and where you want to see each frame and play them slowly.

3.3 Using Bokeh to compare graphs
Instead of a moving plot frame, one can use tools that allow panning by the
mouse. For example, we can show four periods of several signals in several plots
and then scroll with the mouse through the rest of the simulation simultaneously
in all the plot windows. The Bokeh6 plotting library offers such tools, but the
plots must be displayed in a web browser. The documentation of Bokeh is
excellent, so here we just show how the library can be used to compare a set of

6http://bokeh.pydata.org/en/latest/docs/quickstart.html

19

http://bokeh.pydata.org/en/latest/docs/quickstart.html

u curves corresponding to long time simulations. (By the way, the guidance to
correct pronunciation of Bokeh in the documentation7 and on Wikipedia8 is not
directly compatible with a YouTube video9...).

Imagine we have performed experiments for a set of ∆t values. We want each
curve, together with the exact solution, to appear in a plot, and then arrange all
plots in a grid-like fashion:

Furthermore, we want the axes to couple such that if we move into the future
in one plot, all the other plots follows (note the displaced t axes!):

A function for creating a Bokeh plot, given a list of u arrays and corresponding
t arrays, is implemented below. The code combines data fro different simulations,
described compactly in a list of strings legends.

7http://bokeh.pydata.org/en/0.10.0/docs/faq.html#how-do-you-pronounce-bokeh
8https://en.wikipedia.org/wiki/Bokeh
9https://www.youtube.com/watch?v=OR8HSHevQTM

20

http://bokeh.pydata.org/en/0.10.0/docs/faq.html#how-do-you-pronounce-bokeh
https://en.wikipedia.org/wiki/Bokeh
https://www.youtube.com/watch?v=OR8HSHevQTM

def bokeh_plot(u, t, legends, I, w, t_range, filename):
"""
Make plots for u vs t using the Bokeh library.
u and t are lists (several experiments can be compared).
legens contain legend strings for the various u,t pairs.
"""
if not isinstance(u, (list,tuple)):

u = [u] # wrap in list
if not isinstance(t, (list,tuple)):

t = [t] # wrap in list
if not isinstance(legends, (list,tuple)):

legends = [legends] # wrap in list

import bokeh.plotting as plt
plt.output_file(filename, mode=’cdn’, title=’Comparison’)
Assume that all t arrays have the same range
t_fine = np.linspace(0, t[0][-1], 1001) # fine mesh for u_e
tools = ’pan,wheel_zoom,box_zoom,reset,’\

’save,box_select,lasso_select’
u_range = [-1.2*I, 1.2*I]
font_size = ’8pt’
p = [] # list of plot objects
Make the first figure
p_ = plt.figure(

width=300, plot_height=250, title=legends[0],
x_axis_label=’t’, y_axis_label=’u’,
x_range=t_range, y_range=u_range, tools=tools,
title_text_font_size=font_size)

p_.xaxis.axis_label_text_font_size=font_size
p_.yaxis.axis_label_text_font_size=font_size
p_.line(t[0], u[0], line_color=’blue’)
Add exact solution
u_e = u_exact(t_fine, I, w)
p_.line(t_fine, u_e, line_color=’red’, line_dash=’4 4’)
p.append(p_)
Make the rest of the figures and attach their axes to
the first figure’s axes
for i in range(1, len(t)):

p_ = plt.figure(
width=300, plot_height=250, title=legends[i],
x_axis_label=’t’, y_axis_label=’u’,
x_range=p[0].x_range, y_range=p[0].y_range, tools=tools,
title_text_font_size=font_size)

p_.xaxis.axis_label_text_font_size = font_size
p_.yaxis.axis_label_text_font_size = font_size
p_.line(t[i], u[i], line_color=’blue’)
p_.line(t_fine, u_e, line_color=’red’, line_dash=’4 4’)
p.append(p_)

Arrange all plots in a grid with 3 plots per row

21

grid = [[]]
for i, p_ in enumerate(p):

grid[-1].append(p_)
if (i+1) % 3 == 0:

New row
grid.append([])

plot = plt.gridplot(grid, toolbar_location=’left’)
plt.save(plot)
plt.show(plot)

A particular example using the bokeh_plot function appears below.

def demo_bokeh():
"""Solve a scaled ODE u’’ + u = 0."""
from math import pi
w = 1.0 # Scaled problem (frequency)
P = 2*np.pi/w # Period
num_steps_per_period = [5, 10, 20, 40, 80]
T = 40*P # Simulation time: 40 periods
u = [] # List of numerical solutions
t = [] # List of corresponding meshes
legends = []
for n in num_steps_per_period:

dt = P/n
u_, t_ = solver(I=1, w=w, dt=dt, T=T)
u.append(u_)
t.append(t_)
legends.append(’# time steps per period: %d’ % n)

bokeh_plot(u, t, legends, I=1, w=w, t_range=[0, 4*P],
filename=’tmp.html’)

3.4 Using a line-by-line ascii plotter
Plotting functions vertically, line by line, in the terminal window using ascii char-
acters only is a simple, fast, and convenient visualization technique for long time
series. Note that the time axis then is positive downwards on the screen, so we can
let the solution be visualized “forever”. The tool scitools.avplotter.Plotter
makes it easy to create such plots:

def visualize_front_ascii(u, t, I, w, fps=10):
"""
Plot u and the exact solution vs t line by line in a
terminal window (only using ascii characters).
Makes it easy to plot very long time series.
"""
from scitools.avplotter import Plotter
import time
from math import pi
P = 2*pi/w
umin = 1.2*u.min(); umax = -umin

22

p = Plotter(ymin=umin, ymax=umax, width=60, symbols=’+o’)
for n in range(len(u)):

print p.plot(t[n], u[n], I*cos(w*t[n])), \
’%.1f’ % (t[n]/P)

time.sleep(1/float(fps))

The call p.plot returns a line of text, with the t axis marked and a symbol +
for the first function (u) and o for the second function (the exact solution). Here
we append to this text a time counter reflecting how many periods the current
time point corresponds to. A typical output (ω = 2π, ∆t = 0.05) looks like this:

| o+ 14.0
| + o 14.0
| + o 14.1
| + o 14.1
| + o 14.2

+| o 14.2
+ | 14.2

+ o | 14.3
+ o | 14.4

+ o | 14.4
+o | 14.5
o + | 14.5
o + | 14.6

o + | 14.6
o + | 14.7

o | + 14.7
| + 14.8
| o + 14.8
| o + 14.9
| o + 14.9
| o+ 15.0

3.5 Empirical analysis of the solution
For oscillating functions like those in Figure 2 we may compute the amplitude
and frequency (or period) empirically. That is, we run through the discrete
solution points (tn, un) and find all maxima and minima points. The distance
between two consecutive maxima (or minima) points can be used as estimate of
the local period, while half the difference between the u value at a maximum
and a nearby minimum gives an estimate of the local amplitude.

The local maxima are the points where

un−1 < un > un+1, n = 1, . . . , Nt − 1, (14)

and the local minima are recognized by

un−1 > un < un+1, n = 1, . . . , Nt − 1 . (15)

23

In computer code this becomes

def minmax(t, u):
minima = []; maxima = []
for n in range(1, len(u)-1, 1):

if u[n-1] > u[n] < u[n+1]:
minima.append((t[n], u[n]))

if u[n-1] < u[n] > u[n+1]:
maxima.append((t[n], u[n]))

return minima, maxima

Note that the two returned objects are lists of tuples.
Let (ti, ei), i = 0, . . . ,M − 1, be the sequence of all the M maxima points,

where ti is the time value and ei the corresponding u value. The local period
can be defined as pi = ti+1 − ti. With Python syntax this reads

def periods(maxima):
p = [extrema[n][0] - maxima[n-1][0]

for n in range(1, len(maxima))]
return np.array(p)

The list p created by a list comprehension is converted to an array since we
probably want to compute with it, e.g., find the corresponding frequencies
2*pi/p.

Having the minima and the maxima, the local amplitude can be calculated
as the difference between two neighboring minimum and maximum points:

def amplitudes(minima, maxima):
a = [(abs(maxima[n][1] - minima[n][1]))/2.0

for n in range(min(len(minima),len(maxima)))]
return np.array(a)

The code segments are found in the file vib_empirical_analysis.py10.
Since a[i] and p[i] correspond to the i-th amplitude estimate and the

i-th period estimate, respectively, it is most convenient to visualize the a and p
values with the index i on the horizontal axis. (There is no unique time point
associated with either of these estimate since values at two different time points
were used in the computations.)

In the analysis of very long time series, it is advantageous to compute and plot
p and a instead of u to get an impression of the development of the oscillations.
Let us do this for the scaled problem and ∆t = 0.1, 0.05, 0.01. A ready-made
function

plot_empirical_freq_and_amplitude(u, t, I, w)

computes the empirical amplitudes and periods, and creates a plot where the
amplitudes and angular frequencies are visualized together with the exact am-
plitude I and the exact angular frequency w. We can make a little program for
creating the plot:

10http://tinyurl.com/nu656p2/vib/vib_empirical_analysis.py

24

http://tinyurl.com/nu656p2/vib/vib_empirical_analysis.py

from vib_undamped import solver, plot_empirical_freq_and_amplitude
from math import pi
dt_values = [0.1, 0.05, 0.01]
u_cases = []
t_cases = []
for dt in dt_values:

Simulate scaled problem for 40 periods
u, t = solver(I=1, w=2*pi, dt=dt, T=40)
u_cases.append(u)
t_cases.append(t)

plot_empirical_freq_and_amplitude(u_cases, t_cases, I=1, w=2*pi)

Figure 3 shows the result: we clearly see that lowering ∆t improves the angular
frequency significantly, while the amplitude seems to be more accurate. The
lines with ∆t = 0.01, corresponding to 100 steps per period, can hardly be
distinguished from the exact values. The next section shows how we can get
mathematical insight into why amplitudes are good while frequencies are more
inaccurate.

0 5 10 15 20 25 30 35

5.5

6.0

6.5

7.0

7.5

frequency, case1
frequency, case2
frequency, case3
exact frequency

0 5 10 15 20 25 30 35
0.80

0.85

0.90

0.95

1.00

1.05

1.10

1.15

1.20

amplitude, case1
amplitude, case2
amplitude, case3
exact amplitude

Figure 3: Empirical angular frequency (left) and amplitude (right) for three
different time steps.

4 Analysis of the numerical scheme
4.1 Deriving a solution of the numerical scheme
After having seen the phase error grow with time in the previous section, we
shall now quantify this error through mathematical analysis. The key tool in
the analysis will be to establish an exact solution of the discrete equations.
The difference equation (7) has constant coefficients and is homogeneous. Such
equations are known to have solutions on the form un = CAn, where A is some
number to be determined from the difference equation and C is found as the
initial condition (C = I). Recall that n in un is a superscript labeling the time
level, while n in An is an exponent.

25

With oscillating functions as solutions, the algebra will be considerably
simplified if we seek an A on the form

A = eiω̃∆t,

and solve for the numerical frequency ω̃ rather than A. Note that i =
√
−1 is the

imaginary unit. (Using a complex exponential function gives simpler arithmetics
than working with a sine or cosine function.) We have

An = eiω̃∆t n = eiω̃tn = cos(ω̃tn) + i sin(ω̃tn) .

The physically relevant numerical solution can be taken as the real part of this
complex expression.

The calculations go as

[DtDtu]n = un+1 − 2un + un−1

∆t2

= I
An+1 − 2An +An−1

∆t2

= I

∆t2 (eiω̃(tn+∆t) − 2eiω̃tn + eiω̃(tn−∆t))

= Ieiω̃tn
1

∆t2
(
eiω̃∆t + eiω̃(−∆t) − 2

)
= Ieiω̃tn

2
∆t2 (cosh(iω̃∆t)− 1)

= Ieiω̃tn
2

∆t2 (cos(ω̃∆t)− 1)

= −Ieiω̃tn 4
∆t2 sin2(ω̃∆t

2)

The last line follows from the relation cosx− 1 = −2 sin2(x/2) (try cos(x)-1
in wolframalpha.com11 to see the formula).

The scheme (7) with un = Ieiω̃∆t n inserted now gives

− Ieiω̃tn 4
∆t2 sin2(ω̃∆t

2) + ω2Ieiω̃tn = 0, (16)

which after dividing by Ieiω̃tn results in

4
∆t2 sin2(ω̃∆t

2) = ω2 . (17)

The first step in solving for the unknown ω̃ is

sin2(ω̃∆t
2) =

(
ω∆t

2

)2
.

11http://www.wolframalpha.com

26

http://www.wolframalpha.com

Then, taking the square root, applying the inverse sine function, and multiplying
by 2/∆t, results in

ω̃ = ± 2
∆t sin−1

(
ω∆t

2

)
. (18)

4.2 The error in the numerical frequency
The first observation of (18) tells that there is a phase error since the numer-
ical frequency ω̃ never equals the exact frequency ω. But how good is the
approximation (18)? That is, what is the error ω − ω̃ or ω̃/ω? Taylor series
expansion for small ∆t may give an expression that is easier to understand than
the complicated function in (18):

>>> from sympy import *
>>> dt, w = symbols(’dt w’)
>>> w_tilde_e = 2/dt*asin(w*dt/2)
>>> w_tilde_series = w_tilde_e.series(dt, 0, 4)
>>> print w_tilde_series
w + dt**2*w**3/24 + O(dt**4)

This means that

ω̃ = ω

(
1 + 1

24ω
2∆t2

)
+O(∆t4) . (19)

The error in the numerical frequency is of second-order in ∆t, and the error
vanishes as ∆t→ 0. We see that ω̃ > ω since the term ω3∆t2/24 > 0 and this
is by far the biggest term in the series expansion for small ω∆t. A numerical
frequency that is too large gives an oscillating curve that oscillates too fast and
therefore “lags behind” the exact oscillations, a feature that can be seen in the
left plot in Figure 2.

Figure 4 plots the discrete frequency (18) and its approximation (19) for
ω = 1 (based on the program vib_plot_freq.py12). Although ω̃ is a function
of ∆t in (19), it is misleading to think of ∆t as the important discretization
parameter. It is the product ω∆t that is the key discretization parameter. This
quantity reflects the number of time steps per period of the oscillations. To see
this, we set P = NP∆t, where P is the length of a period, and NP is the number
of time steps during a period. Since P and ω are related by P = 2π/ω, we get
that ω∆t = 2π/NP , which shows that ω∆t is directly related to NP .

The plot shows that at least NP ∼ 25− 30 points per period are necessary
for reasonable accuracy, but this depends on the length of the simulation (T) as
the total phase error due to the frequency error grows linearly with time (see
Exercise 2).

4.3 Empirical convergence rates and adjusted ω

The expression (19) suggest that adjusting omega to
12http://tinyurl.com/nu656p2/vib/vib_plot_freq.py

27

http://tinyurl.com/nu656p2/vib/vib_plot_freq.py

0 5 10 15 20 25 30 35
no of time steps per period

1.0

1.1

1.2

1.3

1.4

1.5

1.6

nu
m

er
ic

al
 fr

eq
ue

nc
y

exact discrete frequency
2nd-order expansion

Figure 4: Exact discrete frequency and its second-order series expansion.

ω

(
1− 1

24ω
2∆t2

)
,

could have effect on the convergence rate of the global error in u (cf. Sec-
tion 2.2). With the convergence_rates function in vib_undamped.py we can
easily check this. A special solver, with adjusted w, is available as the function
solver_adjust_w. A call to convergence_rates with this solver reveals that
the rate is 4.0! With the original, physical ω the rate is 2.0 - as expected
from using second-order finite difference approximations, as expected from the
forthcoming derivation of the global error, and as expected from truncation error
analysis analysis.

Adjusting ω is an ideal trick for this simple problem, but when adding
damping and nonlinear terms, we have no simple formula for the impact on ω,
and therefore we cannot use the trick.

4.4 Exact discrete solution
Perhaps more important than the ω̃ = ω+O(∆t2) result found above is the fact
that we have an exact discrete solution of the problem:

un = I cos (ω̃n∆t) , ω̃ = 2
∆t sin−1

(
ω∆t

2

)
. (20)

28

We can then compute the error mesh function

en = ue(tn)− un = I cos (ωn∆t)− I cos (ω̃n∆t) . (21)
From the formula cos 2x− cos 2y = −2 sin(x− y) sin(x+ y) we can rewrite en so
the expression is easier to interpret:

en = −2I sin
(
t
1
2 (ω − ω̃)

)
sin
(
t
1
2 (ω + ω̃)

)
. (22)

The error mesh function is ideal for verification purposes and you are strongly
encouraged to make a test based on (20) by doing Exercise 11.

4.5 Convergence
We can use (19), (21), or (22) to show convergence of the numerical scheme, i.e.,
en → 0 as ∆t → 0, which implies that the numerical solution approaches the
exact solution as ∆t approaches to zero. We have that

lim
∆t→0

ω̃ = lim
∆t→0

2
∆t sin−1

(
ω∆t

2

)
= ω,

by L’Hopital’s rule. This result could also been computed WolframAlpha13, or
we could use the limit functionality in sympy:

>>> import sympy as sym
>>> dt, w = sym.symbols(’x w’)
>>> sym.limit((2/dt)*sym.asin(w*dt/2), dt, 0, dir=’+’)
w

Also (19) can be used to establish that ω̃ → ω when ∆t → 0. It then follows
from the expression(s) for en that en → 0.

4.6 The global error
To achieve more analytical insight into the nature of the global error, we can
Taylor expand the error mesh function (21). Since ω̃ in (18) contains ∆t in the
denominator we use the series expansion for ω̃ inside the cosine function. A
relevant sympy session is

>>> from sympy import *
>>> dt, w, t = symbols(’dt w t’)
>>> w_tilde_e = 2/dt*asin(w*dt/2)
>>> w_tilde_series = w_tilde_e.series(dt, 0, 4)
>>> w_tilde_series
w + dt**2*w**3/24 + O(dt**4)

Series expansions in sympy have the inconvenient O() term that prevents further
calculations with the series. We can use the removeO() command to get rid of
the O() term:

13http://www.wolframalpha.com/input/?i=%282%2Fx%29*asin%28w*x%2F2%29+as+x-%3E0

29

http://www.wolframalpha.com/input/?i=%282%2Fx%29*asin%28w*x%2F2%29+as+x-%3E0

>>> w_tilde_series = w_tilde_series.removeO()
>>> w_tilde_series
dt**2*w**3/24 + w

Using this w_tilde_series expression for w̃ in (21), dropping I (which is a
common factor), and performing a series expansion of the error yields

>>> error = cos(w*t) - cos(w_tilde_series*t)
>>> error.series(dt, 0, 6)
dt**2*t*w**3*sin(t*w)/24 + dt**4*t**2*w**6*cos(t*w)/1152 + O(dt**6)

Since we are mainly interested in the leading-order term in such expansions
(the term with lowest power in ∆t, which goes most slowly to zero), we use the
.as_leading_term(dt) construction to pick out this term:

>>> error.series(dt, 0, 6).as_leading_term(dt)
dt**2*t*w**3*sin(t*w)/24

The last result means that the leading order global (true) error at a point
t is proportional to ω3t∆t2. Considering only the discrete tn values for t, tn is
related to ∆t through tn = n∆t. The factor sin(ωt) can at most be 1, so we use
this value to bound the leading-order expression to its maximum value

en = 1
24nω

3∆t3 .

This is the dominating term of the error at a point.
We are interested in the accumulated global error, which can be taken as the

`2 norm of en. The norm is simply computed by summing contributions from
all mesh points:

||en||2`2 = ∆t
Nt∑
n=0

1
242n

2ω6∆t6 = 1
242ω

6∆t7
Nt∑
n=0

n2 .

The sum
∑Nt

n=0 n
2 is approximately equal to 1

3N
3
t . Replacing Nt by T/∆t and

taking the square root gives the expression

||en||`2 = 1
24

√
T 3

3 ω3∆t2 .

This is our expression for the global (or integrated) error. A primary result from
this expression is that the global error is proportional to ∆t2.

4.7 Stability
Looking at (20), it appears that the numerical solution has constant and correct
amplitude, but an error in the angular frequency. A constant amplitude is
not necessarily the case, however! To see this, note that if only ∆t is large
enough, the magnitude of the argument to sin−1 in (18) may be larger than 1,
i.e., ω∆t/2 > 1. In this case, sin−1(ω∆t/2) has a complex value and therefore ω̃

30

becomes complex. Type, for example, asin(x) in wolframalpha.com14 to see
basic properties of sin−1(x)).

A complex ω̃ can be written ω̃ = ω̃r + iω̃i. Since sin−1(x) has a negative
imaginary part for x > 1, ω̃i < 0, which means that eiω̃t = e−ω̃iteiω̃rt will lead to
exponential growth in time because e−ω̃it with ω̃i < 0 has a positive exponent.

Stability criterion.

We do not tolerate growth in the amplitude since such growth is not present
in the exact solution. Therefore, we must impose a stability criterion so
that the argument in the inverse sine function leads to real and not complex
values of ω̃. The stability criterion reads

ω∆t
2 ≤ 1 ⇒ ∆t ≤ 2

ω
. (23)

With ω = 2π, ∆t > π−1 = 0.3183098861837907 will give growing solutions.
Figure 5 displays what happens when ∆t = 0.3184, which is slightly above the
critical value: ∆t = π−1 + 9.01 · 10−5.

Figure 5: Growing, unstable solution because of a time step slightly beyond the
stability limit.

14http://www.wolframalpha.com

31

http://www.wolframalpha.com

4.8 About the accuracy at the stability limit
An interesting question is whether the stability condition ∆t < 2/ω is unfortunate,
or more precisely: would it be meaningful to take larger time steps to speed
up computations? The answer is a clear no. At the stability limit, we have
that sin−1 ω∆t/2 = sin−1 1 = π/2, and therefore ω̃ = π/∆t. (Note that the
approximate formula (19) is very inaccurate for this value of ∆t as it predicts
ω̃ = 2.34/pi, which is a 25 percent reduction.) The corresponding period of
the numerical solution is P̃ = 2π/ω̃ = 2∆t, which means that there is just one
time step ∆t between a peak (maximum) and a through15 (minimum) in the
numerical solution. This is the shortest possible wave that can be represented in
the mesh! In other words, it is not meaningful to use a larger time step than the
stability limit.

Also, the error in angular frequency when ∆t = 2/ω is severe: Figure 6
shows a comparison of the numerical and analytical solution with ω = 2π and
∆t = 2/ω = π−1. Already after one period, the numerical solution has a through
while the exact solution has a peak (!). The error in frequency when ∆t is at the
stability limit becomes ω − ω̃ = ω(1− π/2) ≈ −0.57ω. The corresponding error
in the period is P − P̃ ≈ 0.36P . The error after m periods is then 0.36mP . This
error has reached half a period when m = 1/(2 · 0.36) ≈ 1.38, which theoretically
confirms the observations in Figure 6 that the numerical solution is a through
ahead of a peak already after one and a half period. Consequently, ∆t should
be chosen much less than the stability limit to achieve meaningful numerical
computations.

Summary.

From the accuracy and stability analysis we can draw three important
conclusions:

1. The key parameter in the formulas is p = ω∆t. The period of
oscillations is P = 2π/ω, and the number of time steps per period is
NP = P/∆t. Therefore, p = ω∆t = 2π/NP , showing that the critical
parameter is the number of time steps per period. The smallest
possible NP is 2, showing that p ∈ (0, π].

2. Provided p ≤ 2, the amplitude of the numerical solution is constant.

3. The ratio of the numerical angular frequency and the exact one is
ω̃/ω ≈ 1 + 1

24p
2. The error 1

24p
2 leads to wrongly displaced peaks of

the numerical solution, and the error in peak location grows linearly
with time (see Exercise 2).

15https://simple.wikipedia.org/wiki/Wave_(physics)

32

https://simple.wikipedia.org/wiki/Wave_(physics)

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
t

1.0

0.5

0.0

0.5

1.0

u
dt=0.31831

numerical
exact

Figure 6: Numerical solution with ∆t exactly at the stability limit.

5 Alternative schemes based on 1st-order equa-
tions

A standard technique for solving second-order ODEs is to rewrite them as a
system of first-order ODEs and then choose a solution strategy from the vast
collection of methods for first-order ODE systems. Given the second-order ODE
problem

u′′ + ω2u = 0, u(0) = I, u′(0) = 0,

we introduce the auxiliary variable v = u′ and express the ODE problem in
terms of first-order derivatives of u and v:

u′ = v, (24)
v′ = −ω2u . (25)

The initial conditions become u(0) = I and v(0) = 0.

5.1 The Forward Euler scheme
A Forward Euler approximation to our 2× 2 system of ODEs (24)-(25) becomes

33

[D+
t u = v]n, (26)

[D+
t v = −ω2u]n, (27)

or written out,

un+1 = un + ∆tvn, (28)
vn+1 = vn −∆tω2un . (29)

Let us briefly compare this Forward Euler method with the centered difference
scheme for the second-order differential equation. We have from (28) and (29)
applied at levels n and n− 1 that

un+1 = un + ∆tvn = un + ∆t(vn−1 −∆tω2un−1) .

Since from (28)
vn−1 = 1

∆t (u
n − un−1),

it follows that

un+1 = 2un − un−1 −∆t2ω2un−1,

which is very close to the centered difference scheme, but the last term is
evaluated at tn−1 instead of tn. Rewriting, so that ∆t2ω2un−1 appears alone
on the right-hand side, and then dividing by ∆t2, the new left-hand side is an
approximation to u′′ at tn, while the right-hand side is sampled at tn−1. All
terms should be sampled at the same mesh point, so using ω2un−1 instead of
ω2un points to a kind of mathematical error in the derivation of the scheme.
This error turns out to be rather crucial for the accuracy of the Forward Euler
method applied to vibration problems (Section 5.4 has examples).

The reasoning above does not imply that the Forward Euler scheme is not
correct, but more that it is almost equivalent to a second-order accurate scheme
for the second-order ODE formulation, and that the error committed has to do
with a wrong sampling point.

5.2 The Backward Euler scheme
A Backward Euler approximation to the ODE system is equally easy to write
up in the operator notation:

[D−t u = v]n+1, (30)
[D−t v = −ωu]n+1 . (31)

This becomes a coupled system for un+1 and vn+1:

34

un+1 −∆tvn+1 = un, (32)
vn+1 + ∆tω2un+1 = vn . (33)

We can compare (32)-(33) with the centered scheme (7) for the second-order
differential equation. To this end, we eliminate vn+1 in (32) using (33) solved
with respect to vn+1. Thereafter, we eliminate vn using (32) solved with respect
to vn+1 and also replacing n+ 1 by n and n by n− 1. The resulting equation
involving only un+1, un, and un−1 can be ordered as

un+1 − 2un + un−1

∆t2 = −ω2un+1,

which has almost the same form as the centered scheme for the second-order
differential equation, but the right-hand side is evaluated at un+1 and not un.
This inconsistent sampling of terms has a dramatic effect on the numerical
solution, as we demonstrate in Section 5.4.

5.3 The Crank-Nicolson scheme
The Crank-Nicolson scheme takes this form in the operator notation:

[Dtu = vt]n+ 1
2 , (34)

[Dtv = −ω2ut]n+ 1
2 . (35)

Writing the equations out and rearranging terms, shows that this is also a coupled
system of two linear equations at each time level:

un+1 − 1
2∆tvn+1 = un + 1

2∆tvn, (36)

vn+1 + 1
2∆tω2un+1 = vn − 1

2∆tω2un . (37)

We may compare also this scheme to the centered discretization of the second-
order ODE. It turns out that the Crank-Nicolson scheme is equivalent to the
discretization

un+1 − 2un + un−1

∆t2 = −ω2 1
4(un+1 + 2un + un−1) = −ω2un +O(∆t2) . (38)

That is, the Crank-Nicolson is equivalent to (7) for the second-order ODE, apart
from an extra term of size ∆t2, but this is an error of the same order as in the
finite difference approximation on the left-hand side of the equation anyway. The
fact that the Crank-Nicolson scheme is so close to (7) makes it a much better

35

method than the Forward or Backward Euler methods for vibration problems,
as will be illustrated in Section 5.4.

Deriving (38) is a bit tricky. We start with rewriting the Crank-Nicolson
equations as follows

un+1 − un = 1
2∆t(vn+1 + vn), (39)

vn+1 = vn − 1
2∆tω2(un+1 + un), (40)

and add the latter at the previous time level as well:

vn = vn−1 − 1
2∆tω2(un + un−1) (41)

We can also rewrite (39) at the previous time level as

vn + vn−1 = 2
∆t (u

n − un−1) . (42)

Inserting (40) for vn+1 in (39) and (41) for vn in (39) yields after some reordering:

un+1 − un = 1
2(−1

2∆tω2(un+1 + 2un + un−1) + vn + vn−1) .

Now, vn + vn−1 can be eliminated by means of (42). The result becomes

un+1 − 2un + un−1 = −∆t2ω2 1
4(un+1 + 2un + un−1) . (43)

It can be shown that

1
4(un+1 + 2un + un−1) ≈ un +O(∆t2),

meaning that (43) is an approximation to the centered scheme (7) for the second-
order ODE where the sampling error in the term ∆t2ω2un is of the same order
as the approximation errors in the finite differences, i.e., O(∆t2). The Crank-
Nicolson scheme written as (43) therefore has consistent sampling of all terms at
the same time point tn.

5.4 Comparison of schemes
We can easily compare methods like the ones above (and many more!) with the
aid of the Odespy16 package. Below is a sketch of the code.

import odespy
import numpy as np

def f(u, t, w=1):

16https://github.com/hplgit/odespy

36

https://github.com/hplgit/odespy

v, u numbering for EulerCromer to work well
v, u = u # u is array of length 2 holding our [v, u]
return [-w**2*u, v]

def run_solvers_and_plot(solvers, timesteps_per_period=20,
num_periods=1, I=1, w=2*np.pi):

P = 2*np.pi/w # duration of one period
dt = P/timesteps_per_period
Nt = num_periods*timesteps_per_period
T = Nt*dt
t_mesh = np.linspace(0, T, Nt+1)

legends = []
for solver in solvers:

solver.set(f_kwargs={’w’: w})
solver.set_initial_condition([0, I])
u, t = solver.solve(t_mesh)

There is quite some more code dealing with plots also, and we refer to the source
file vib_undamped_odespy.py17 for details. Observe that keyword arguments in
f(u,t,w=1) can be supplied through a solver parameter f_kwargs (dictionary
of additional keyword arguments to f).

Specification of the Forward Euler, Backward Euler, and Crank-Nicolson
schemes is done like this:

solvers = [
odespy.ForwardEuler(f),
Implicit methods must use Newton solver to converge
odespy.BackwardEuler(f, nonlinear_solver=’Newton’),
odespy.CrankNicolson(f, nonlinear_solver=’Newton’),
]

The vib_undamped_odespy.py program makes two plots of the computed
solutions with the various methods in the solvers list: one plot with u(t) versus
t, and one phase plane plot where v is plotted against u. That is, the phase
plane plot is the curve (u(t), v(t)) parameterized by t. Analytically, u = I cos(ωt)
and v = u′ = −ωI sin(ωt). The exact curve (u(t), v(t)) is therefore an ellipse,
which often looks like a circle in a plot if the axes are automatically scaled. The
important feature, however, is that the exact curve (u(t), v(t)) is closed and
repeats itself for every period. Not all numerical schemes are capable of doing
that, meaning that the amplitude instead shrinks or grows with time.

Figure 7 show the results. Note that Odespy applies the label MidpointIm-
plicit for what we have specified as CrankNicolson in the code (CrankNicolson
is just a synonym for class MidpointImplicit in the Odespy code). The Forward
Euler scheme in Figure 7 has a pronounced spiral curve, pointing to the fact that
the amplitude steadily grows, which is also evident in Figure 8. The Backward
Euler scheme has a similar feature, except that the spriral goes inward and the

17http://tinyurl.com/nu656p2/vib/vib_undamped_odespy.py

37

http://tinyurl.com/nu656p2/vib/vib_undamped_odespy.py

amplitude is significantly damped. The changing amplitude and the spiral form
decreases with decreasing time step. The Crank-Nicolson scheme looks much
more accurate. In fact, these plots tell that the Forward and Backward Euler
schemes are not suitable for solving our ODEs with oscillating solutions.

2 1 0 1 2 3
u(t)

10

5

0

5

10

15

v
(t

)

Time step: 0.05

ForwardEuler
BackwardEuler
MidpointImplicit
exact

1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
u(t)

8

6

4

2

0

2

4

6

8

10

v
(t

)

Time step: 0.025

ForwardEuler
BackwardEuler
MidpointImplicit
exact

Figure 7: Comparison of classical schemes in the phase plane for two time step
values.

0.0 0.2 0.4 0.6 0.8 1.0
t

2

1

0

1

2

3

u

Time step: 0.05

ForwardEuler
BackwardEuler
MidpointImplicit
exact

0.0 0.2 0.4 0.6 0.8 1.0
t

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

u

Time step: 0.025

ForwardEuler
BackwardEuler
MidpointImplicit
exact

Figure 8: Comparison of solution curves for classical schemes.

5.5 Runge-Kutta methods
We may run two other popular standard methods for first-order ODEs, the 2nd-
and 4th-order Runge-Kutta methods, to see how they perform. Figures 9 and 10
show the solutions with larger ∆t values than what was used in the previous
two plots.

The visual impression is that the 4th-order Runge-Kutta method is very
accurate, under all circumstances in these tests, while the 2nd-order scheme
suffers from amplitude errors unless the time step is very small.

The corresponding results for the Crank-Nicolson scheme are shown in
Figure 11. It is clear that the Crank-Nicolson scheme outperforms the 2nd-order

38

1.5 1.0 0.5 0.0 0.5 1.0 1.5
u(t)

8

6

4

2

0

2

4

6

8

v
(t

)

Time step: 0.1

RK2
RK4
exact

1.5 1.0 0.5 0.0 0.5 1.0 1.5
u(t)

8

6

4

2

0

2

4

6

8

v
(t

)

Time step: 0.05

RK2
RK4
exact

Figure 9: Comparison of Runge-Kutta schemes in the phase plane.

0.0 0.2 0.4 0.6 0.8 1.0
t

1.5

1.0

0.5

0.0

0.5

1.0

1.5

u

Time step: 0.1

RK2
RK4
exact

0.0 0.2 0.4 0.6 0.8 1.0
t

1.5

1.0

0.5

0.0

0.5

1.0

1.5
u

Time step: 0.05

RK2
RK4
exact

Figure 10: Comparison of Runge-Kutta schemes.

Runge-Kutta method. Both schemes have the same order of accuracy O(∆t2),
but their differences in the accuracy that matters in a real physical application
is very clearly pronounced in this example. Exercise 13 invites you to investigate
how the amplitude is computed by a series of famous methods for first-order
ODEs.

5.6 Analysis of the Forward Euler scheme
We may try to find exact solutions of the discrete equations (28)-(29) in the
Forward Euler method to better understand why this otherwise useful method
has so bad performance for vibration ODEs. An “ansatz” for the solution of the
discrete equations is

un = IAn,

vn = qIAn,

where q and A are scalars to be determined. We could have used a complex
exponential form eiω̃n∆t since we get oscillatory solutions, but the oscillations

39

1.0 0.5 0.0 0.5 1.0
u(t)

8

6

4

2

0

2

4

6

8

v
(t

)

Time step: 0.1

MidpointImplicit
exact

1.5 1.0 0.5 0.0 0.5 1.0 1.5
u(t)

8

6

4

2

0

2

4

6

8

v
(t

)

Time step: 0.05

MidpointImplicit
exact

Figure 11: Long-time behavior of the Crank-Nicolson scheme in the phase plane.

grow in the Forward Euler method, so the numerical frequency ω̃ will be complex
anyway (producing an exponentially growing amplitude). Therefore, it is easier
to just work with potentially complex A and q as introduced above.

The Forward Euler scheme leads to

A = 1 + ∆tq,
A = 1−∆tω2q−1 .

We can easily eliminate A, get q2 + ω2 = 0, and solve for

q = ±iω,

which gives

A = 1±∆tiω .

We shall take the real part of An as the solution. The two values of A are
complex conjugates, and the real part of An will be the same for both roots.
This is easy to realize if we rewrite the complex numbers in polar form, which
is also convenient for further analysis and understanding. The polar form reiθ

of a complex number x+ iy has r =
√
x2 + y2 and θ = tan−1(y/x). Hence, the

polar form of the two values for A becomes

1±∆tiω =
√

1 + ω2∆t2e±i tan−1(ω∆t) .

Now it is very easy to compute An:

(1±∆tiω)n = (1 + ω2∆t2)n/2e±ni tan−1(ω∆t) .

Since cos(θn) = cos(−θn), the real parts of the two numbers become the same.
We therefore continue with the solution that has the plus sign.

40

The general solution is un = CAn, where C is a constant determined from
the initial condition: u0 = C = I. We have un = IAn and vn = qIAn. The final
solutions are just the real part of the expressions in polar form:

un = I(1 + ω2∆t2)n/2 cos(n tan−1(ω∆t)), (44)
vn = −ωI(1 + ω2∆t2)n/2 sin(n tan−1(ω∆t)) . (45)

The expression (1 + ω2∆t2)n/2 causes growth of the amplitude, since a number
greater than one is raised to a positive exponent n/2. We can develop a series
expression to better understand the formula for the amplitude. Introducing
p = ω∆t as the key variable and using sympy gives

>>> from sympy import *
>>> p = symbols(’p’, real=True)
>>> n = symbols(’n’, integer=True, positive=True)
>>> amplitude = (1 + p**2)**(n/2)
>>> amplitude.series(p, 0, 4)
1 + n*p**2/2 + O(p**4)

The amplitude goes like 1 + 1
2nω

2∆t2, clearly growing linearly in time (with n).
We can also investigate the error in the angular frequency by a series expan-

sion:

>>> n*atan(p).series(p, 0, 4)
n*(p - p**3/3 + O(p**4))

This means that the solution for un can be written as

un = (1 + 1
2nω

2∆t2 +O(∆t4)) cos
(
ωt− 1

3ωt∆t
2 +O(∆t4)

)
.

The error in the angular frequency is of the same order as in the scheme (7) for
the second-order ODE, but the error in the amplitude is severe.

6 Energy considerations
The observations of various methods in the previous section can be better
interpreted if we compute a quantity reflecting the total energy of the system. It
turns out that this quantity,

E(t) = 1
2(u′)2 + 1

2ω
2u2,

is constant for all t. Checking that E(t) really remains constant brings evidence
that the numerical computations are sound. It turns out that E is proportional
to the mechanical energy in the system. Conservation of energy is much used to
check numerical simulations, so it is well invested time to dive into this subject.

41

6.1 Derivation of the energy expression
We start out with multiplying

u′′ + ω2u = 0,

by u′ and integrating from 0 to T :∫ T

0
u′′u′dt+

∫ T

0
ω2uu′dt = 0 .

Observing that

u′′u′ = d

dt

1
2(u′)2, uu′ = d

dt

1
2u

2,

we get ∫ T

0
(d
dt

1
2(u′)2 + d

dt

1
2ω

2u2)dt = E(T)− E(0) = 0,

where we have introduced

E(t) = 1
2(u′)2 + 1

2ω
2u2 . (46)

The important result from this derivation is that the total energy is constant:

E(t) = E(0) .

E(t) is closely related to the system’s energy.

The quantity E(t) derived above is physically not the mechanical energy
of a vibrating mechanical system, but the energy per unit mass. To see
this, we start with Newton’s second law F = ma (F is the sum of forces,
m is the mass of the system, and a is the acceleration). The displacement
u is related to a through a = u′′. With a spring force as the only force we
have F = −ku, where k is a spring constant measuring the stiffness of the
spring. Newton’s second law then implies the differential equation

−ku = mu′′ ⇒ mu′′ + ku = 0 .

This equation of motion can be turned into an energy balance equation by
finding the work done by each term during a time interval [0, T]. To this
end, we multiply the equation by du = u′dt and integrate:∫ T

0
muu′dt+

∫ T

0
kuu′dt = 0 .

The result is

42

Ẽ(t) = Ek(t) + Ep(t) = 0,

where

Ek(t) = 1
2mv

2, v = u′, (47)

is the kinetic energy of the system, and

Ep(t) = 1
2ku

2 (48)

is the potential energy. The sum Ẽ(t) is the total mechanical energy. The
derivation demonstrates the famous energy principle that, under the right
physical circumstances, any change in the kinetic energy is due to a change
in potential energy and vice versa. (This principle breaks down when we
introduce damping in the system, as we do in Section 10.)

The equation mu′′ + ku = 0 can be divided by m and written as
u′′+ω2u = 0 for ω =

√
k/m. The energy expression E(t) = 1

2 (u′)2 + 1
2ω

2u2

derived earlier is then Ẽ(t)/m, i.e., mechanical energy per unit mass.

Energy of the exact solution. Analytically, we have u(t) = I cosωt, if
u(0) = I and u′(0) = 0, so we can easily check the energy evolution and confirm
that E(t) is constant:

E(t) = 1
2I

2(−ω sinωt)2 + 1
2ω

2I2 cos2 ωt = 1
2ω

2(sin2 ωt+ cos2 ωt) = 1
2ω

2 .

Growth of energy in the Forward Euler scheme. The energy at time
level n+ 1 in the Forward Euler scheme can easily be shown to increase:

En+1 = 1
2(vn+1)2 + 1

2ω
2(un+1)2

= 1
2(vn − ω2∆tun)2 + 1

2ω
2(un + ∆tvn)2

= (1 + ∆t2ω2)En .

6.2 An error measure based on energy
The constant energy is well expressed by its initial value E(0), so that the error
in mechanical energy can be computed as a mesh function by

enE = 1
2

(
un+1 − un−1

2∆t

)2

+ 1
2ω

2(un)2 − E(0), n = 1, . . . , Nt − 1, (49)

43

where

E(0) = 1
2V

2 + 1
2ω

2I2,

if u(0) = I and u′(0) = V . Note that we have used a centered approximation to
u′: u′(tn) ≈ [D2tu]n.

A useful norm of the mesh function enE for the discrete mechanical energy
can be the maximum absolute value of enE :

||enE ||`∞ = max
1≤n<Nt

|enE | .

Alternatively, we can compute other norms involving integration over all mesh
points, but we are often interested in worst case deviation of the energy, and
then the maximum value is of particular relevance.

A vectorized Python implementation of enE takes the form

import numpy as np and compute u, t
dt = t[1]-t[0]
E = 0.5*((u[2:] - u[:-2])/(2*dt))**2 + 0.5*w**2*u[1:-1]**2
E0 = 0.5*V**2 + 0.5**w**2*I**2
e_E = E - E0
e_E_norm = np.abs(e_E).max()

The convergence rates of the quantity e_E_norm can be used for verification.
The value of e_E_norm is also useful for comparing schemes through their
ability to preserve energy. Below is a table demonstrating the relative error in
total energy for various schemes (computed by the vib_undamped_odespy.py18

program). The test problem is u′′ + 4π2u = 0 with u(0) = 1 and u′(0) = 0, so
the period is 1 and E(t) ≈ 4.93. We clearly see that the Crank-Nicolson and the
Runge-Kutta schemes are superior to the Forward and Backward Euler schemes
already after one period.

Method T ∆t max |enE | /e0
E

Forward Euler 1 0.025 1.678 · 100

Backward Euler 1 0.025 6.235 · 10−1

Crank-Nicolson 1 0.025 1.221 · 10−2

Runge-Kutta 2nd-order 1 0.025 6.076 · 10−3

Runge-Kutta 4th-order 1 0.025 8.214 · 10−3

However, after 10 periods, the picture is much more dramatic:

Method T ∆t max |enE | /e0
E

Forward Euler 10 0.025 1.788 · 104

Backward Euler 10 0.025 1.000 · 100

Crank-Nicolson 10 0.025 1.221 · 10−2

Runge-Kutta 2nd-order 10 0.025 6.250 · 10−2

Runge-Kutta 4th-order 10 0.025 8.288 · 10−3

18http://tinyurl.com/nu656p2/vib/vib_undamped_odespy.py

44

http://tinyurl.com/nu656p2/vib/vib_undamped_odespy.py

The Runge-Kutta and Crank-Nicolson methods hardly change their energy error
with T , while the error in the Forward Euler method grows to huge levels and a
relative error of 1 in the Backward Euler method points to E(t)→ 0 as t grows
large.

Running multiple values of ∆t, we can get some insight into the convergence
of the energy error:

Method T ∆t max |enE | /e0
E

Forward Euler 10 0.05 1.120 · 108

Forward Euler 10 0.025 1.788 · 104

Forward Euler 10 0.0125 1.374 · 102

Backward Euler 10 0.05 1.000 · 100

Backward Euler 10 0.025 1.000 · 100

Backward Euler 10 0.0125 9.928 · 10−1

Crank-Nicolson 10 0.05 4.756 · 10−2

Crank-Nicolson 10 0.025 1.221 · 10−2

Crank-Nicolson 10 0.0125 3.125 · 10−3

Runge-Kutta 2nd-order 10 0.05 6.152 · 10−1

Runge-Kutta 2nd-order 10 0.025 6.250 · 10−2

Runge-Kutta 2nd-order 10 0.0125 7.631 · 10−3

Runge-Kutta 4th-order 10 0.05 3.510 · 10−2

Runge-Kutta 4th-order 10 0.025 8.288 · 10−3

Runge-Kutta 4th-order 10 0.0125 2.058 · 10−3

A striking fact from this table is that the error of the Forward Euler method is
reduced by the same factor as ∆t is reduced by, while the error in the Crank-
Nicolson method has a reduction proportional to ∆t2 (we cannot say anything
for the Backward Euler method). However, for the RK2 method, halving ∆t
reduces the error by almost a factor of 10 (!), and for the RK4 method the
reduction seems proportional to ∆t2 only (and the trend is confirmed by running
smaller time steps, so for ∆t = 3.9 · 10−4 the relative error of RK2 is a factor 10
smaller than that of RK4!).

7 The Euler-Cromer method
While the Runge-Kutta methods and the Crank-Nicolson scheme work well for
the vibration equation modeled as a first-order ODE system, both were inferior
to the straightforward centered difference scheme for the second-order equation
u′′ + ω2u = 0. However, there is a similarly successful scheme available for the
first-order system u′ = v, v′ = −ω2u, to be presented below. The ideas of the
scheme and their further developments have become very popular in particle
and rigid body dynamics and hence widely used by physicists.

45

7.1 Forward-backward discretization
The idea is to apply a Forward Euler discretization to the first equation and a
Backward Euler discretization to the second. In operator notation this is stated
as

[D+
t u = v]n, (50)

[D−t v = −ω2u]n+1 . (51)

We can write out the formulas and collect the unknowns on the left-hand side:

un+1 = un + ∆tvn, (52)
vn+1 = vn −∆tω2un+1 . (53)

We realize that after un+1 has been computed from (52), it may be used directly
in (53) to compute vn+1.

In physics, it is more common to update the v equation first, with a forward
difference, and thereafter the u equation, with a backward difference that applies
the most recently computed v value:

vn+1 = vn −∆tω2un, (54)
un+1 = un + ∆tvn+1 . (55)

The advantage of ordering the ODEs as in (54)-(55) becomes evident when
considering complicated models. Such models are included if we write our
vibration ODE more generally as

u′′ + g(u, u′, t) = 0 .

We can rewrite this second-order ODE as two first-order ODEs,

v′ = −g(u, v, t),
u′ = v .

This rewrite allows the following scheme to be used:

vn+1 = vn −∆t g(un, vn, t),
un+1 = un + ∆t vn+1 .

We realize that the first update works well with any g since old values un and
vn are used. Switching the equations would demand un+1 and vn+1 values in g
and result in nonlinear algebraic equations to be solved at each time level.

46

The scheme (54)-(55) goes under several names: forward-backward scheme,
semi-implicit Euler method19, semi-explicit Euler, symplectic Euler, Newton-
Störmer-Verlet, and Euler-Cromer. We shall stick to the latter name. Since both
time discretizations are based on first-order difference approximation, one may
think that the scheme is only of first-order, but this is not true: the use of a
forward and then a backward difference make errors cancel so that the overall
error in the scheme is O(∆t2). This is explained below.

How does the Euler-Cromer method preserve the total energy? We may run
the example from Section 6.2:

Method T ∆t max |enE | /e0
E

Euler-Cromer 10 0.05 2.530 · 10−2

Euler-Cromer 10 0.025 6.206 · 10−3

Euler-Cromer 10 0.0125 1.544 · 10−3

The relative error in the total energy decreases as ∆t2, and the error level is
slightly lower than for the Crank-Nicolson and Runge-Kutta methods.

7.2 Equivalence with the scheme for the second-order ODE
We shall now show that the Euler-Cromer scheme for the system of first-order
equations is equivalent to the centered finite difference method for the second-
order vibration ODE (!).

We may eliminate the vn variable from (52)-(53) or (54)-(55). The vn+1 term
in (54) can be eliminated from (55):

un+1 = un + ∆t(vn − ω2∆tun) . (56)
The vn quantity can be expressed by un and un−1 using (55):

vn = un − un−1

∆t ,

and when this is inserted in (56) we get

un+1 = 2un − un−1 −∆t2ω2un, (57)

which is nothing but the centered scheme (7)! The two seemingly different
numerical methods are mathematically equivalent. Consequently, the previous
analysis of (7) also applies to the Euler-Cromer method. In particular, the
amplitude is constant, given that the stability criterion is fulfilled, but there
is always an angular frequency error (19). Exercise 18 gives guidance on how
to derive the exact discrete solution of the two equations in the Euler-Cromer
method.

Although the Euler-Cromer scheme and the method (7) are equivalent, there
could be differences in the way they handle the initial conditions. Let is look
into this topic. The initial condition u′ = 0 means u′ = v = 0. From (54) we get

19http://en.wikipedia.org/wiki/Semi-implicit_Euler_method

47

http://en.wikipedia.org/wiki/Semi-implicit_Euler_method

v1 = v0 −∆tω2u0 = ∆tω2u0,

and from (55) it follows that

u1 = u0 + ∆tv1 = u0 − ω2∆t2u0 .

When we previously used a centered approximation of u′(0) = 0 combined with
the discretization (7) of the second-order ODE, we got a slightly different result:
u1 = u0 − 1

2ω
2∆t2u0. The difference is 1

2ω
2∆t2u0, which is of second order in

∆t, seemingly consistent with the overall error in the scheme for the differential
equation model.

A different view can also be taken. If we approximate u′(0) = 0 by a backward
difference, (u0 − u−1)/∆t = 0, we get u−1 = u0, and when combined with (7), it
results in u1 = u0 − ω2∆t2u0. This means that the Euler-Cromer method based
on (55)-(54) corresponds to using only a first-order approximation to the initial
condition in the method from Section 1.2.

Correspondingly, using the formulation (52)-(53) with vn = 0 leads to u1 = u0,
which can be interpreted as using a forward difference approximation for the
initial condition u′(0) = 0. Both Euler-Cromer formulations lead to slightly
different values for u1 compared to the method in Section 1.2. The error is
1
2ω

2∆t2u0.

7.3 Implementation
Solver function. The function below, found in vib_undamped_EulerCromer.
py20, implements the Euler-Cromer scheme (54)-(55):

import numpy as np

def solver(I, w, dt, T):
"""
Solve v’ = - w**2*u, u’=v for t in (0,T], u(0)=I and v(0)=0,
by an Euler-Cromer method.
"""
dt = float(dt)
Nt = int(round(T/dt))
u = np.zeros(Nt+1)
v = np.zeros(Nt+1)
t = np.linspace(0, Nt*dt, Nt+1)

v[0] = 0
u[0] = I
for n in range(0, Nt):

v[n+1] = v[n] - dt*w**2*u[n]
u[n+1] = u[n] + dt*v[n+1]

return u, v, t

20http://tinyurl.com/nu656p2/vib/vib_undamped_EulerCromer.py

48

http://tinyurl.com/nu656p2/vib/vib_undamped_EulerCromer.py
http://tinyurl.com/nu656p2/vib/vib_undamped_EulerCromer.py

Verification. Since the Euler-Cromer scheme is equivalent to the finite dif-
ference method for the second-order ODE u′′ + ω2u = 0 (see Section 7.2), the
performance of the above solver function is the same as for the solver func-
tion in Section 2. The only difference is the formula for the first time step,
as discussed above. This deviation in the Euler-Cromer scheme means that
the discrete solution listed in Section 4.4 is not a solution of the Euler-Cromer
scheme!

To verify the implementation of the Euler-Cromer method we can adjust v[1]
so that the computer-generated values can be compared with the formula (20)
from in Section 4.4. This adjustment is done in an alternative solver function,
solver_ic_fix in vib_EulerCromer.py. Since we now have an exact solution
of the discrete equations available, we can write a test function test_solver
for checking the equality of computed values with the formula (20):

def test_solver():
"""
Test solver with fixed initial condition against
equivalent scheme for the 2nd-order ODE u’’ + u = 0.
"""
I = 1.2; w = 2.0; T = 5
dt = 2/w # longest possible time step
u, v, t = solver_ic_fix(I, w, dt, T)
from vib_undamped import solver as solver2 # 2nd-order ODE
u2, t2 = solver2(I, w, dt, T)
error = np.abs(u - u2).max()
tol = 1E-14
assert error < tol

Another function, demo, visualizes the difference between the Euler-Cromer
scheme and the scheme (7) for the second-oder ODE, arising from the mismatch
in the first time level.

Using Odespy. The Euler-Cromer method is also available in the Odespy
package. The important thing to remember, when using this implementation, is
that we must order the unknowns as v and u, so the u vector at each time level
consists of the velocity v as first component and the displacement u as second
component:

Define ODE
def f(u, t, w=1):

v, u = u
return [-w**2*u, v]

Initialize solver
I = 1
w = 2*np.pi
import odespy
solver = odespy.EulerCromer(f, f_kwargs={’w’: w})
solver.set_initial_condition([0, I])

49

Compute time mesh
P = 2*np.pi/w # duration of one period
dt = P/timesteps_per_period
Nt = num_periods*timesteps_per_period
T = Nt*dt
import numpy as np
t_mesh = np.linspace(0, T, Nt+1)

Solve ODE
u, t = solver.solve(t_mesh)
u = u[:,1] # Extract displacement

Convergence rates. We may use the convergence_rates function in the
file vib_undamped.py to investigate the convergence rate of the Euler-Cromer
method, see the convergence_rate function in the file vib_undamped_EulerCromer.py.
Since we could eliminate v to get a scheme for u that is equivalent to the finite
difference method for the second-order equation in u, we would expect the con-
vergence rates to be the same, i.e., O(∆t2). However, measuring the convergence
rate of u in the Euler-Cromer scheme shows that it is O(∆t)! Adjusting the
initial condition does not change the rate. Adjusting ω, as outlined in Section 4.2,
gives a 4th-order method there, while there is no increase in the measured rate
in the Euler-Cromer scheme. It is obvious that the Euler-Cromer scheme is
dramatically much better than the two other first-order methods, Forward Euler
and Backward Euler, but this is not reflected in the convergence rate of u.

7.4 The Störmer-Verlet algorithm
Another very popular algorithm for vibration problems, especially for long time
simulations, is the Stömer-Verlet algorithm. It has become the method among
physicists for molecular simulations as well as particle and rigid body dynamics.

The method can be derived by applying the Euler-Cromer idea twice, in a
symmetric fashion, during the interval [tn, tn+1]:

1. solve v′ = −ωu by a Forward Euler step in [tn, tn+ 1
2
]

2. solve u′ = v by a Backward Euler step in [tn, tn+ 1
2
]

3. solve u′ = v by a Forward Euler step in [tn+ 1
2
, tn+1]

4. solve v′ = −ωu by a Backward Euler step in [tn+ 1
2
, tn+1]

With mathematics,

50

vn+ 1
2 − vn

1
2∆t

= −ω2un,

un+ 1
2 − un

1
2∆t

= vn+ 1
2 ,

un+1 − un− 1
2

1
2∆t

= vn+ 1
2 ,

vn+1 − vn+ 1
2

1
2∆t

= −ω2un+1 .

The two steps in the middle can be combined to

un+1 − un−1

∆t = vn+ 1
2 ,

and consequently

vn+ 1
2 = vn − 1

2∆tω2un, (58)

un+1 = un + ∆tvn+ 1
2 , (59)

vn+1 = vn+ 1
2 − 1

2∆tω2un+1 . (60)

Writing the last equation as vn = vn−
1
2 − 1

2∆tω2un and using this vn in the first
equation gives vn+ 1

2 = vn−
1
2 −∆tω2un, and the scheme can be written as two

steps:

vn+ 1
2 = vn−

1
2 −∆tω2un, (61)

un+1 = un + ∆tvn+ 1
2 , (62)

which is nothing but straightforward centered differences for the 2 × 2 ODE
system on a staggered mesh, see Section 8.1. We have thus seen that four different
reasonings (discretizing u′′ + ω2u directly, using Euler-Cromer, using Stömer-
Verlet, and using centered differences for the 2times2 system on a staggered
mesh) all end up with the same equations! The main difference is that the
traditional Euler-Cromer displays first-order convergence in ∆t (due to less
symmetry in the way u and v are treated) while the others are O(∆t2) schemes.

The most numerical stable scheme, with respect to accumulation of rounding
errors, is (61)-(62). It has, according to [1], better properties in this regard than
the direct scheme for the second-order ODE.

51

8 Staggered mesh
A more intuitive discretization than the Euler-Cromer method, yet equivalent,
employs solely centered differences in a natural way for the 2× 2 first-order ODE
system. The scheme is in fact fully equivalent to the second-order scheme for
u′′ + ωu = 0, also for the first time step. Such a scheme needs to operate on a
staggered mesh in time. Staggered meshes are very popular in many physical
application, maybe foremost fluid dynamics and electromagnetics, so the topic
is important to learn.

8.1 The Euler-Cromer scheme on a staggered mesh
In a staggered mesh, the unknowns are sought at different points in the mesh.
Specifically, u is sought at integer time points tn and v is sought at tn+1/2 between
two u points. The unknowns are then u1, v3/2, u2, v5/2, and so on. We typically
use the notation un and vn+ 1

2 for the two unknown mesh functions. Figure 12
presents a graphical sketch of two mesh functions u and v on a staggered mesh.

0 2 4 6

−3

−2

−1

0

1

2

3

4

5

t

u0

u1

u2

u3

u4

u5

v1/2

v3/2

v5/2

v7/2

v9/2

Figure 12: Examples on mesh functions on a staggered mesh in time.

On a staggered mesh it is natural to use centered difference approximations,
expressed in operator notation as

52

[Dtu = v]n+ 1
2 , (63)

[Dtv = −ωu]n+1 . (64)

or if we switch the sequence of the equations:

[Dtv = −ωu]n, (65)

[Dtu = v]n+ 1
2 . (66)

Writing out the formulas gives

vn+ 1
2 = vn−

1
2 −∆tω2un, (67)

un+1 = un + ∆tvn+ 1
2 . (68)

We can eliminate the v values and get back the centered scheme based on
the second-order differential equation u′′ + ω2u = 0, so all these three schemes
are equivalent. However, they differ somewhat in the treatment of the initial
conditions.

Suppose we have u(0) = I and u′(0) = v(0) = 0 as mathematical initial
conditions. This means u0 = I and

v(0) ≈ 1
2(v− 1

2 + v
1
2) = 0, ⇒ v−

1
2 = −v 1

2 .

Using the discretized equation (67) for n = 0 yields

v
1
2 = v−

1
2 −∆tω2I,

and eliminating v− 1
2 = −v 1

2 results in

v
1
2 = −1

2∆tω2I,

and

u1 = u0 − 1
2∆t2ω2I,

which is exactly the same equation for u1 as we had in the centered scheme based
on the second-order differential equation (and hence corresponds to a centered
difference approximation of the initial condition for u′(0)). The conclusion is that
a staggered mesh is fully equivalent with that scheme, while the forward-backward
version gives a slight deviation in the computation of u1.

We can redo the derivation of the initial conditions when u′(0) = V :

v(0) ≈ 1
2(v− 1

2 + v
1
2) = V, ⇒ v−

1
2 = 2V − v 1

2 .

53

Using this v− 1
2 in

v
1
2 = v−

1
2 −∆tω2I,

then gives v 1
2 = V − 1

2∆tω2I. The general initial conditions are therefore

u0 = I, (69)

v
1
2 = V − 1

2∆tω2I . (70)

8.2 Implementation of the scheme on a staggered mesh
The algorithm goes like this:

1. Set the initial values (69) and (70).

2. For n = 1, 2, . . .:

(a) Compute un from (68).
(b) Compute vn+ 1

2 from (67).

Implementation with integer indices. Translating the schemes (68) and
(67) to computer code faces the problem of how to store and access vn+ 1

2 ,
since arrays only allow integer indices with base 0. We must then introduce a
convention: v1+ 1

2 is stored in v[n] while v1− 1
2 is stored in v[n-1]. We can then

write the algorithm in Python as

def solver(I, w, dt, T):
dt = float(dt)
Nt = int(round(T/dt))
u = zeros(Nt+1)
v = zeros(Nt+1)
t = linspace(0, Nt*dt, Nt+1) # mesh for u
t_v = t + dt/2 # mesh for v

u[0] = I
v[0] = 0 - 0.5*dt*w**2*u[0]
for n in range(1, Nt+1):

u[n] = u[n-1] + dt*v[n-1]
v[n] = v[n-1] - dt*w**2*u[n]

return u, t, v, t_v

Note that u and v are returned together with the mesh points such that the
complete mesh function for u is described by u and t, while v and t_v represent
the mesh function for v.

54

Implementation with half-integer indices. Some prefer to see a closer
relationship between the code and the mathematics for the quantities with
half-integer indices. For example, we would like to replace the updating equation
for v[n] by

v[n+half] = v[n-half] - dt*w**2*u[n]

This is easy to do if we could be sure that n+half means n and n-half means
n-1. A possible solution is to define half as a special object such that an integer
plus half results in the integer, while an integer minus half equals the integer
minus 1. A simple Python class may realize the half object:

class HalfInt:
def __radd__(self, other):

return other

def __rsub__(self, other):
return other - 1

half = HalfInt()

The __radd__ function is invoked for all expressions n+half ("right add" with
self as half and other as n). Similarly, the __rsub__ function is invoked for
n-half and results in n-1.

Using the half object, we can implement the algorithms in an even more
readable way:

def solver(I, w, dt, T):
"""
Solve u’=v, v’ = - w**2*u for t in (0,T], u(0)=I and v(0)=0,
by a central finite difference method with time step dt on
a staggered mesh with v as unknown at (i+1/2)*dt time points.
"""
dt = float(dt)
Nt = int(round(T/dt))
u = zeros(Nt+1)
v = zeros(Nt+1)
t = linspace(0, Nt*dt, Nt+1) # mesh for u
t_v = t + dt/2 # mesh for v

u[0] = I
v[0+half] = 0 - 0.5*dt*w**2*u[0]
for n in range(1, Nt+1):

u[n] = u[n-1] + dt*v[n-half]
v[n+half] = v[n-half] - dt*w**2*u[n]

return u, t, v[:-1], t_v[:-1]

Verification of this code is easy as we can just compare the computed u
with the u produced by the solver function in vib_undamped.py (which solves
u′′ + ω2u = 0 directly). The values should coincide to machine precision since
the two numerical methods are mathematically equivalent. We refer to the file

55

vib_undamped_staggered.py21 for the details of a unit test (test_staggered)
that checks this property.

9 Exercises and Problems
Problem 1: Use linear/quadratic functions for verification
Consider the ODE problem

u′′ + ω2u = f(t), u(0) = I, u′(0) = V, t ∈ (0, T] .

a) Discretize this equation according to [DtDtu + ω2u = f]n and derive the
equation for the first time step (u1).

b) For verification purposes, we use the method of manufactured solutions
(MMS) with the choice of ue(t) = ct + d. Find restrictions on c and d from
the initial conditions. Compute the corresponding source term f . Show that
[DtDtt]n = 0 and use the fact that the DtDt operator is linear, [DtDt(ct+d)]n =
c[DtDtt]n+[DtDtd]n = 0, to show that ue is also a perfect solution of the discrete
equations.

c) Use sympy to do the symbolic calculations above. Here is a sketch of the
program vib_undamped_verify_mms.py:

import sympy as sym
V, t, I, w, dt = sym.symbols(’V t I w dt’) # global symbols
f = None # global variable for the source term in the ODE

def ode_source_term(u):
"""Return the terms in the ODE that the source term
must balance, here u’’ + w**2*u.
u is symbolic Python function of t."""
return sym.diff(u(t), t, t) + w**2*u(t)

def residual_discrete_eq(u):
"""Return the residual of the discrete eq. with u inserted."""
R = ...
return sym.simplify(R)

def residual_discrete_eq_step1(u):
"""Return the residual of the discrete eq. at the first
step with u inserted."""
R = ...
return sym.simplify(R)

def DtDt(u, dt):
"""Return 2nd-order finite difference for u_tt.

21http://tinyurl.com/nu656p2/vib/vib_undamped_staggered.py

56

http://tinyurl.com/nu656p2/vib/vib_undamped_staggered.py

u is a symbolic Python function of t.
"""
return ...

def main(u):
"""
Given some chosen solution u (as a function of t, implemented
as a Python function), use the method of manufactured solutions
to compute the source term f, and check if u also solves
the discrete equations.
"""
print ’=== Testing exact solution: %s ===’ % u
print "Initial conditions u(0)=%s, u’(0)=%s:" % \

(u(t).subs(t, 0), sym.diff(u(t), t).subs(t, 0))

Method of manufactured solution requires fitting f
global f # source term in the ODE
f = sym.simplify(ode_lhs(u))

Residual in discrete equations (should be 0)
print ’residual step1:’, residual_discrete_eq_step1(u)
print ’residual:’, residual_discrete_eq(u)

def linear():
main(lambda t: V*t + I)

if __name__ == ’__main__’:
linear()

Fill in the various functions such that the calls in the main function works.

d) The purpose now is to choose a quadratic function ue = bt2 + ct+ d as exact
solution. Extend the sympy code above with a function quadratic for fitting f
and checking if the discrete equations are fulfilled. (The function is very similar
to linear.)

e) Will a polynomial of degree three fulfill the discrete equations?

f) Implement a solver function for computing the numerical solution of this
problem.

g) Write a test function for checking that the quadratic solution is computed
correctly (to machine precision, but the round-off errors accumulate and increase
with T) by the solver function.
Filename: vib_undamped_verify_mms.

Exercise 2: Show linear growth of the phase with time
Consider an exact solution I cos(ωt) and an approximation I cos(ω̃t). Define the
phase error as the time lag between the peak I in the exact solution and the

57

corresponding peak in the approximation after m periods of oscillations. Show
that this phase error is linear in m.
Filename: vib_phase_error_growth.

Exercise 3: Improve the accuracy by adjusting the fre-
quency
According to (19), the numerical frequency deviates from the exact frequency by
a (dominating) amount ω3∆t2/24 > 0. Replace the w parameter in the algorithm
in the solver function in vib_undamped.py by w*(1 - (1./24)*w**2*dt**2
and test how this adjustment in the numerical algorithm improves the accuracy
(use ∆t = 0.1 and simulate for 80 periods, with and without adjustment of ω).
Filename: vib_adjust_w.

Exercise 4: See if adaptive methods improve the phase er-
ror
Adaptive methods for solving ODEs aim at adjusting ∆t such that the error is
within a user-prescribed tolerance. Implement the equation u′′ + u = 0 in the
Odespy22 software. Use the example from Section ?? in [2]. Run the scheme
with a very low tolerance (say 10−14) and for a long time, check the number of
time points in the solver’s mesh (len(solver.t_all)), and compare the phase
error with that produced by the simple finite difference method from Section 1.2
with the same number of (equally spaced) mesh points. The question is whether
it pays off to use an adaptive solver or if equally many points with a simple
method gives about the same accuracy.
Filename: vib_undamped_adaptive.

Exercise 5: Use a Taylor polynomial to compute u1

As an alternative to computing u1 by (8), one can use a Taylor polynomial with
three terms:

u(t1) ≈ u(0) + u′(0)∆t+ 1
2u
′′(0)∆t2

With u′′ = −ω2u and u′(0) = 0, show that this method also leads to (8).
Generalize the condition on u′(0) to be u′(0) = V and compute u1 in this case
with both methods.
Filename: vib_first_step.

Problem 6: Derive and investigate the velocity Verlet method
The velocity Verlet method for u′′ + ω2u = 0 is based on the following ideas:

1. step u forward from tn to tn+1 using a three-term Taylor series,
22https://github.com/hplgit/odespy

58

https://github.com/hplgit/odespy

2. replace u′′ by −ω2u

3. discretize v′ = −ω2u by a Crank-Nicolson method.

Derive the scheme, implement it, and determine empirically the convergence
rate.

Problem 7: Find the minimal resolution of an oscillatory
function
Sketch the function on a given mesh which has the highest possible frequency.
That is, this oscillatory “cos-like” function has its maxima and minima at every
two grid points. Find an expression for the frequency of this function, and use
the result to find the largest relevant value of ω∆t when ω is the frequency of
an oscillating function and ∆t is the mesh spacing.
Filename: vib_largest_wdt.

Exercise 8: Visualize the accuracy of finite differences for
a cosine function
We introduce the error fraction

E = [DtDtu]n

u′′(tn)
to measure the error in the finite difference approximationDtDtu to u′′. Compute
E for the specific choice of a cosine/sine function of the form u = exp (iωt) and
show that

E =
(

2
ω∆t

)2
sin2(ω∆t

2) .

Plot E as a function of p = ω∆t. The relevant values of p are [0, π] (see Exercise 7
for why p > π does not make sense). The deviation of the curve from unity
visualizes the error in the approximation. Also expand E as a Taylor polynomial
in p up to fourth degree (use, e.g., sympy).
Filename: vib_plot_fd_exp_error.

Exercise 9: Verify convergence rates of the error in energy
We consider the ODE problem u′′ + ω2u = 0, u(0) = I, u′(0) = V , for t ∈ (0, T].
The total energy of the solution E(t) = 1

2 (u′)2 + 1
2ω

2u2 should stay constant.
The error in energy can be computed as explained in Section 6.

Make a test function in a separate file, where code from vib_undamped.py is
imported, but the convergence_rates and test_convergence_rates functions
are copied and modified to also incorporate computations of the error in energy
and the convergence rate of this error. The expected rate is 2, just as for the
solution itself.
Filename: test_error_conv.

59

Exercise 10: Use linear/quadratic functions for verification
This exercise is a generalization of Problem 1 to the extended model problem
(71) where the damping term is either linear or quadratic. Solve the various
subproblems and see how the results and problem settings change with the
generalized ODE in case of linear or quadratic damping. By modifying the
code from Problem 1, sympy will do most of the work required to analyze the
generalized problem.
Filename: vib_verify_mms.

Exercise 11: Use an exact discrete solution for verification
Write a test function in a separate file that employs the exact discrete solution (20)
to verify the implementation of the solver function in the file vib_undamped.py.
Filename: test_vib_undamped_exact_discrete_sol.

Exercise 12: Use analytical solution for convergence rate
tests
The purpose of this exercise is to perform convergence tests of the problem (71)
when s(u) = cu, F (t) = A sinφt and there is no damping. Find the complete
analytical solution to the problem in this case (most textbooks on mechanics or
ordinary differential equations list the various elements you need to write down the
exact solution, or you can use symbolic tools like sympy or wolframalpha.com).
Modify the convergence_rate function from the vib_undamped.py program to
perform experiments with the extended model. Verify that the error is of order
∆t2.
Filename: vib_conv_rate.

Exercise 13: Investigate the amplitude errors of many solvers
Use the program vib_undamped_odespy.py from Section 5.4 (utilize the func-
tion amplitudes) to investigate how well famous methods for 1st-order ODEs
can preserve the amplitude of u in undamped oscillations. Test, for example,
the 3rd- and 4th-order Runge-Kutta methods (RK3, RK4), the Crank-Nicolson
method (CrankNicolson), the 2nd- and 3rd-order Adams-Bashforth methods
(AdamsBashforth2, AdamsBashforth3), and a 2nd-order Backwards scheme
(Backward2Step). The relevant governing equations are listed in the begin-
ning of Section 5.

Running the code, we get the plots seen in Figure 13, 14, and 15. They
show that RK4 is superior to the others, but that also CrankNicolson performs
well. In fact, with RK4 the amplitude changes by less than 0.1 per cent over the
interval.
Filename: vib_amplitude_errors.

60

0 20 40 60 80 100
Number of periods

4.8

5.0

5.2

5.4

5.6

5.8

6.0

6.2

6.4

Am
pl

itu
de

 (a
bs

ol
ut

e
va

lu
e)

RK3
RK4

Figure 13: The amplitude as it changes over 100 periods for RK3 and RK4.

Problem 14: Minimize memory usage of a simple vibration
solver
We consider the model problem u′′ + ω2u = 0, u(0) = I, u′(0) = V , solved by
a second-order finite difference scheme. A standard implementation typically
employs an array u for storing all the un values. However, at some time level
n+1 where we want to compute u[n+1], all we need of previous u values are
from level n and n-1. We can therefore avoid storing the entire array u, and
instead work with u[n+1], u[n], and u[n-1], named as u, u_n, u_nmp1, for
instance. Another possible naming convention is u, u_n[0], u_n[-1]. Store the
solution in a file for later visualization. Make a test function that verifies the
implementation by comparing with the another code for the same problem.
Filename: vib_memsave0.

Problem 15: Minimize memory usage of a general vibration
solver
The program vib.py23 stores the complete solution u0, u1, . . . , uNt in memory,
which is convenient for later plotting. Make a memory minimizing version of

23http://tinyurl.com/nu656p2/vib/vib.py

61

http://tinyurl.com/nu656p2/vib/vib.py

0 20 40 60 80 100
Number of periods

1

2

3

4

5

6

7

Am
pl

itu
de

 (a
bs

ol
ut

e
va

lu
e)

CrankNicolson
Backward2Step

Figure 14: The amplitude as it changes over 100 periods for Crank-Nicolson
and Backward 2 step.

this program where only the last three un+1, un, and un−1 values are stored in
memory under the names u, u_n, and u_nm1 (this is the naming convention used
in this book). Write each computed (tn+1, u

n+1) pair to file. Visualize the data
in the file (a cool solution is to read one line at a time and plot the u value using
the line-by-line plotter in the visualize_front_ascii function - this technique
makes it trivial to visualize very long time simulations).
Filename: vib_memsave.

Exercise 16: Implement the Euler-Cromer scheme for the
generalized model
We consider the generalized model problem

mu′′ + f(u′) + s(u) = F (t), u(0) = I, u′(0) = V .

a) Implement the Euler-Cromer method from Section 10.8.

b) We expect the Euler-Cromer method to have first-order convergence rate.
Make a unit test based on this expectation.

62

0 20 40 60 80 100 120
Number of periods

0

5

10

15

20

25

30

35

Am
pl

itu
de

 (a
bs

ol
ut

e
va

lu
e)

AdamsBashforth2
AdamsBashforth3

Figure 15: The amplitude as it changes over 100 periods for Adams-Bashforth
2 and 3.

c) Consider a system with m = 4, f(v) = b|v|v, b = 0.2, s = 2u, F = 0.
Compute the solution using the centered difference scheme from Section 10.1
and the Euler-Cromer scheme for the longest possible time step ∆t. We can use
the result from the case without damping, i.e., the largest ∆t = 2/ω, ω ≈

√
0.5

in this case, but since b will modify the frequency, we take the longest possible
time step as a safety factor 0.9 times 2/ω. Refine ∆t three times by a factor of
two and compare the two curves.
Filename: vib_EulerCromer.

Problem 17: Interpret [DtDtu]n as a forward-backward dif-
ference
Show that the difference [DtDtu]n is equal to [D+

t D
−
t u]n and D−t D+

t u]n. That
is, instead of applying a centered difference twice one can alternatively apply a
mixture of forward and backward differences.
Filename: vib_DtDt_fw_bw.

63

Exercise 18: Analysis of the Euler-Cromer scheme
The Euler-Cromer scheme for the model problem u′′ + ω2u = 0, u(0) = I,
u′(0) = 0, is given in (55)-(54). Find the exact discrete solutions of this scheme
and show that the solution for un coincides with that found in Section 4.

Hint. Use an “ansatz” un = I exp (iω̃∆t n) and vn = qun, where ω̃ and q are
unknown parameters. The following formula is handy:

eiω̃∆t + eiω̃(−∆t) − 2 = 2 (cosh(iω̃∆t)− 1) = −4 sin2(ω̃∆t
2) .

10 Generalization: damping, nonlinearities, and
excitation

We shall now generalize the simple model problem from Section 1 to include a
possibly nonlinear damping term f(u′), a possibly nonlinear spring (or restoring)
force s(u), and some external excitation F (t):

mu′′ + f(u′) + s(u) = F (t), u(0) = I, u′(0) = V, t ∈ (0, T] . (71)

We have also included a possibly nonzero initial value of u′(0). The parameters
m, f(u′), s(u), F (t), I, V , and T are input data.

There are two main types of damping (friction) forces: linear f(u′) = bu, or
quadratic f(u′) = bu′|u′|. Spring systems often feature linear damping, while
air resistance usually gives rise to quadratic damping. Spring forces are often
linear: s(u) = cu, but nonlinear versions are also common, the most famous is
the gravity force on a pendulum that acts as a spring with s(u) ∼ sin(u).

10.1 A centered scheme for linear damping
Sampling (71) at a mesh point tn, replacing u′′(tn) by [DtDtu]n, and u′(tn) by
[D2tu]n results in the discretization

[mDtDtu+ f(D2tu) + s(u) = F]n, (72)

which written out means

m
un+1 − 2un + un−1

∆t2 + f(u
n+1 − un−1

2∆t) + s(un) = Fn, (73)

where Fn as usual means F (t) evaluated at t = tn. Solving (73) with respect to
the unknown un+1 gives a problem: the un+1 inside the f function makes the
equation nonlinear unless f(u′) is a linear function, f(u′) = bu′. For now we
shall assume that f is linear in u′. Then

m
un+1 − 2un + un−1

∆t2 + b
un+1 − un−1

2∆t + s(un) = Fn, (74)

64

which gives an explicit formula for u at each new time level:

un+1 = (2mun + (b2∆t−m)un−1 + ∆t2(Fn − s(un)))(m+ b

2∆t)−1 . (75)

For the first time step we need to discretize u′(0) = V as [D2tu = V]0 and
combine with (75) for n = 0. The discretized initial condition leads to

u−1 = u1 − 2∆tV, (76)

which inserted in (75) for n = 0 gives an equation that can be solved for u1:

u1 = u0 + ∆t V + ∆t2

2m (−bV − s(u0) + F 0) . (77)

10.2 A centered scheme for quadratic damping
When f(u′) = bu′|u′|, we get a quadratic equation for un+1 in (73). This equation
can be straightforwardly solved by the well-known formula for the roots of a
quadratic equation. However, we can also avoid the nonlinearity by introducing
an approximation with an error of order no higher than what we already have
from replacing derivatives with finite differences.

We start with (71) and only replace u′′ by DtDtu, resulting in

[mDtDtu+ bu′|u′|+ s(u) = F]n . (78)

Here, u′|u′| is to be computed at time tn. The idea is now to introduce a
geometric mean, defined by

(w2)n ≈ wn− 1
2wn+ 1

2 ,

for some quantity w depending on time. The error in the geometric mean
approximation is O(∆t2), the same as in the approximation u′′ ≈ DtDtu. With
w = u′ it follows that

[u′|u′|]n ≈ u′(tn+ 1
2
)|u′(tn− 1

2
)| .

The next step is to approximate u′ at tn±1/2, and fortunately a centered difference
fits perfectly into the formulas since it involves u values at the mesh points only.
With the approximations

u′(tn+1/2) ≈ [Dtu]n+ 1
2 , u′(tn−1/2) ≈ [Dtu]n− 1

2 , (79)

we get

[u′|u′|]n ≈ [Dtu]n+ 1
2 |[Dtu]n− 1

2 | = un+1 − un

∆t
|un − un−1|

∆t . (80)

The counterpart to (73) is then

65

m
un+1 − 2un + un−1

∆t2 + b
un+1 − un

∆t
|un − un−1|

∆t + s(un) = Fn, (81)

which is linear in the unknown un+1. Therefore, we can easily solve (81) with
respect to un+1 and achieve the explicit updating formula

un+1 =
(
m+ b|un − un−1|

)−1×(
2mun −mun−1 + bun|un − un−1|+ ∆t2(Fn − s(un))

)
. (82)

In the derivation of a special equation for the first time step we run into
some trouble: inserting (76) in (82) for n = 0 results in a complicated nonlinear
equation for u1. By thinking differently about the problem we can easily get
away with the nonlinearity again. We have for n = 0 that b[u′|u′|]0 = bV |V |.
Using this value in (78) gives

[mDtDtu+ bV |V |+ s(u) = F]0 . (83)

Writing this equation out and using (76) results in the special equation for the
first time step:

u1 = u0 + ∆tV + ∆t2

2m
(
−bV |V | − s(u0) + F 0) . (84)

10.3 A forward-backward discretization of the quadratic
damping term

The previous section first proposed to discretize the quadratic damping term
|u′|u′ using centered differences: [|D2t|D2tu]n. As this gives rise to a nonlinearity
in un+1, it was instead proposed to use a geometric mean combined with centered
differences. But there are other alternatives. To get rid of the nonlinearity in
[|D2t|D2tu]n, one can think differently: apply a backward difference to |u′|, such
that the term involves known values, and apply a forward difference to u′ to
make the term linear in the unknown un+1. With mathematics,

[β|u′|u′]n ≈ β|[D−t u]n|[D+
t u]n = β

∣∣∣∣un − un−1

∆t

∣∣∣∣ un+1 − un

∆t . (85)

The forward and backward differences have both an error proportional to ∆t so
one may think the discretization above leads to a first-order scheme. However,
by looking at the formulas, we realize that the forward-backward differences in
(85) result in exactly the same scheme as in (81) where we used a geometric
mean and centered differences and committed errors of size O(∆t2). Therefore,
the forward-backward differences in (85) act in a symmetric way and actually
produce a second-order accurate discretization of the quadratic damping term.

66

10.4 Implementation
The algorithm arising from the methods in Sections 10.1 and 10.2 is very similar
to the undamped case in Section 1.2. The difference is basically a question
of different formulas for u1 and un+1. This is actually quite remarkable. The
equation (71) is normally impossible to solve by pen and paper, but possible
for some special choices of F , s, and f . On the contrary, the complexity of the
nonlinear generalized model (71) versus the simple undamped model is not a big
deal when we solve the problem numerically!

The computational algorithm takes the form

1. u0 = I

2. compute u1 from (77) if linear damping or (84) if quadratic damping

3. for n = 1, 2, . . . , Nt − 1:

(a) compute un+1 from (75) if linear damping or (82) if quadratic damping

Modifying the solver function for the undamped case is fairly easy, the big
difference being many more terms and if tests on the type of damping:

def solver(I, V, m, b, s, F, dt, T, damping=’linear’):
"""
Solve m*u’’ + f(u’) + s(u) = F(t) for t in (0,T],
u(0)=I and u’(0)=V,
by a central finite difference method with time step dt.
If damping is ’linear’, f(u’)=b*u, while if damping is
’quadratic’, f(u’)=b*u’*abs(u’).
F(t) and s(u) are Python functions.
"""
dt = float(dt); b = float(b); m = float(m) # avoid integer div.
Nt = int(round(T/dt))
u = np.zeros(Nt+1)
t = np.linspace(0, Nt*dt, Nt+1)

u[0] = I
if damping == ’linear’:

u[1] = u[0] + dt*V + dt**2/(2*m)*(-b*V - s(u[0]) + F(t[0]))
elif damping == ’quadratic’:

u[1] = u[0] + dt*V + \
dt**2/(2*m)*(-b*V*abs(V) - s(u[0]) + F(t[0]))

for n in range(1, Nt):
if damping == ’linear’:

u[n+1] = (2*m*u[n] + (b*dt/2 - m)*u[n-1] +
dt**2*(F(t[n]) - s(u[n])))/(m + b*dt/2)

elif damping == ’quadratic’:
u[n+1] = (2*m*u[n] - m*u[n-1] + b*u[n]*abs(u[n] - u[n-1])

+ dt**2*(F(t[n]) - s(u[n])))/\

67

(m + b*abs(u[n] - u[n-1]))
return u, t

The complete code resides in the file vib.py24.

10.5 Verification
Constant solution. For debugging and initial verification, a constant solution
is often very useful. We choose ue(t) = I, which implies V = 0. Inserted in the
ODE, we get F (t) = s(I) for any choice of f . Since the discrete derivative of a
constant vanishes (in particular, [D2tI]n = 0, [DtI]n = 0, and [DtDtI]n = 0),
the constant solution also fulfills the discrete equations. The constant should
therefore be reproduced to machine precision. The function test_constant in
vib.py implements this test.

Linear solution. Now we choose a linear solution: ue = ct + d. The initial
condition u(0) = I implies d = I, and u′(0) = V forces c to be V . Inserting
ue = V t+ I in the ODE with linear damping results in

0 + bV + s(V t+ I) = F (t),

while quadratic damping requires the source term

0 + b|V |V + s(V t+ I) = F (t) .

Since the finite difference approximations used to compute u′ all are exact for a
linear function, it turns out that the linear ue is also a solution of the discrete
equations. Exercise 10 asks you to carry out all the details.

Quadratic solution. Choosing ue = bt2 + V t + I, with b arbitrary, fulfills
the initial conditions and fits the ODE if F is adjusted properly. The solution
also solves the discrete equations with linear damping. However, this quadratic
polynomial in t does not fulfill the discrete equations in case of quadratic damping,
because the geometric mean used in the approximation of this term introduces
an error. Doing Exercise 10 will reveal the details. One can fit Fn in the discrete
equations such that the quadratic polynomial is reproduced by the numerical
method (to machine precision).

Catching bugs. How good are the constant and quadratic solutions at catching
bugs in the implementation?

• Use m instead of 2*m in the denominator of u[1]: constant works, while
quadratic fails.

• Use b*dt instead of b*dt/2 in the updating formula for u[n+1] in case of
linear damping: constant and quadratic fail.

24http://tinyurl.com/nu656p2/vib/vib.py

68

http://tinyurl.com/nu656p2/vib/vib.py

• Use F[n+1] instead of F[n] in case of linear or quadratic damping: constant
solution works, quadratic fails.

We realize that the constant solution is very useful to catch bugs because of
its simplicity (easy to predict what the different terms in the formula should
evaluate to), while it seems the quadratic solution is capable of detecting all
other types of typos in the scheme (?). This results demonstrates why we focus
so much on exact, simple polynomial solutions of the numerical schemes in these
writings.

10.6 Visualization
The functions for visualizations differ significantly from those in the undamped
case in the vib_undamped.py program because, in the present general case, we
do not have an exact solution to include in the plots. Moreover, we have no good
estimate of the periods of the oscillations as there will be one period determined
by the system parameters, essentially the approximate frequency

√
s′(0)/m

for linear s and small damping, and one period dictated by F (t) in case the
excitation is periodic. This is, however, nothing that the program can depend
on or make use of. Therefore, the user has to specify T and the window width
to get a plot that moves with the graph and shows the most recent parts of it in
long time simulations.

The vib.py code contains several functions for analyzing the time series
signal and for visualizing the solutions.

10.7 User interface
The main function is changed substantially from the vib_undamped.py code,
since we need to specify the new data c, s(u), and F (t). In addition, we must
set T and the plot window width (instead of the number of periods we want to
simulate as in vib_undamped.py). To figure out whether we can use one plot
for the whole time series or if we should follow the most recent part of u, we
can use the plot_empricial_freq_and_amplitude function’s estimate of the
number of local maxima. This number is now returned from the function and
used in main to decide on the visualization technique.

def main():
import argparse
parser = argparse.ArgumentParser()
parser.add_argument(’--I’, type=float, default=1.0)
parser.add_argument(’--V’, type=float, default=0.0)
parser.add_argument(’--m’, type=float, default=1.0)
parser.add_argument(’--c’, type=float, default=0.0)
parser.add_argument(’--s’, type=str, default=’u’)
parser.add_argument(’--F’, type=str, default=’0’)
parser.add_argument(’--dt’, type=float, default=0.05)
parser.add_argument(’--T’, type=float, default=140)

69

parser.add_argument(’--damping’, type=str, default=’linear’)
parser.add_argument(’--window_width’, type=float, default=30)
parser.add_argument(’--savefig’, action=’store_true’)
a = parser.parse_args()
from scitools.std import StringFunction
s = StringFunction(a.s, independent_variable=’u’)
F = StringFunction(a.F, independent_variable=’t’)
I, V, m, c, dt, T, window_width, savefig, damping = \

a.I, a.V, a.m, a.c, a.dt, a.T, a.window_width, a.savefig, \
a.damping

u, t = solver(I, V, m, c, s, F, dt, T)
num_periods = empirical_freq_and_amplitude(u, t)
if num_periods <= 15:

figure()
visualize(u, t)

else:
visualize_front(u, t, window_width, savefig)

show()

The program vib.py contains the above code snippets and can solve the model
problem (71). As a demo of vib.py, we consider the case I = 1, V = 0, m = 1,
c = 0.03, s(u) = sin(u), F (t) = 3 cos(4t), ∆t = 0.05, and T = 140. The relevant
command to run is

Terminal

Terminal> python vib.py --s ’sin(u)’ --F ’3*cos(4*t)’ --c 0.03

This results in a moving window following the function25 on the screen. Figure 16
shows a part of the time series.

10.8 The Euler-Cromer scheme for the generalized model
The ideas of the Euler-Cromer method from Section 7 carry over to the generalized
model. We write (71) as two equations for u and v = u′. The first equation is
taken as the one with v′ on the left-hand side:

v′ = 1
m

(F (t)− s(u)− f(v)), (86)

u′ = v . (87)

The idea is to step (86) forward using a standard Forward Euler method, while
we update u from (87) with a Backward Euler method, utilizing the recent,
computed vn+1 value. In detail,

25http://tinyurl.com/pu5uyfn/pub/mov-vib/vib_generalized_dt0.05/index.html

70

http://tinyurl.com/pu5uyfn/pub/mov-vib/vib_generalized_dt0.05/index.html

0 10 20 30 40 50 60
t

1.0

0.5

0.0

0.5

1.0

u

dt=0.05

Figure 16: Damped oscillator excited by a sinusoidal function.

vn+1 − vn

∆t = 1
m

(F (tn)− s(un)− f(vn)), (88)

un+1 − un

∆t = vn+1, (89)

resulting in the explicit scheme

vn+1 = vn + ∆t 1
m

(F (tn)− s(un)− f(vn)), (90)

un+1 = un + ∆t vn+1 . (91)

We immediately note one very favorable feature of this scheme: all the nonlin-
earities in s(u) and f(v) are evaluated at a previous time level. This makes the
Euler-Cromer method easier to apply and hence much more convenient than the
centered scheme for the second-order ODE (71).

The initial conditions are trivially set as

v0 = V, (92)
u0 = I . (93)

71

10.9 The Störmer-Verlet algorithm for the generalized model
We can easily apply the ideas from Section 7.4 to extend that method to the
generalized model

v′ = 1
m

(F (t)− s(u)− f(v)),

u′ = v .

However, since the scheme is essentially centered differences for the ODE system
on a staggered mesh, we do not go into detail here, but refer to Section 10.10.

10.10 A staggered Euler-Cromer scheme for a generalized
model

The more general model for vibration problems,

mu′′ + f(u′) + s(u) = F (t), u(0) = I, u′(0) = V, t ∈ (0, T], (94)

can be rewritten as a first-order ODE system

v′ = m−1 (F (t)− f(v)− s(u)) , (95)
u′ = v . (96)

It is natural to introduce a staggered mesh (see Section 8.1) and seek u at
mesh points tn (the numerical value is denoted by un) and v between mesh
points at tn+1/2 (the numerical value is denoted by vn+ 1

2). A centered difference
approximation to (96)-(95) can then be written in operator notation as

[Dtv = m−1 (F (t)− f(v)− s(u))]n, (97)

[Dtu = v]n+ 1
2 . (98)

Written out,

vn+ 1
2 − vn− 1

2

∆t = m−1 (Fn − f(vn)− s(un)) , (99)

un − un−1

∆t = vn+ 1
2 . (100)

With linear damping, f(v) = bv, we can use an arithmetic mean for f(vn):
f(vn) ≈= 1

2 (f(vn− 1
2) + f(vn+ 1

2)). The system (99)-(100) can then be solved
with respect to the unknowns un and vn+ 1

2 :

72

vn+ 1
2 =

(
1 + b

2m∆t
)−1(

vn−
1
2 + ∆tm−1

(
Fn − 1

2f(vn− 1
2)− s(un)

))
,

(101)

un = un−1 + ∆tvn− 1
2 . (102)

In case of quadratic damping, f(v) = b|v|v, we can use a geometric mean:
f(vn) ≈ b|vn− 1

2 |vn+ 1
2 . Inserting this approximation in (99)-(100) and solving

for the unknowns un and vn+ 1
2 results in

vn+ 1
2 = (1 + b

m
|vn− 1

2 |∆t)−1
(
vn−

1
2 + ∆tm−1 (Fn − s(un))

)
, (103)

un = un−1 + ∆tvn− 1
2 . (104)

The initial conditions are derived at the end of Section 8.1:

u0 = I, (105)

v
1
2 = V − 1

2∆tω2I . (106)

10.11 The PEFRL 4th-order accurate algorithm
A variant of the Euler-Cromer type of algorithm, which provides an error O(∆t4)
if f(v) = 0, is called PEFRL [4]. This algorithm is very well suited for integrating
dynamic systems (especially those without damping) over very long time periods.
Define

g(u, v) = 1
m

(F (t)− s(u)− f(v)) .

The algorithm is explicit and features these simple steps:

un+1,1 = un + ξ∆tvn, (107)

vn+1,1 = vn + 1
2(1− 2λ)∆tg(un+1,1, vn), (108)

un+1,2 = un+1,1 + χ∆tvn+1,1, (109)
vn+1,2 = vn+1,1 + λ∆tg(un+1,2, vn+1,1), (110)
un+1,3 = un+1,2 + (1− 2(χ+ ξ))∆tvn+1,2, (111)
vn+1,3 = vn+1,2 + λ∆tg(un+1,3, vn+1,2), (112)
un+1,4 = un+1,3 + χ∆tvn+1,3, (113)

vn+1 = vn+1,3 + 1
2(1− 2λ)∆tg(un+1,4, vn+1,3), (114)

un+1 = un+1,4 + ξ∆tvn+1 (115)

73

The parameters ξ, λ, and ξ have the values

ξ = 0.1786178958448091, (116)
λ = −0.2123418310626054, (117)
χ = −0.06626458266981849 (118)

11 Exercises and Problems
Exercise 19: Implement the solver via classes
Reimplement the vib.py program using a class Problem to hold all the physical
parameters of the problem, a class Solver to hold the numerical parameters and
compute the solution, and a class Visualizer to display the solution.

Hint. Use the ideas and examples from Section ?? and ?? in [2]. More
specifically, make a superclass Problem for holding the scalar physical parameters
of a problem and let subclasses implement the s(u) and F (t) functions as methods.
Try to call up as much existing functionality in vib.py as possible.
Filename: vib_class.

Problem 20: Use a backward difference for the damping
term
As an alternative to discretizing the damping terms βu′ and β|u′|u′ by centered
differences, we may apply backward differences:

[u′]n ≈ [D−t u]n,
[|u′|u′]n

≈ [|D−t u|D−t u]n

= |[D−t u]n|[D−t u]n .

The advantage of the backward difference is that the damping term is evaluated
using known values un and un−1 only. Extend the vib.py26 code with a scheme
based on using backward differences in the damping terms. Add statements
to compare the original approach with centered difference and the new idea
launched in this exercise. Perform numerical experiments to investigate how
much accuracy that is lost by using the backward differences.
Filename: vib_gen_bwdamping.

26http://tinyurl.com/nu656p2/vib/vib.py

74

http://tinyurl.com/nu656p2/vib/vib.py

Exercise 21: Use the forward-backward scheme with quadratic
damping
We consider the generalized model with quadratic damping, expressed as a
system of two first-order equations as in Section 10.10:

u′ = v,

v′ = 1
m

(F (t)− β|v|v − s(u)) .

However, contrary to what is done in Section 10.10, we want to apply the idea of
a forward-backward discretization: u is marched forward by a one-sided Forward
Euler scheme applied to the first equation, and thereafter v can be marched
forward by a Backward Euler scheme in the second equation. Express the idea
in operator notation and write out the scheme. Unfortunately, the backward
difference for the v equation creates a nonlinearity |vn+1|vn+1. To linearize
this nonlinearity, use the known value vn inside the absolute value factor, i.e.,
|vn+1|vn+1 ≈ |vn|vn+1. Show that the resulting scheme is equivalent to the one
in Section 10.10 for some time level n ≥ 1.

What we learn from this exercise is that the first-order differences and the
linearization trick play together in “the right way” such that the scheme is as
good as when we (in Section 10.10) carefully apply centered differences and a
geometric mean on a staggered mesh to achieve second-order accuracy. Filename:
vib_gen_bwdamping.

12 Applications of vibration models
The following text derives some of the most well-known physical problems that
lead to second-order ODE models of the type addressed in this document. We
consider a simple spring-mass system; thereafter extended with nonlinear spring,
damping, and external excitation; a spring-mass system with sliding friction; a
simple and a physical (classical) pendulum; and an elastic pendulum.

12.1 Oscillating mass attached to a spring
The most fundamental mechanical vibration system is depicted in Figure 17. A
body with mass m is attached to a spring and can move horizontally without
friction (in the wheels). The position of the body is given by the vector r(t) =
u(t)i, where i is a unit vector in x direction. There is only one force acting on
the body: a spring force Fs = −kui, where k is a constant. The point x = 0,
where u = 0, must therefore correspond to the body’s position where the spring
is neither extended nor compressed, so the force vanishes.

The basic physical principle that governs the motion of the body is Newton’s
second law of motion: F = ma, where F is the sum of forces on the body, m is
its mass, and a = r̈ is the acceleration. We use the dot for differentiation with

75

ku

u(t)

m

Figure 17: Simple oscillating mass.

respect to time, which is usual in mechanics. Newton’s second law simplifies
here to −Fs = müi, which translates to

−ku = mü .

Two initial conditions are needed: u(0) = I, u̇(0) = V . The ODE problem is
normally written as

mü+ ku = 0, u(0) = I, u̇(0) = V . (119)

It is not uncommon to divide by m and introduce the frequency ω =
√
k/m:

ü+ ω2u = 0, u(0) = I, u̇(0) = V . (120)

This is the model problem in the first part of this chapter, with the small
difference that we write the time derivative of u with a dot above, while we used
u′ and u′′ in previous parts of the document.

Since only one scalar mathematical quantity, u(t), describes the complete
motion, we say that the mechanical system has one degree of freedom (DOF).

Scaling. For numerical simulations it is very convenient to scale (120) and
thereby get rid of the problem of finding relevant values for all the parameters
m, k, I, and V . Since the amplitude of the oscillations are dictated by I and V
(or more precisely, V/ω), we scale u by I (or V/ω if I = 0):

ū = u

I
, t̄ = t

tc
.

The time scale tc is normally chosen as the inverse period 2π/ω or angular
frequency 1/ω, most often as tc = 1/ω. Inserting the dimensionless quantities ū
and t̄ in (120) results in the scaled problem

d2ū

dt̄2
+ ū = 0, ū(0) = 1, ū

t̄
(0) = β = V

Iω
,

76

where β is a dimensionless number. Any motion that starts from rest (V = 0) is
free of parameters in the scaled model!

The physics. The typical physics of the system in Figure 17 can be described
as follows. Initially, we displace the body to some position I, say at rest (V = 0).
After releasing the body, the spring, which is extended, will act with a force −kIi
and pull the body to the left. This force causes an acceleration and therefore
increases velocity. The body passes the point x = 0, where u = 0, and the spring
will then be compressed and act with a force kxi against the motion and cause
retardation. At some point, the motion stops and the velocity is zero, before the
spring force kxi has worked long enough to push the body in positive direction.
The result is that the body accelerates back and forth. As long as there is no
friction forces to damp the motion, the oscillations will continue forever.

12.2 General mechanical vibrating system

m F(t)

u(t)

bu′

ku

Figure 18: General oscillating system.

The mechanical system in Figure 17 can easily be extended to the more
general system in Figure 18, where the body is attached to a spring and a
dashpot, and also subject to an environmental force F (t)i. The system has still
only one degree of freedom since the body can only move back and forth parallel
to the x axis. The spring force was linear, Fs = −kui, in Section 12.1, but
in more general cases it can depend nonlinearly on the position. We therefore
set Fs = s(u)i. The dashpot, which acts as a damper, results in a force Fd
that depends on the body’s velocity u̇ and that always acts against the motion.
The mathematical model of the force is written Fd = f(u̇)i. A positive u̇ must
result in a force acting in the positive x direction. Finally, we have the external
environmental force Fe = F (t)i.

Newton’s second law of motion now involves three forces:

F (t)i + f(u̇)i− s(u)i = müi .

The common mathematical form of the ODE problem is

77

mü+ f(u̇) + s(u) = F (t), u(0) = I, u̇(0) = V . (121)

This is the generalized problem treated in the last part of the present chapter,
but with prime denoting the derivative instead of the dot.

The most common models for the spring and dashpot are linear: f(u̇) = bu̇
with a constant b ≥ 0, and s(u) = ku for a constant k.

Scaling. A specific scaling requires specific choices of f , s, and F . Suppose
we have

f(u̇) = b|u̇|u̇, s(u) = ku, F (t) = A sin(φt) .

We introduce dimensionless variables as usual, ū = u/uc and t̄ = t/tc. The scale
uc depends both on the initial conditions and F , but as time grows, the effect of
the initial conditions die out and F will drive the motion. Inserting ū and t̄ in
the ODE gives

m
uc
t2c

d2ū

dt̄2
+ b

u2
c

t2c

∣∣∣∣dūdt̄
∣∣∣∣ dūdt̄ + kucū = A sin(φtct̄) .

We divide by uc/t2c and demand the coefficients of the ū and the forcing term
from F (t) to have unit coefficients. This leads to the scales

tc =
√
m

k
, uc = A

k
.

The scaled ODE becomes

d2ū

dt̄2
+ 2β

∣∣∣∣dūdt̄
∣∣∣∣ dūdt̄ + ū = sin(γt̄), (122)

where there are two dimensionless numbers:

β = Ab

2mk , γ = φ

√
m

k
.

The β number measures the size of the damping term (relative to unity) and is
assumed to be small, basically because b is small. The φ number is the ratio of
the time scale of free vibrations and the time scale of the forcing. The scaled
initial conditions have two other dimensionless numbers as values:

ū(0) = Ik

A
,

dū

dt̄
= tc
uc
V = V

A

√
mk .

78

s(u)

u(t)

m

Figure 19: Sketch of a body sliding on a surface.

12.3 A sliding mass attached to a spring
Consider a variant of the oscillating body in Section 12.1 and Figure 17: the
body rests on a flat surface, and there is sliding friction between the body and
the surface. Figure 19 depicts the problem.

The body is attached to a spring with spring force −s(u)i. The friction force
is proportional to the normal force on the surface, −mgj, and given by −f(u̇)i,
where

f(u̇) =

 −µmg, u̇ < 0,
µmg, u̇ > 0,
0, u̇ = 0

Here, µ is a friction coefficient. With the signum function

sign(x) =

 −1, x < 0,
1, x > 0,
0, x = 0

we can simply write f(u̇) = µmg sign(u̇) (the sign function is implemented by
numpy.sign).

The equation of motion becomes

mü+ µmgsign(u̇) + s(u) = 0, u(0) = I, u̇(0) = V . (123)

12.4 A jumping washing machine
A washing machine is placed on four springs with efficient dampers. If the
machine contains just a few clothes, the circular motion of the machine induces a
sinusoidal external force and the machine will jump up and down if the frequency
of the external force is close to the natural frequency of the machine and its
spring-damper system.

79

12.5 Motion of a pendulum
Simple pendulum. A classical problem in mechanics is the motion of a
pendulum. We first consider a simple pendulum27 (sometimes also called a
mathematical pendulum): a small body of mass m is attached to a massless wire
and can oscillate back and forth in the gravity field. Figure 20 shows a sketch of
the problem.

g

m

L

θ

Figure 20: Sketch of a simple pendulum.

The motion is governed by Newton’s 2nd law, so we need to find expressions
for the forces and the acceleration. Three forces on the body are considered:
an unknown force S from the wire, the gravity force mg, and an air resistance
force, 1

2CD%A|v|v, hereafter called the drag force, directed against the velocity
of the body. Here, CD is a drag coefficient, % is the density of air, A is the cross
section area of the body, and v is the magnitude of the velocity.

We introduce a coordinate system with polar coordinates and unit vectors ir
and iθ as shown in Figure 21. The position of the center of mass of the body is

r(t) = x0i + y0j + Lir,

where i and j are unit vectors in the corresponding Cartesian coordinate system
in the x and y directions, respectively. We have that ir = cos θi + sin θj.

The forces are now expressed as follows.

• Wire force: −Sir
27https://en.wikipedia.org/wiki/Pendulum

80

https://en.wikipedia.org/wiki/Pendulum

(x0 ,y0)

mg

iθ

m

ir

∼|v|v

S

θ

Figure 21: Forces acting on a simple pendulum.

• Gravity force: −mgj = mg(− sin θ iθ + cos θ ir)

• Drag force: − 1
2CD%A|v|v iθ

Since a positive velocity means movement in the direction of iθ, the drag force
must be directed along −iθ so it works against the motion. We assume motion
in air so that the added mass effect can be neglected (for a spherical body, the
added mass is 1

2%V , where V is the volume of the body). Also the buoyancy
effect can be neglected for motion in the air when the density difference between
the fluid and the body is so significant.

The velocity of the body is found from r:

v(t) = ṙ(t) = d

dθ
(x0i + y0j + Lir)

dθ

dt
= Lθ̇iθ,

since d
dθ ir = iθ. It follows that v = |v| = Lθ̇. The acceleration is

a(t) = v̇(r) = d

dt
(Lθ̇iθ) = Lθ̈iθ + Lθ̇

diθ
dθ

θ̇ == Lθ̈iθ − Lθ̇2ir,

since d
dθ iθ = −ir.

Newton’s 2nd law of motion becomes

−Sir +mg(− sin θ iθ + cos θ ir)−
1
2CD%AL

2|θ̇|θ̇ iθ = mLθ̈θ̇ iθ − Lθ̇2ir,

81

leading to two component equations

−S +mg cos θ = −Lθ̇2, (124)

−mg sin θ − 1
2CD%AL

2|θ̇|θ̇ = mLθ̈ . (125)

From (124) we get an expression for S = mg cos θ + Lθ̇2, and from (125) we get
a differential equation for the angle θ(t). This latter equation is ordered as

mθ̈ + 1
2CD%AL|θ̇|θ̇ + mg

L
sin θ = 0 . (126)

Two initial conditions are needed: θ = Θ and θ̇ = Ω. Normally, the pendulum
motion is started from rest, which means Ω = 0.

Equation (126) fits the general model used in (71) in Section 10 if we define
u = θ, f(u′) = 1

2CD%AL|u̇|u̇, s(u) = L−1mg sin u, and F = 0. If the body is a
sphere with radius R, we can take CD = 0.4 and A = πR2. Exercise 25 asks you
to scale the equations and carry out specific simulations with this model.

Physical pendulum. The motion of a compound or physical pendulum where
the wire is a rod with mass, can be modeled very similarly. The governing
equation is Ia = T where I is the moment of inertia of the entire body about
the point (x0, y0), and T is the sum of moments of the forces with respect to
(x0, y0). The vector equation reads

r × (−Sir +mg(− sin θiθ + cos θir)−
1
2CD%AL

2|θ̇|θ̇iθ) = I(Lθ̈θ̇iθ − Lθ̇2ir) .

The component equation in iθ direction gives the equation of motion for θ(t):

Iθ̈ + 1
2CD%AL

3|θ̇|θ̇ +mgL sin θ = 0 . (127)

12.6 Dynamic free body diagram during pendulum mo-
tion

Usually one plots the mathematical quantities as functions of time to visualize
the solution of ODE models. Exercise 25 asks you to do this for the motion of a
pendulum in the previous section. However, sometimes it is more instructive to
look at other types of visualizations. For example, we have the pendulum and
the free body diagram in Figures 20 and 21. We may think of these figures as
animations in time instead. Especially the free body diagram will show both
the motion of the pendulum and the size of the forces during the motion. The
present section exemplifies how to make such a dynamic body diagram. Two
typical snapshots of free body diagrams are displayed below (the drag force is
magnified 5 times to become more visual!).

82

Dynamic physical sketches, coupled to the numerical solution of differential
equations, requires a program to produce a sketch for the situation at each time
level. Pysketcher28 is such a tool. In fact (and not surprising!) Figures 20 and 21
were drawn using Pysketcher. The details of the drawings are explained in the
Pysketcher tutorial29. Here, we outline how this type of sketch can be used to
create an animated free body diagram during the motion of a pendulum.

Pysketcher is actually a layer of useful abstractions on top of standard plotting
packages. This means that we in fact apply Matplotlib to make the animated
free body diagram, but instead of dealing with a wealth of detailed Matplotlib
commands, we can express the drawing in terms of more high-level objects, e.g.,
objects for the wire, angle θ, body with mass m, arrows for forces, etc. When
the position of these objects are given through variables, we can just couple
those variables to the dynamic solution of our ODE and thereby make a unique
drawing for each θ value in a simulation.

Writing the solver. Let us start with the most familiar part of the current
problem: writing the solver function. We use Odespy for this purpose. We also
work with dimensionless equations. Since θ can be viewed as dimensionless, we
only need to introduce a dimensionless time, here taken as t̄ = t/

√
L/g. The

resulting dimensionless mathematical model for θ, the dimensionless angular
velocity ω, the dimensionless wire force S̄, and the dimensionless drag force D̄ is
then

dω

dt̄
= −α|ω|ω − sin θ, (128)

dθ

dt̄
= ω, (129)

S̄ = ω2 + cos θ, (130)
D̄ = −α|ω|ω, (131)

28https://github.com/hplgit/pysketcher
29http://hplgit.github.io/pysketcher/doc/web/index.html

83

https://github.com/hplgit/pysketcher
http://hplgit.github.io/pysketcher/doc/web/index.html

with

α = CD%πR
2L

2m .

as a dimensionless parameter expressing the ratio of the drag force and the
gravity force. The dimensionless ω is made non-dimensional by the time, so
ω
√
L/g is the corresponding angular frequency with dimensions.
A suitable function for computing (128)-(131) is listed below.

def simulate(alpha, Theta, dt, T):
import odespy

def f(u, t, alpha):
omega, theta = u
return [-alpha*omega*abs(omega) - sin(theta),

omega]

import numpy as np
Nt = int(round(T/float(dt)))
t = np.linspace(0, Nt*dt, Nt+1)
solver = odespy.RK4(f, f_args=[alpha])
solver.set_initial_condition([0, Theta])
u, t = solver.solve(

t, terminate=lambda u, t, n: abs(u[n,1]) < 1E-3)
omega = u[:,0]
theta = u[:,1]
S = omega**2 + np.cos(theta)
drag = -alpha*np.abs(omega)*omega
return t, theta, omega, S, drag

Drawing the free body diagram. The sketch function below applies Pys-
ketcher objects to build a diagram like that in Figure 21, except that we have
removed the rotation point (x0, y0) and the unit vectors in polar coordinates as
these objects are not important for an animated free body diagram.

import sys
try:

from pysketcher import *
except ImportError:

print ’Pysketcher must be installed from’
print ’https://github.com/hplgit/pysketcher’
sys.exit(1)

Overall dimensions of sketch
H = 15.
W = 17.

drawing_tool.set_coordinate_system(

84

xmin=0, xmax=W, ymin=0, ymax=H,
axis=False)

def sketch(theta, S, mg, drag, t, time_level):
"""
Draw pendulum sketch with body forces at a time level
corresponding to time t. The drag force is in
drag[time_level], the force in the wire is S[time_level],
the angle is theta[time_level].
"""
import math
a = math.degrees(theta[time_level]) # angle in degrees
L = 0.4*H # Length of pendulum
P = (W/2, 0.8*H) # Fixed rotation point

mass_pt = path.geometric_features()[’end’]
rod = Line(P, mass_pt)

mass = Circle(center=mass_pt, radius=L/20.)
mass.set_filled_curves(color=’blue’)
rod_vec = rod.geometric_features()[’end’] - \

rod.geometric_features()[’start’]
unit_rod_vec = unit_vec(rod_vec)
mass_symbol = Text(’m’, mass_pt + L/10*unit_rod_vec)

rod_start = rod.geometric_features()[’start’] # Point P
vertical = Line(rod_start, rod_start + point(0,-L/3))

def set_dashed_thin_blackline(*objects):
"""Set linestyle of objects to dashed, black, width=1."""
for obj in objects:

obj.set_linestyle(’dashed’)
obj.set_linecolor(’black’)
obj.set_linewidth(1)

set_dashed_thin_blackline(vertical)
set_dashed_thin_blackline(rod)
angle = Arc_wText(r’θ’, rod_start, L/6, -90, a,

text_spacing=1/30.)

magnitude = 1.2*L/2 # length of a unit force in figure
force = mg[time_level] # constant (scaled eq: about 1)
force *= magnitude
mg_force = Force(mass_pt, mass_pt + force*point(0,-1),

’’, text_pos=’end’)
force = S[time_level]
force *= magnitude
rod_force = Force(mass_pt, mass_pt - force*unit_vec(rod_vec),

’’, text_pos=’end’,
text_spacing=(0.03, 0.01))

85

force = drag[time_level]
force *= magnitude
air_force = Force(mass_pt, mass_pt -

force*unit_vec((rod_vec[1], -rod_vec[0])),
’’, text_pos=’end’,
text_spacing=(0.04,0.005))

body_diagram = Composition(
{’mg’: mg_force, ’S’: rod_force, ’air’: air_force,
’rod’: rod, ’body’: mass
’vertical’: vertical, ’theta’: angle,})

body_diagram.draw(verbose=0)
drawing_tool.savefig(’tmp_%04d.png’ % time_level, crop=False)
(No cropping: otherwise movies will be very strange!)

Making the animated free body diagram. It now remains to couple the
simulate and sketch functions. We first run simulate:

from math import pi, radians, degrees
import numpy as np
alpha = 0.4
period = 2*pi # Use small theta approximation
T = 12*period # Simulate for 12 periods
dt = period/40 # 40 time steps per period
a = 70 # Initial amplitude in degrees
Theta = radians(a)

t, theta, omega, S, drag = simulate(alpha, Theta, dt, T)

The next step is to run through the time levels in the simulation and make a
sketch at each level:

for time_level, t_ in enumerate(t):
sketch(theta, S, mg, drag, t_, time_level)

The individual sketches are (by the sketch function) saved in files with names
tmp_%04d.png. These can be combined to videos using (e.g.) ffmpeg. A
complete function animate for running the simulation and creating video files is
listed below.

def animate():
Clean up old plot files
import os, glob
for filename in glob.glob(’tmp_*.png’) + glob.glob(’movie.*’):

os.remove(filename)
Solve problem
from math import pi, radians, degrees
import numpy as np
alpha = 0.4

86

period = 2*pi # Use small theta approximation
T = 12*period # Simulate for 12 periods
dt = period/40 # 40 time steps per period
a = 70 # Initial amplitude in degrees
Theta = radians(a)

t, theta, omega, S, drag = simulate(alpha, Theta, dt, T)

Visualize drag force 5 times as large
drag *= 5
mg = np.ones(S.size) # Gravity force (needed in sketch)

Draw animation
import time
for time_level, t_ in enumerate(t):

sketch(theta, S, mg, drag, t_, time_level)
time.sleep(0.2) # Pause between each frame on the screen

Make videos
prog = ’ffmpeg’
filename = ’tmp_%04d.png’
fps = 6
codecs = {’flv’: ’flv’, ’mp4’: ’libx264’,

’webm’: ’libvpx’, ’ogg’: ’libtheora’}
for ext in codecs:

lib = codecs[ext]
cmd = ’%(prog)s -i %(filename)s -r %(fps)s ’ % vars()
cmd += ’-vcodec %(lib)s movie.%(ext)s’ % vars()
print(cmd)
os.system(cmd)

12.7 Motion of an elastic pendulum
Consider a pendulum as in Figure 20, but this time the wire is elastic. The
length of the wire when it is not stretched is L0, while L(t) is the stretched
length at time t during the motion.

Stretching the elastic wire a distance ∆L gives rise to a spring force k∆L in
the opposite direction of the stretching. Let n be a unit normal vector along the
wire from the point r0 = (x0, y0) and in the direction of iθ, see Figure 21 for
definition of (x0, y0) and iθ. Obviously, we have n = iθ, but in this modeling
of an elastic pendulum we do not need polar coordinates. Instead, it is more
straightforward to develop the equation in Cartesian coordinates.

A mathematical expression for n is

n = r − r0

L(t) ,

where L(t) = ||r − r0|| is the current length of the elastic wire. The position
vector r in Cartesian coordinates reads r(t) = x(t)i + y(t)j, where i and j are

87

unit vectors in the x and y directions, respectively. It is convenient to introduce
the Cartesian components nx and ny of the normal vector:

n = r − r0

L(t) = x(t)− x0

L(t) i + y(t)− y0

L(t) j = nxi + nyj .

The stretch ∆L in the wire is

∆t = L(t)− L0 .

The force in the wire is then −Sn = −k∆Ln.
The other forces are the gravity and the air resistance, just as in Figure 21.

For motion in air we can neglect the added mass and buoyancy effects. The
main difference is that we have a model for S in terms of the motion (as soon
as we have expressed ∆L by r). For simplicity, we drop the air resistance term
(but Exercise 27 asks you to include it).

Newton’s second law of motion applied to the body now results in

mr̈ = −k(L− L0)n−mgj (132)

The two components of (132) are

ẍ = − k
m

(L− L0)nx, (133)

(134)

ÿ = − k
m

(L− L0)ny − g . (135)

Remarks about an elastic vs a non-elastic pendulum. Note that the
derivation of the ODEs for an elastic pendulum is more straightforward than for a
classical, non-elastic pendulum, since we avoid the details with polar coordinates,
but instead work with Newton’s second law directly in Cartesian coordinates.
The reason why we can do this is that the elastic pendulum undergoes a general
two-dimensional motion where all the forces are known or expressed as functions
of x(t) and y(t), such that we get two ordinary differential equations. The motion
of the non-elastic pendulum, on the other hand, is constrained: the body has to
move along a circular path, and the force S in the wire is unknown.

The non-elastic pendulum therefore leads to a differential-algebraic equation,
i.e., ODEs for x(t) and y(t) combined with an extra constraint (x− x0)2 + (y −
y0)2 = L2 ensuring that the motion takes place along a circular path. The
extra constraint (equation) is compensated by an extra unknown force −Sn.
Differential-algebraic equations are normally hard to solve, especially with pen
and paper. Fortunately, for the non-elastic pendulum we can do a trick: in
polar coordinates the unknown force S appears only in the radial component of
Newton’s second law, while the unknown degree of freedom for describing the
motion, the angle θ(t), is completely governed by the asimuthal component. This
allows us to decouple the unknowns S and θ. But this is a kind of trick and not

88

a widely applicable method. With an elastic pendulum we use straightforward
reasoning with Newton’s 2nd law and arrive at a standard ODE problem that
(after scaling) is easy solve on a computer.

Initial conditions. What is the initial position of the body? We imagine that
first the pendulum hangs in equilibrium in its vertical position, and then it is
displaced an angle Θ. The equilibrium position is governed by the ODEs with
the accelerations set to zero. The x component leads to x(t) = x0, while the y
component gives

0 = − k
m

(L− L0)ny − g = k

m
(L(0)− L0)− g ⇒ L(0) = L0 +mg/k,

since ny = −11 in this position. The corresponding y value is then from ny = −1:

y(t) = y0 − L(0) = y0 − (L0 +mg/k) .

Let us now choose (x0, y0) such that the body is at the origin in the equilibrium
position:

x0 = 0, y0 = L0 +mg/k .

Displacing the body an angle Θ to the right leads to the initial position

x(0) = (L0 +mg/k) sin Θ, y(0) = (L0 +mg/k)(1− cos Θ) .

The initial velocities can be set to zero: x′(0) = y′(0) = 0.

The complete ODE problem. We can summarize all the equations as fol-
lows:

ẍ = − k
m

(L− L0)nx,

ÿ = − k
m

(L− L0)ny − g,

L =
√

(x− x0)2 + (y − y0)2,

nx = x− x0

L
,

ny = y − y0

L
,

x(0) = (L0 +mg/k) sin Θ,
x′(0) = 0,
y(0) = (L0 +mg/k)(1− cos Θ),
y′(0) = 0 .

We insert nx and ny in the ODEs:

89

ẍ = − k
m

(
1− L0

L

)
(x− x0), (136)

ÿ = − k
m

(
1− L0

L

)
(y − y0)− g, (137)

L =
√

(x− x0)2 + (y − y0)2, (138)
x(0) = (L0 +mg/k) sin Θ, (139)
x′(0) = 0, (140)
y(0) = (L0 +mg/k)(1− cos Θ), (141)
y′(0) = 0 . (142)

Scaling. The elastic pendulum model can be used to study both an elastic
pendulum and a classic, non-elastic pendulum. The latter problem is obtained
by letting k →∞. Unfortunately, a serious problem with the ODEs (136)-(137)
is that for large k, we have a very large factor k/m multiplied by a very small
number 1−L0/L, since for large k, L ≈ L0 (very small deformations of the wire).
The product is subject to significant round-off errors for many relevant physical
values of the parameters. To circumvent the problem, we introduce a scaling.
This will also remove physical parameters from the problem such that we end
up with only one dimensionless parameter, closely related to the elasticity of the
wire. Simulations can then be done by setting just this dimensionless parameter.

The characteristic length can be taken such that in equilibrium, the scaled
length is unity, i.e., the characteristic length is L0 +mg/k:

x̄ = x

L0 +mg/k
, ȳ = y

L0 +mg/k
.

We must then also work with the scaled length L̄ = L/(L0 +mg/k).
Introducing t̄ = t/tc, where tc is a characteristic time we have to decide upon

later, one gets

d2x̄

dt̄2
= −t2c

k

m

(
1− L0

L0 +mg/k

1
L̄

)
x̄,

d2ȳ

dt̄2
= −t2c

k

m

(
1− L0

L0 +mg/k

1
L̄

)
(ȳ − 1)− t2c

g

L0 +mg/k
,

L̄ =
√
x̄2 + (ȳ − 1)2,

x̄(0) = sin Θ,
x̄′(0) = 0,
ȳ(0) = 1− cos Θ,
ȳ′(0) = 0 .

90

For a non-elastic pendulum with small angles, we know that the frequency of the
oscillations are ω =

√
L/g. It is therefore natural to choose a similar expression

here, either the length in the equilibrium position,

t2c = L0 +mg/k

g
.

or simply the unstretched length,

t2c = L0

g
.

These quantities are not very different (since the elastic model is valid only for
quite small elongations), so we take the latter as it is the simplest one.

The ODEs become

d2x̄

dt̄2
= −L0k

mg

(
1− L0

L0 +mg/k

1
L̄

)
x̄,

d2ȳ

dt̄2
= −L0k

mg

(
1− L0

L0 +mg/k

1
L̄

)
(ȳ − 1)− L0

L0 +mg/k
,

L̄ =
√
x̄2 + (ȳ − 1)2 .

We can now identify a dimensionless number

β = L0

L0 +mg/k
= 1

1 + mg
L0k

,

which is the ratio of the unstretched length and the stretched length in equilibrium.
The non-elastic pendulum will have β = 1 (k →∞). With β the ODEs read

d2x̄

dt̄2
= − β

1− β

(
1− β

L̄

)
x̄, (143)

d2ȳ

dt̄2
= − β

1− β

(
1− β

L̄

)
(ȳ − 1)− β, (144)

L̄ =
√
x̄2 + (ȳ − 1)2, (145)

x̄(0) = (1 + ε) sin Θ, (146)
dx̄

dt̄
(0) = 0, (147)

ȳ(0) = 1− (1 + ε) cos Θ, (148)
dȳ

dt̄
(0) = 0, (149)

We have here added a parameter ε, which is an additional downward stretch of
the wire at t = 0. This parameter makes it possible to do a desired test: vertical
oscillations of the pendulum. Without ε, starting the motion from (0, 0) with

91

zero velocity will result in x = y = 0 for all times (also a good test!), but with
an initial stretch so the body’s position is (0, ε), we will have oscillatory vertical
motion with amplitude ε (see Exercise 26).

Remark on the non-elastic limit. We immediately see that as k →∞ (i.e.,
we obtain a non-elastic pendulum), β → 1, L̄→ 1, and we have very small values
1− βL̄−1 divided by very small values 1− β in the ODEs. However, it turns out
that we can set β very close to one and obtain a path of the body that within
the visual accuracy of a plot does not show any elastic oscillations. (Should
the division of very small values become a problem, one can study the limit by
L’Hospital’s rule:

lim
β→1

1− βL̄−1

1− β = 1
L̄
,

and use the limit L̄−1 in the ODEs for β values very close to 1.)

12.8 Vehicle on a bumpy road

r0

Figure 22: Sketch of one-wheel vehicle on a bumpy road.

We consider a very simplistic vehicle, on one wheel, rolling along a bumpy
road. The oscillatory nature of the road will induce an external forcing on
the spring system in the vehicle and cause vibrations. Figure 22 outlines the
situation.

To derive the equation that governs the motion, we must first establish the
position vector of the black mass at the top of the spring. Suppose the spring
has length L without any elongation or compression, suppose the radius of the
wheel is R, and suppose the height of the black mass at the top is H. With the
aid of the r0 vector in Figure 22, the position r of the center point of the mass is

r = r0 + 2Rj + Lj + uj + 1
2Hj, (150)

92

where u is the elongation or compression in the spring according to the (unknown
and to be computed) vertical displacement u relative to the road. If the vehicle
travels with constant horizontal velocity v and h(x) is the shape of the road,
then the vector r0 is

r0 = vti + h(vt)j,

if the motion starts from x = 0 at time t = 0.
The forces on the mass is the gravity, the spring force, and an optional

damping force that is proportional to the vertical velocity u̇. Newton’s second
law of motion then tells that

mr̈ = −mgj − s(u)− bu̇j .

This leads to

mü = −s(u)− bu̇−mg −mh′′(vt)v2

To simplify a little bit, we omit the gravity force mg in comparison with
the other terms. Introducing u′ for u̇ then gives a standard damped, vibration
equation with external forcing:

mu′′ + bu′ + s(u) = −mh′′(vt)v2 . (151)

Since the road is normally known just as a set of array values, h′′ must be
computed by finite differences. Let ∆x be the spacing between measured values
hi = h(i∆x) on the road. The discrete second-order derivative h′′ reads

qi = hi−1 − 2hi + hi+1

∆x2 , i = 1, . . . , Nx − 1 .

We may for maximum simplicity set the end points as q0 = q1 and qNx
= qNx−1.

The term −mh′′(vt)v2 corresponds to a force with discrete time values

Fn = −mqnv2, ∆t = v−1∆x .

This force can be directly used in a numerical model

[mDtDtu+ bD2tu+ s(u) = F]n .

Software for computing u and also making an animated sketch of the motion
like we did in Section 12.6 is found in a separate project on the web: https:
//github.com/hplgit/bumpy. You may start looking at the tutorial30.

30http://hplgit.github.io/bumpy/doc/pub/bumpy.pdf

93

https://github.com/hplgit/bumpy
https://github.com/hplgit/bumpy
http://hplgit.github.io/bumpy/doc/pub/bumpy.pdf

12.9 Bouncing ball
A bouncing ball is a ball in free vertically fall until it impacts the ground, but
during the impact, some kinetic energy is lost, and a new motion upwards with
reduced velocity starts. After the motion is retarded, a new free fall starts, and
the process is repeated. At some point the velocity close to the ground is so
small that the ball is considered to be finally at rest.

The motion of the ball falling in air is governed by Newton’s second law
F = ma, where a is the acceleration of the body, m is the mass, and F is the
sum of all forces. Here, we neglect the air resistance so that gravity −mg is the
only force. The height of the ball is denoted by h and v is the velocity. The
relations between h, v, and a,

h′(t) = v(t), v′(t) = a(t),

combined with Newton’s second law gives the ODE model

h′′(t) = −g, (152)

or expressed alternatively as a system of first-order equations:

v′(t) = −g, (153)
h′(t) = v(t) . (154)

These equations govern the motion as long as the ball is away from the ground
by a small distance εh > 0. When h < εh, we have two cases.

1. The ball impacts the ground, recognized by a sufficiently large negative
velocity (v < −εv). The velocity then changes sign and is reduced by a
factor CR, known as the coefficient of restitution31. For plotting purposes,
one may set h = 0.

2. The motion stops, recognized by a sufficiently small velocity (|v| < εv)
close to the ground.

12.10 Two-body gravitational problem
Consider two astronomical objects A and B that attract each other by gravita-
tional forces. A and B could be two stars in a binary system, a planet orbiting a
star, or a moon orbiting a planet. Each object is acted upon by the gravitational
force due to the other object. Consider motion in a plane (for simplicity) and
let (xA, yA) and (xB , yB) be the positions of object A and B, respectively.

31http://en.wikipedia.org/wiki/Coefficient_of_restitution

94

http://en.wikipedia.org/wiki/Coefficient_of_restitution

The governing equations. Newton’s second law of motion applied to each
object is all we need to set up a mathematical model for this physical problem:

mAẍA = F , (155)
mBẍB = −F , (156)

where F is the gravitational force

F = GmAmB

||r||3
r,

where

r(t) = xB(t)− xA(t),

and G is the gravitational constant: G = 6.674 · 10−11 Nm2/kg2.

Scaling. A problem with these equations is that the parameters are very large
(mA, mB , ||r||) or very small (G). The rotation time for binary stars can be very
small and large as well. It is therefore advantageous to scale the equations. A
natural length scale could be the initial distance between the objects: L = r(0).
We write the dimensionless quantities as

x̄A = xA
L
, x̄B = xB

L
, t̄ = t

tc
.

The gravity force is transformed to

F = GmAmB

L2||r̄||3
r̄, r̄ = x̄B − x̄A,

so the first ODE for xA becomes

d2x̄A
dt̄2

= GmBt
2
c

L3
r̄

||r̄||3
.

Assuming that quantities with a bar and their derivatives are around unity in
size, it is natural to choose tc such that the fraction GmBtc/L

2 = 1:

tc =

√
L3

GmB
.

From the other equation for xB we get another candidate for tc with mA instead
of mB. Which mass we choose play a role if mA � mB or mB � mA. One
solution is to use the sum of the masses:

tc =

√
L3

G(mA +mB) .

95

Taking a look at Kepler’s laws32 of planetary motion, the orbital period for a
planet around the star is given by the tc above, except for a missing factor of
2π, but that means that t−1

c is just the angular frequency of the motion. Our
characteristic time tc is therefore highly relevant. Introducing the dimensionless
number

α = mA

mB
,

we can write the dimensionless ODE as

d2x̄A
dt̄2

= 1
1 + α

r̄

||r̄||3
, (157)

d2x̄B
dt̄2

= 1
1 + α−1

r̄

||r̄||3
. (158)

In the limit mA � mB, i.e., α � 1, object B stands still, say x̄B = 0, and
object A orbits according to

d2x̄A
dt̄2

= − x̄A
||x̄A||3

.

Solution in a special case: planet orbiting a star. To better see the
motion, and that our scaling is reasonable, we introduce polar coordinates r and
θ:

x̄A = r cos θi + r sin θj,
which means x̄A can be written as x̄A = rir. Since

d

dt
ir = θ̇iθ,

d

dt
iθ = −θ̇ir,

we have

d2x̄A
dt̄2

= (r̈ − rθ̇2)ir + (rθ̈ + 2ṙθ̇)iθ .

The equation of motion for mass A is then

r̈ − rθ̇2 = − 1
r2 ,

rθ̈ + 2ṙθ̇ = 0 .

The special case of circular motion, r = 1, fulfills the equations, since the latter
equation then gives θ̇ = const and the former then gives θ̇ = 1, i.e., the motion
is r(t) = 1, θ(t) = t, with unit angular frequency as expected and period 2π as
expected.

32https://en.wikipedia.org/wiki/Kepler%27s_laws_of_planetary_motion

96

https://en.wikipedia.org/wiki/Kepler%27s_laws_of_planetary_motion

12.11 Electric circuits
Although the term “mechanical vibrations” is used in the present book, we must
mention that the same type of equations arise when modeling electric circuits.
The current I(t) in a circuit with an inductor with inductance L, a capacitor
with capacitance C, and overall resistance R, is governed by

Ï + R

L
İ + 1

LC
I = V̇ (t), (159)

where V (t) is the voltage source powering the circuit. This equation has the same
form as the general model considered in Section 10 if we set u = I, f(u′) = bu′

and define b = R/L, s(u) = L−1C−1u, and F (t) = V̇ (t).

13 Exercises
Exercise 22: Simulate resonance
We consider the scaled ODE model (122) from Section 12.2. After scaling, the
amplitude of u will have a size about unity as time grows and the effect of the
initial conditions die out due to damping. However, as γ → 1, the amplitude of
u increases, especially if β is small. This effect is called resonance. The purpose
of this exercise is to explore resonance.

a) Figure out how the solver function in vib.py can be called for the scaled
ODE (122).

b) Run γ = 5, 1.5, 1.1, 1 for β = 0.005, 0.05, 0.2. For each β value, present an
image with plots of u(t) for the four γ values.
Filename: resonance.

Exercise 23: Simulate oscillations of a sliding box
Consider a sliding box on a flat surface as modeled in Section 12.3. As spring
force we choose the nonlinear formula

s(u) = k

α
tanh(αu) = ku+ 1

3α
2ku3 + 2

15α
4ku5 +O(u6) .

a) Plot g(u) = α−1 tanh(αu) for various values of α. Assume u ∈ [−1, 1].

b) Scale the equations using I as scale for u and
√
m/k as time scale.

c) Implement the scaled model in b). Run it for some values of the dimensionless
parameters.
Filename: sliding_box.

97

Exercise 24: Simulate a bouncing ball
Section 12.9 presents a model for a bouncing ball. Choose one of the two ODE
formulation, (152) or (153)-(154), and simulate the motion of a bouncing ball.
Plot h(t). Think about how to plot v(t).

Hint. A naive implementation may get stuck in repeated impacts for large
time step sizes. To avoid this situation, one can introduce a state variable that
holds the mode of the motion: free fall, impact, or rest. Two consecutive impacts
imply that the motion has stopped.
Filename: bouncing_ball.

Exercise 25: Simulate a simple pendulum
Simulation of simple pendulum can be carried out by using the mathematical
model derived in Section 12.5 and calling up functionality in the vib.py33 file
(i.e., solve the second-order ODE by centered finite differences).

a) Scale the model. Set up the dimensionless governing equation for θ and
expressions for dimensionless drag and wire forces.

b) Write a function for computing θ and the dimensionless drag force and the
force in the wire, using the solver function in the vib.py file. Plot these three
quantities below each other (in subplots) so the graphs can be compared. Run
two cases, first one in the limit of Θ small and no drag, and then a second one
with Θ = 40 degrees and α = 0.8.
Filename: simple_pendulum.

Exercise 26: Simulate an elastic pendulum
Section 12.7 describes a model for an elastic pendulum, resulting in a system of
two ODEs. The purpose of this exercise is to implement the scaled model, test
the software, and generalize the model.

a) Write a function simulate that can simulate an elastic pendulum using the
scaled model. The function should have the following arguments:

def simulate(
beta=0.9, # dimensionless parameter
Theta=30, # initial angle in degrees
epsilon=0, # initial stretch of wire
num_periods=6, # simulate for num_periods
time_steps_per_period=60, # time step resolution
plot=True, # make plots or not
):

33http://tinyurl.com/nu656p2/vib/vib.py

98

http://tinyurl.com/nu656p2/vib/vib.py

To set the total simulation time and the time step, we use our knowledge of the
scaled, classical, non-elastic pendulum: u′′ + u = 0, with solution u = Θ cos t̄.
The period of these oscillations is P = 2π and the frequency is unity. The time
for simulation is taken as num_periods times P . The time step is set as P
divided by time_steps_per_period.

The simulate function should return the arrays of x, y, θ, and t, where
θ = tan−1(x/(1 − y)) is the angular displacement of the elastic pendulum
corresponding to the position (x, y).

If plot is True, make a plot of ȳ(t̄) versus x̄(t̄), i.e., the physical motion of
the mass at (x̄, ȳ). Use the equal aspect ratio on the axis such that we get a
physically correct picture of the motion. Also make a plot of θ(t̄), where θ is
measured in degrees. If Θ < 10 degrees, add a plot that compares the solutions
of the scaled, classical, non-elastic pendulum and the elastic pendulum (θ(t)).

Although the mathematics here employs a bar over scaled quantities, the
code should feature plain names x for x̄, y for ȳ, and t for t̄ (rather than x_bar,
etc.). These variable names make the code easier to read and compare with the
mathematics.

Hint 1. Equal aspect ratio is set by plt.gca().set_aspect(’equal’) in
Matplotlib (import matplotlib.pyplot as plt) and in SciTools by the com-
mand plt.plot(..., daspect=[1,1,1], daspectmode=’equal’) (provided
you have done import scitools.std as plt).

Hint 2. If you want to use Odespy to solve the equations, order the ODEs like
˙̄x, x̄,˙̄y, ȳ such that odespy.EulerCromer can be applied.

b) Write a test function for testing that Θ = 0 and ε = 0 gives x = y = 0 for all
times.

c) Write another test function for checking that the pure vertical motion of
the elastic pendulum is correct. Start with simplifying the ODEs for pure
vertical motion and show that ȳ(t̄) fulfills a vibration equation with frequency√
β/(1− β). Set up the exact solution.
Write a test function that uses this special case to verify the simulate

function. There will be numerical approximation errors present in the results
from simulate so you have to believe in correct results and set a (low) tolerance
that corresponds to the computed maximum error. Use a small ∆t to obtain a
small numerical approximation error.

d) Make a function demo(beta, Theta) for simulating an elastic pendulum
with a given β parameter and initial angle Θ. Use 600 time steps per period to
get every accurate results, and simulate for 3 periods.
Filename: elastic_pendulum.

99

Exercise 27: Simulate an elastic pendulum with air resis-
tance
This is a continuation Exercise 26. Air resistance on the body with mass m
can be modeled by the force − 1

2%CDA|v|v, where CD is a drag coefficient (0.2
for a sphere), % is the density of air (1.2 kg m−3), A is the cross section area
(A = πR2 for a sphere, where R is the radius), and v is the velocity of the body.
Include air resistance in the original model, scale the model, write a function
simulate_drag that is a copy of the simulate function from Exercise 26, but
with the new ODEs included, and show plots of how air resistance influences the
motion.
Filename: elastic_pendulum_drag.

Remarks. Test functions are challenging to construct for the problem with
air resistance. You can reuse the tests from Exercise 27 for simulate_drag, but
these tests does not verify the new terms arising from air resistance.

Exercise 28: Implement the PEFRL algorithm
We consider the motion of a planet around a star (Section 12.10). The simplified
case where one mass is very much bigger than the other and one object is at
rest, results in the scaled ODE model

ẍ+ (x2 + y2)−3/2x = 0,
ÿ + (x2 + y2)−3/2y = 0 .

a) It is easy to show that x(t) and y(t) go like sine and cosine functions. Use
this idea to derive the exact solution.

b) One believes that a planet may orbit a star for billions of years. We are now
interested in how accurate methods we actually need for such calculations. A
first task is to determine what the time interval of interest is in scaled units.
Take the earth and sun as typical objects and find the characteristic time used
in the scaling of the equations (tc =

√
L3/(mG)), where m is the mass of the

sun, L is the distance between the sun and the earth, and G is the gravitational
constant. Find the scaled time interval corresponding to one billion years.

c) Solve the equations using 4th-order Runge-Kutta and the Euler-Cromer
methods. You may benefit from applying Odespy for this purpose. With each
solver, simulate 10000 orbits and print the maximum position error and CPU
time as a function of time step. Note that the maximum position error does
not necessarily occur at the end of the simulation. The position error achieved
with each solver will depend heavily on the size of the time step. Let the time
step correspond to 200, 400, 800 and 1600 steps per orbit, respectively. Are the
results as expected? Explain briefly. When you develop your program, have in
mind that it will be extended with an implementation of the other algorithms
(as requested in d) and e) later) and experiments with this algorithm as well.

100

d) Implement a solver based on the PEFRL method from Section 10.11. Verify
its 4th-order convergence using an equation u′′ + u = 0.

e) The simulations done previously with the 4th-order Runge-Kutta and Euler-
Cromer are now to be repeated with the PEFRL solver, so the code must be
extended accordingly. Then run the simulations and comment on the performance
of PEFRL compared to the other two.

f) Use the PEFRL solver to simulate 100000 orbits with a fixed time step
corresponding to 1600 steps per period. Record the maximum error within each
subsequent group of 1000 orbits. Plot these errors and fit (least squares) a
mathematical function to the data. Print also the total CPU time spent for all
100000 orbits.

Now, predict the error and required CPU time for a simulation of 1 billion
years (orbits). Is it feasible on today’s computers to simulate the planetary
motion for one billion years?
Filename: vib_PEFRL.

Remarks. This exercise investigates whether it is feasible to predict planetary
motion for the life time of a solar system.

References
[1] E. Hairer, S. P. Nørsett, and G. Wanner. Solving Ordinary Differential

Equations I. Nonstiff Problems. Springer, 1993.

[2] H. P. Langtangen. Finite Difference Computing with Exponential Decay
Models. Lecture Notes in Computational Science and Engineering. Springer,
2016. http://hplgit.github.io/decay-book/doc/web/.

[3] H. P. Langtangen and G. K. Pedersen. Scaling of Differential Equations.
Simula Springer Brief Series. Springer, 2016. http://hplgit.github.io/
scaling-book/doc/web/.

[4] I. P. Omelyan, I. M. Mryglod, , and R. Folk. Optimized forest-ruth- and
suzuki-like algorithms for integration of motion in many-body systems. Com-
puter Physics Communication, 146(2):188–202, 2002.

101

http://hplgit.github.io/decay-book/doc/web/
http://hplgit.github.io/scaling-book/doc/web/
http://hplgit.github.io/scaling-book/doc/web/

102

Index
alternating mesh, 52
animation, 17
argparse (Python module), 69
ArgumentParser (Python class), 69
averaging

geometric, 65

centered difference, 6

DOF (degree of freedom), 76

energy principle, 41
error

global, 29
Euler-Cromer scheme, 45

finite differences
centered, 6

Flash (video format), 17
forced vibrations, 64
forward-backward Euler-Cromer scheme,

45
frequency (of oscillations), 5

geometric mean, 65

HTML5 video tag, 18
Hz (unit), 5

making movies, 17
mechanical energy, 41
mechanical vibrations, 5
mesh

finite differences, 5
mesh function, 5
MP4 (video format), 17

nonlinear restoring force, 64
nonlinear spring, 64
nose, 10

Ogg (video format), 17
oscillations, 5

period (of oscillations), 5
phase plane plot, 37

plotslopes.py, 13
pytest, 10

resonance, 97

scitools movie command, 18
slope marker (in convergence plots), 13
stability criterion, 31
staggered Euler-Cromer scheme, 52
staggered mesh, 52
Stoermer-Verlet algorithm, 50
symplectic scheme, 46

test function, 10

unit testing, 10

vectorization, 10
verification

convergence rates, 11
hand calculations, 10
polynomial solutions, 11

vibration ODE, 5
video formats, 17

WebM (video format), 17

c© 2016, Hans Petter Langtangen, Svein Linge. Released under CC Attribution 4.0 license

	Finite difference discretization
	A basic model for vibrations
	A centered finite difference scheme

	Implementation
	Making a solver function
	Verification
	Scaled model

	Visualization of long time simulations
	Using a moving plot window
	Making animations
	Using Bokeh to compare graphs
	Using a line-by-line ascii plotter
	Empirical analysis of the solution

	Analysis of the numerical scheme
	Deriving a solution of the numerical scheme
	The error in the numerical frequency
	Empirical convergence rates and adjusted
	Exact discrete solution
	Convergence
	The global error
	Stability
	About the accuracy at the stability limit

	Alternative schemes based on 1st-order equations
	The Forward Euler scheme
	The Backward Euler scheme
	The Crank-Nicolson scheme
	Comparison of schemes
	Runge-Kutta methods
	Analysis of the Forward Euler scheme

	Energy considerations
	Derivation of the energy expression
	An error measure based on energy

	The Euler-Cromer method
	Forward-backward discretization
	Equivalence with the scheme for the second-order ODE
	Implementation
	The Störmer-Verlet algorithm

	Staggered mesh
	The Euler-Cromer scheme on a staggered mesh
	Implementation of the scheme on a staggered mesh

	Exercises and Problems
	1: Use linear/quadratic functions for verification
	2: Show linear growth of the phase with time
	3: Improve the accuracy by adjusting the frequency
	4: See if adaptive methods improve the phase error
	5: Use a Taylor polynomial to compute u1
	6: Derive and investigate the velocity Verlet method
	7: Find the minimal resolution of an oscillatory function
	8: Visualize the accuracy of finite differences for a cosine function
	9: Verify convergence rates of the error in energy
	10: Use linear/quadratic functions for verification
	11: Use an exact discrete solution for verification
	12: Use analytical solution for convergence rate tests
	13: Investigate the amplitude errors of many solvers
	14: Minimize memory usage of a simple vibration solver
	15: Minimize memory usage of a general vibration solver
	16: Implement the Euler-Cromer scheme for the generalized model
	17: Interpret [DtDt u]n as a forward-backward difference
	18: Analysis of the Euler-Cromer scheme

	Generalization: damping, nonlinearities, and excitation
	A centered scheme for linear damping
	A centered scheme for quadratic damping
	A forward-backward discretization of the quadratic damping term
	Implementation
	Verification
	Visualization
	User interface
	The Euler-Cromer scheme for the generalized model
	The Störmer-Verlet algorithm for the generalized model
	A staggered Euler-Cromer scheme for a generalized model
	The PEFRL 4th-order accurate algorithm

	Exercises and Problems
	19: Implement the solver via classes
	20: Use a backward difference for the damping term
	21: Use the forward-backward scheme with quadratic damping

	Applications of vibration models
	Oscillating mass attached to a spring
	General mechanical vibrating system
	A sliding mass attached to a spring
	A jumping washing machine
	Motion of a pendulum
	Dynamic free body diagram during pendulum motion
	Motion of an elastic pendulum
	Vehicle on a bumpy road
	Bouncing ball
	Two-body gravitational problem
	Electric circuits

	Exercises
	22: Simulate resonance
	23: Simulate oscillations of a sliding box
	24: Simulate a bouncing ball
	25: Simulate a simple pendulum
	26: Simulate an elastic pendulum
	27: Simulate an elastic pendulum with air resistance
	28: Implement the PEFRL algorithm

	References
	Index

