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Preface

There are so many excellent books on finite difference methods for
ordinary and partial differential equations that writing yet another one
requires a different view on the topic. The present book is not so concerned
with the traditional academic presentation of the topic, but is focused at
teaching the practitioner how to obtain reliable computations involving
finite difference methods. This focus is based on a set of learning outcomes:

1. understanding of the ideas behind finite difference methods,
2. understanding how to transform an algorithm to a well-designed

computer code,
3. understanding how to test (verify) the code,
4. understanding potential artifacts in simulation results.

Compared to other textbooks, the present one has a particularly strong
emphasis on computer implementation and verification. It also has a
strong emphasis on an intuitive understanding of constructing finite
difference methods. To learn about the potential non-physical artifacts
of various methods, we study exact solutions of finite difference schemes
as these give deeper insight into the physical behavior of the numerical
methods than the traditional (and more general) asymptotic error analy-
sis. However, asymptotic results regarding convergence rates, typically
truncation errors, are crucial for testing implementations, so an extensive
appendix is devoted to the computation of truncation errors.

Why finite differences? One may ask why we do finite differences when
finite element and finite volume methods have been developed to greater
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generality and sophistication than finite differences and can cover more
problems. The finite element and finite volume methods are also the
industry standard nowadays. Why not just those methods? The reason
for finite differences is the method’s simplicity, both from a mathematical
and coding perspective. Especially in academia, where simple model
problems are used a lot for teaching and in research (e.g., for verification
of advanced implementations), there is a constant need to solve the model
problems from scratch with easy-to-verify computer codes. Here, finite
differences are ideal. A simple 1D heat equation can of course be solved
by a finite element package, but a 20-line code with a difference scheme
is just right to the point and provides an understanding of all details
involved in the model and the solution method. Everybody nowadays has
a laptop and the natural method to attack a 1D heat equation is a simple
Python or Matlab program with a difference scheme. The conclusion
goes for other fundamental PDEs like the wave equation and Poisson
equation as long as the geometry of the domain is a hypercube. The
present book contains all the practical information needed to use the
finite difference tool in a safe way.

Various pedagogical elements are utilized to reach the learning out-
comes, and these are commented upon next.
Simplify, understand, generalize. The book’s overall pedagogical phi-
losophy is the three-step process of first simplifying the problem to
something we can understand in detail, and when that understanding is
in place, we can generalize and hopefully address real-world applications
with a sound scientific problem-solving approach. For example, in the
chapter on a particular family of equations we first simplify the problem
in question to a 1D, constant-coefficient equation with simple boundary
conditions. We learn how to construct a finite difference method, how to
implement it, and how to understand the behavior of the numerical solu-
tion. Then we can generalize to higher dimensions, variable coefficients,
a source term, and more complicated boundary conditions. The solution
of a compound problem is in this way an assembly of elements that are
well understood in simpler settings.
Constructive mathematics. This text favors a constructive approach
to mathematics. Instead of a set of definitions followed by popping up a
method, we emphasize how to think about the construction of a method.
The aim is to obtain a good intuitive understanding of the mathematical
methods.

The text is written in an easy-to-read style much inspired by the
following quote.
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Some people think that stiff challenges are the best device to induce learning, but
I am not one of them. The natural way to learn something is by spending vast
amounts of easy, enjoyable time at it. This goes whether you want to speak German,
sight-read at the piano, type, or do mathematics. Give me the German storybook
for fifth graders that I feel like reading in bed, not Goethe and a dictionary. The
latter will bring rapid progress at first, then exhaustion and failure to resolve.
The main thing to be said for stiff challenges is that inevitably we will encounter
them, so we had better learn to face them boldly. Putting them in the curriculum
can help teach us to do so. But for teaching the skill or subject matter itself, they
are overrated. [18, p. 86] Lloyd N. Trefethen, Applied Mathematician, 1955-.

This book assumes some basic knowledge of finite difference approxi-
mations, differential equations, and scientific Python or MATLAB pro-
gramming, as often met in an introductory numerical methods course.
Readers without this background may start with the light companion
book “Finite Difference Computing with Exponential Decay Models” [9].
That book will in particular be a useful resource for the programming
parts of the present book. Since the present book deals with partial
differential equations, the reader is assumed to master multi-variable
calculus and linear algebra.

Fundamental ideas and their associated scientific details are first
introduced in the simplest possible differential equation setting, often an
ordinary differential equation, but in a way that easily allows reuse in more
complex settings with partial differential equations. With this approach,
new concepts are introduced with a minimum of mathematical details.
The text should therefore have a potential for use early in undergraduate
student programs.
All nuts and bolts. Many have experienced that “vast amounts of easy,
enjoyable time”, as stated in the quote above, arises when mathematics
is implemented on a computer. The implementation process triggers
understanding, creativity, and curiosity, but many students find the
transition from a mathematical algorithm to a working code difficult and
spend a lot of time on “programming issues”.

Most books on numerical methods concentrate on the mathematics of
the subject while details on going from the mathematics to a computer
implementation are less in focus. A major purpose of this text is therefore
to help the practitioner by providing all nuts and bolts necessary for
safely going from the mathematics to a well-designed and well-tested
computer code. A significant portion of the text is consequently devoted
to programming details.
Python as programming language. While MATLAB enjoys widespread
popularity in books on numerical methods, we have chosen to use the
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Python programming language. Python is very similar to MATLAB, but
contains a lot of modern software engineering tools that have become
standard in the software industry and that should be adopted also for
numerical computing projects. Python is at present also experiencing
an exponential growth in popularity within the scientific computing
community. One of the book’s goals is to present an up-to-date Python
eco system for implementing finite difference methods.

Program verification. Program testing, called verification, is a key
topic of the book. Good verification techniques are indispensable when
debugging computer code, but also fundamental for achieving reliable
simulations. Two verification techniques saturate the book: exact solution
of discrete equations (where the approximation error vanishes) and em-
pirical estimation of convergence rates in problems with exact (analytical
or manufactured) solutions of the differential equation(s).

Vectorized code. Finite difference methods lead to code with loops
over large arrays. Such code in plain Python is known to run slowly.
We demonstrate, especially in Appendix C, how to port loops to fast,
compiled code in C or Fortran. However, an alternative is to vectorize
the code to get rid of explicit Python loops, and this technique is met
throughout the book. Vectorization becomes closely connected to the
underlying array library, here numpy, and is often thought of as a difficult
subject by students. Through numerous examples in different contexts,
we hope that the present book provides a substantial contribution to
explaining how algorithms can be vectorized. Not only will this speed
up serial code, but with a library that can produce parallel code from
numpy commands (such as Numba), vectorized code can be automatically
turned into parallel code and utilize multi-core processors and GPUs.
Also when creating tailored parallel code for today’s supercomputers,
vectorization is useful as it emphasizes splitting up an algorithm into
plain and simple array operations, where each operation is trivial to
parallelize efficiently, rather than trying to develop a “smart” overall
parallelization strategy.

Analysis via exact solutions of discrete equations. Traditional asymp-
totic analysis of errors is important for verification of code using con-
vergence rates, but gives a limited understanding of how and why a
correctly implemented numerical method may give non-physical results.
By developing exact solutions, usually based on Fourier methods, of
the discrete equations, one can obtain a physical understanding of the

http://numba.pydata.org
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behavior of a numerical method. This approach is favored for analysis of
methods in this book.
Code-inspired mathematical notation. Our primary aim is to have a
clean and easy-to-read computer code, and we want a close one-to-one
relationship between the computer code and mathematical description
of the algorithm. This principle calls for a mathematical notation that is
governed by the natural notation in the computer code. The unknown is
mostly called u, but the meaning of the symbol u in the mathematical
description changes as we go from the exact solution fulfilling the differ-
ential equation to the symbol u that is naturally used for the associated
data structure in the code.
Limited scope. The aim of this book is not to give an overview of a lot
of methods for a wide range of mathematical models. Such information
can be found in numerous existing, more advanced books. The aim is
rather to introduce basic concepts and a thorough understanding of how
to think about computing with finite difference methods. We therefore
go in depth with only the most fundamental methods and equations.
However, we have a multi-disciplinary scope and address the interplay of
mathematics, numerics, computer science, and physics.
Focus on wave phenomena. Most books on finite difference methods,
or books on theory with computer examples, have their emphasis on
diffusion phenomena. Half of this book (Chapters 1, 2, and Appendix C)
is devoted to wave phenomena. Extended material on this topic is not so
easy find in the literature, so the book should be a valuable contribution
in this respect. Wave phenomena is also a good topic in general for
choosing the finite difference method over other discretization methods
since one quickly needs fine resolution over the entire mesh and uniform
meshes are most natural.

Instead of introducing the finite difference method for diffusion prob-
lems, where one soon ends up with matrix systems, we do the introduction
in a wave phenomena setting where explicit schemes are most relevant.
This slows down the learning curve since we can introduce a lot of theory
for differences and for software aspects in a context with simple, explicit
stencils for updating the solution.
Independent chapters. Most book authors are careful with avoiding
repetitions of material. The chapters in this book, however, contain some
overlap, because we want the chapters to appear meaningful on their own.
Modern publishing technology makes it easy to take selected chapters
from different books to make a new book tailored to a specific course. The



x

more a chapter builds on details in other chapters, the more difficult it is
to reuse chapters in new contexts. Also, most readers find it convenient
that important information is explicitly stated, even if it was already
met in another chapter.

Supplementary materials. All program and data files referred to in
this book are available from the book’s primary web site: URL: http:
//hplgit.github.io/fdm-book/doc/web/.
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Vibration ODEs 1

Vibration problems lead to differential equations with solutions that
oscillate in time, typically in a damped or undamped sinusoidal fash-
ion. Such solutions put certain demands on the numerical methods
compared to other phenomena whose solutions are monotone or very
smooth. Both the frequency and amplitude of the oscillations need to
be accurately handled by the numerical schemes. The forthcoming text
presents a range of different methods, from classical ones (Runge-Kutta
and midpoint/Crank-Nicolson methods), to more modern and popular
symplectic (geometric) integration schemes (Leapfrog, Euler-Cromer,
and Störmer-Verlet methods), but with a clear emphasis on the latter.
Vibration problems occur throughout mechanics and physics, but the
methods discussed in this text are also fundamental for constructing
successful algorithms for partial differential equations of wave nature in
multiple spatial dimensions.

1.1 Finite difference discretization

Many of the numerical challenges faced when computing oscillatory
solutions to ODEs and PDEs can be captured by the very simple ODE
u′′ + u = 0. This ODE is thus chosen as our starting point for method
development, implementation, and analysis.

© 2016, Hans Petter Langtangen, Svein Linge. Released under CC Attribution 4.0 license
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1.1.1 A basic model for vibrations

The simplest model of a vibrating mechanical system has the following
form:

u′′ + ω2u = 0, u(0) = I, u′(0) = 0, t ∈ (0, T ] . (1.1)

Here, ω and I are given constants. Section 1.12.1 derives (1.1) from
physical principles and explains what the constants mean.

The exact solution of (1.1) is

u(t) = I cos(ωt) . (1.2)

That is, u oscillates with constant amplitude I and angular frequency
ω. The corresponding period of oscillations (i.e., the time between two
neighboring peaks in the cosine function) is P = 2π/ω. The number of
periods per second is f = ω/(2π) and measured in the unit Hz. Both
f and ω are referred to as frequency, but ω is more precisely named
angular frequency, measured in rad/s.

In vibrating mechanical systems modeled by (1.1), u(t) very often
represents a position or a displacement of a particular point in the system.
The derivative u′(t) then has the interpretation of velocity, and u′′(t)
is the associated acceleration. The model (1.1) is not only applicable
to vibrating mechanical systems, but also to oscillations in electrical
circuits.

1.1.2 A centered finite difference scheme

To formulate a finite difference method for the model problem (1.1) we
follow the four steps explained in Section 1.1.2 in [9].

Step 1: Discretizing the domain. The domain is discretized by intro-
ducing a uniformly partitioned time mesh. The points in the mesh are
tn = n∆t, n = 0, 1, . . . , Nt, where ∆t = T/Nt is the constant length of
the time steps. We introduce a mesh function un for n = 0, 1, . . . , Nt,
which approximates the exact solution at the mesh points. (Note that
n = 0 is the known initial condition, so un is identical to the mathe-
matical u at this point.) The mesh function un will be computed from
algebraic equations derived from the differential equation problem.

Step 2: Fulfilling the equation at discrete time points. The ODE is
to be satisfied at each mesh point where the solution must be found:
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u′′(tn) + ω2u(tn) = 0, n = 1, . . . , Nt . (1.3)

Step 3: Replacing derivatives by finite differences. The derivative
u′′(tn) is to be replaced by a finite difference approximation. A common
second-order accurate approximation to the second-order derivative is

u′′(tn) ≈ un+1 − 2un + un−1

∆t2
. (1.4)

Inserting (1.4) in (1.3) yields

un+1 − 2un + un−1

∆t2
= −ω2un . (1.5)

We also need to replace the derivative in the initial condition by a
finite difference. Here we choose a centered difference, whose accuracy is
similar to the centered difference we used for u′′:

u1 − u−1

2∆t = 0 . (1.6)

Step 4: Formulating a recursive algorithm. To formulate the compu-
tational algorithm, we assume that we have already computed un−1 and
un, such that un+1 is the unknown value to be solved for:

un+1 = 2un − un−1 −∆t2ω2un . (1.7)

The computational algorithm is simply to apply (1.7) successively for
n = 1, 2, . . . , Nt − 1. This numerical scheme sometimes goes under the
name Störmer’s method, Verlet integration, or the Leapfrog method (one
should note that Leapfrog is used for many quite different methods for
quite different differential equations!).
Computing the first step. We observe that (1.7) cannot be used for
n = 0 since the computation of u1 then involves the undefined value u−1

at t = −∆t. The discretization of the initial condition then comes to our
rescue: (1.6) implies u−1 = u1 and this relation can be combined with
(1.7) for n = 0 to yield a value for u1:

u1 = 2u0 − u1 −∆t2ω2u0,

which reduces to

u1 = u0 − 1
2∆t

2ω2u0 . (1.8)

http://en.wikipedia.org/wiki/Verlet_integration
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Exercise 1.5 asks you to perform an alternative derivation and also to
generalize the initial condition to u′(0) = V 6= 0.

The computational algorithm. The steps for solving (1.1) become

1. u0 = I
2. compute u1 from (1.8)
3. for n = 1, 2, . . . , Nt − 1: compute un+1 from (1.7)

The algorithm is more precisely expressed directly in Python:

t = linspace(0, T, Nt+1) # mesh points in time
dt = t[1] - t[0] # constant time step
u = zeros(Nt+1) # solution

u[0] = I
u[1] = u[0] - 0.5*dt**2*w**2*u[0]
for n in range(1, Nt):

u[n+1] = 2*u[n] - u[n-1] - dt**2*w**2*u[n]

Remark on using w for ω in computer code

In the code, we use w as the symbol for ω. The reason is that the au-
thors prefer w for readability and comparison with the mathematical
ω instead of the full word omega as variable name.

Operator notation. We may write the scheme using a compact difference
notation listed in Appendix A.1 (see also Section 1.1.8 in [9]). The
difference (1.4) has the operator notation [DtDtu]n such that we can
write:

[DtDtu+ ω2u = 0]n . (1.9)

Note that [DtDtu]n means applying a central difference with step ∆t/2
twice:

[Dt(Dtu)]n = [Dtu]n+ 1
2 − [Dtu]n− 1

2

∆t

which is written out as

1
∆t

(
un+1 − un

∆t
− un − un−1

∆t

)
= un+1 − 2un + un−1

∆t2
.
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The discretization of initial conditions can in the operator notation
be expressed as

[u = I]0, [D2tu = 0]0, (1.10)

where the operator [D2tu]n is defined as

[D2tu]n = un+1 − un−1

2∆t . (1.11)

1.2 Implementation

1.2.1 Making a solver function

The algorithm from the previous section is readily translated to a com-
plete Python function for computing and returning u0, u1, . . . , uNt and
t0, t1, . . . , tNt , given the input I, ω, ∆t, and T :

import numpy as np
import matplotlib.pyplot as plt

def solver(I, w, dt, T):
"""
Solve u’’ + w**2*u = 0 for t in (0,T], u(0)=I and u’(0)=0,
by a central finite difference method with time step dt.
"""
dt = float(dt)
Nt = int(round(T/dt))
u = np.zeros(Nt+1)
t = np.linspace(0, Nt*dt, Nt+1)

u[0] = I
u[1] = u[0] - 0.5*dt**2*w**2*u[0]
for n in range(1, Nt):

u[n+1] = 2*u[n] - u[n-1] - dt**2*w**2*u[n]
return u, t

We have imported numpy and matplotlib under the names np and plt,
respectively, as this is very common in the Python scientific computing
community and a good programming habit (since we explicitly see where
the different functions come from). An alternative is to do from numpy
import * and a similar “import all” for Matplotlib to avoid the np and
plt prefixes and make the code as close as possible to MATLAB. (See
Section 5.1.4 in [9] for a discussion of the two types of import in Python.)

A function for plotting the numerical and the exact solution is also
convenient to have:
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def u_exact(t, I, w):
return I*np.cos(w*t)

def visualize(u, t, I, w):
plt.plot(t, u, ’r--o’)
t_fine = np.linspace(0, t[-1], 1001) # very fine mesh for u_e
u_e = u_exact(t_fine, I, w)
plt.hold(’on’)
plt.plot(t_fine, u_e, ’b-’)
plt.legend([’numerical’, ’exact’], loc=’upper left’)
plt.xlabel(’t’)
plt.ylabel(’u’)
dt = t[1] - t[0]
plt.title(’dt=%g’ % dt)
umin = 1.2*u.min(); umax = -umin
plt.axis([t[0], t[-1], umin, umax])
plt.savefig(’tmp1.png’); plt.savefig(’tmp1.pdf’)

A corresponding main program calling these functions to simulate a given
number of periods (num_periods) may take the form

I = 1
w = 2*pi
dt = 0.05
num_periods = 5
P = 2*pi/w # one period
T = P*num_periods
u, t = solver(I, w, dt, T)
visualize(u, t, I, w, dt)

Adjusting some of the input parameters via the command line can
be handy. Here is a code segment using the ArgumentParser tool in the
argparse module to define option value (–option value) pairs on the
command line:

import argparse
parser = argparse.ArgumentParser()
parser.add_argument(’--I’, type=float, default=1.0)
parser.add_argument(’--w’, type=float, default=2*pi)
parser.add_argument(’--dt’, type=float, default=0.05)
parser.add_argument(’--num_periods’, type=int, default=5)
a = parser.parse_args()
I, w, dt, num_periods = a.I, a.w, a.dt, a.num_periods

Such parsing of the command line is explained in more detail in Sec-
tion 5.2.3 in [9].

A typical execution goes like
Terminal

Terminal> python vib_undamped.py --num_periods 20 --dt 0.1
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Computing u′. In mechanical vibration applications one is often inter-
ested in computing the velocity v(t) = u′(t) after u(t) has been computed.
This can be done by a central difference,

v(tn) = u′(tn) ≈ vn = un+1 − un−1

2∆t = [D2tu]n . (1.12)

This formula applies for all inner mesh points, n = 1, . . . , Nt − 1. For
n = 0, v(0) is given by the initial condition on u′(0), and for n = Nt we
can use a one-sided, backward difference:

vn = [D−t u]n = un − un−1

∆t
.

Typical (scalar) code is

v = np.zeros_like(u) # or v = np.zeros(len(u))
# Use central difference for internal points
for i in range(1, len(u)-1):

v[i] = (u[i+1] - u[i-1])/(2*dt)
# Use initial condition for u’(0) when i=0
v[0] = 0
# Use backward difference at the final mesh point
v[-1] = (u[-1] - u[-2])/dt

Since the loop is slow for large Nt, we can get rid of the loop by vectorizing
the central difference. The above code segment goes as follows in its
vectorized version (see Problem 1.2 in [9] for explanation of details):

v = np.zeros_like(u)
v[1:-1] = (u[2:] - u[:-2])/(2*dt) # central difference
v[0] = 0 # boundary condition u’(0)
v[-1] = (u[-1] - u[-2])/dt # backward difference

1.2.2 Verification
Manual calculation. The simplest type of verification, which is also
instructive for understanding the algorithm, is to compute u1, u2, and
u3 with the aid of a calculator and make a function for comparing these
results with those from the solver function. The test_three_steps
function in the file vib_undamped.py shows the details of how we use
the hand calculations to test the code:

def test_three_steps():
from math import pi
I = 1; w = 2*pi; dt = 0.1; T = 1
u_by_hand = np.array([1.000000000000000,

http://tinyurl.com/nu656p2/vib/vib_undamped.py
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0.802607911978213,
0.288358920740053])

u, t = solver(I, w, dt, T)
diff = np.abs(u_by_hand - u[:3]).max()
tol = 1E-14
assert diff < tol

This function is a proper test function, compliant with the pytest and
nose testing framework for Python code, because

• the function name begins with test_
• the function takes no arguments
• the test is formulated as a boolean condition and executed by assert

We shall in this book implement all software verification via such proper
test functions, also known as unit testing. See Section 5.3.2 in [9] for
more details on how to construct test functions and utilize nose or pytest
for automatic execution of tests. Our recommendation is to use pytest.
With this choice, you can run all test functions in vib_undamped.py by

Terminal

Terminal> py.test -s -v vib_undamped.py
============================= test session starts ======...
platform linux2 -- Python 2.7.9 -- ...
collected 2 items

vib_undamped.py::test_three_steps PASSED
vib_undamped.py::test_convergence_rates PASSED

=========================== 2 passed in 0.19 seconds ===...

Testing very simple polynomial solutions. Constructing test problems
where the exact solution is constant or linear helps initial debugging and
verification as one expects any reasonable numerical method to reproduce
such solutions to machine precision. Second-order accurate methods will
often also reproduce a quadratic solution. Here [DtDtt

2]n = 2, which is
the exact result. A solution u = t2 leads to u′′ + ω2u = 2 + (ωt)2 6= 0.
We must therefore add a source in the equation: u′′ + ω2u = f to allow a
solution u = t2 for f = 2 + (ωt)2. By simple insertion we can show that
the mesh function un = t2n is also a solution of the discrete equations.
Problem 1.1 asks you to carry out all details to show that linear and
quadratic solutions are solutions of the discrete equations. Such results are
very useful for debugging and verification. You are strongly encouraged
to do this problem now!
Checking convergence rates. Empirical computation of convergence
rates yields a good method for verification. The method and its compu-
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tational details are explained in detail in Section 3.1.6 in [9]. Readers not
familiar with the concept should look up this reference before proceeding.

In the present problem, computing convergence rates means that we
must

• perform m simulations, halving the time steps as: ∆ti = 2−i∆t0,
i = 1, . . . ,m− 1, and ∆ti is the time step used in simulation i;

• compute the L2 norm of the error, Ei =
√
∆ti

∑Nt−1
n=0 (un − ue(tn))2

in each case;
• estimate the convergence rates ri based on two consecutive exper-

iments (∆ti−1, Ei−1) and (∆ti, Ei), assuming Ei = C(∆ti)r and
Ei−1 = C(∆ti−1)r. From these equations it follows that r =
ln(Ei−1/Ei)/ ln(∆ti−1/∆ti). Since this r will vary with i, we equip it
with an index and call it ri−1, where i runs from 1 to m− 1.

The computed rates r0, r1, . . . , rm−2 hopefully converge to the number 2
in the present problem, because theory (from Section 1.4) shows that the
error of the numerical method we use behaves like ∆t2. The convergence
of the sequence r0, r1, . . . , rm−2 demands that the time steps ∆ti are
sufficiently small for the error model Ei = C(∆ti)r to be valid.

All the implementational details of computing the sequence
r0, r1, . . . , rm−2 appear below.

def convergence_rates(m, solver_function, num_periods=8):
"""
Return m-1 empirical estimates of the convergence rate
based on m simulations, where the time step is halved
for each simulation.
solver_function(I, w, dt, T) solves each problem, where T
is based on simulation for num_periods periods.
"""
from math import pi
w = 0.35; I = 0.3 # just chosen values
P = 2*pi/w # period
dt = P/30 # 30 time step per period 2*pi/w
T = P*num_periods

dt_values = []
E_values = []
for i in range(m):

u, t = solver_function(I, w, dt, T)
u_e = u_exact(t, I, w)
E = np.sqrt(dt*np.sum((u_e-u)**2))
dt_values.append(dt)
E_values.append(E)
dt = dt/2
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r = [np.log(E_values[i-1]/E_values[i])/
np.log(dt_values[i-1]/dt_values[i])
for i in range(1, m, 1)]

return r, E_values, dt_values

The error analysis in Section 1.4 is quite detailed and suggests that
r = 2. It is also a intuitively reasonable result, since we used a second-
order accurate finite difference approximation [DtDtu]n to the ODE and
a second-order accurate finite difference formula for the initial condition
for u′.

In the present problem, when ∆t0 corresponds to 30 time steps per
period, the returned r list has all its values equal to 2.00 (if rounded to
two decimals). This amazingly accurate result means that all ∆ti values
are well into the asymptotic regime where the error model Ei = C(∆ti)r
is valid.

We can now construct a proper test function that computes conver-
gence rates and checks that the final (and usually the best) estimate is
sufficiently close to 2. Here, a rough tolerance of 0.1 is enough. This unit
test goes like

def test_convergence_rates():
r, E, dt = convergence_rates(

m=5, solver_function=solver, num_periods=8)
# Accept rate to 1 decimal place
tol = 0.1
assert abs(r[-1] - 2.0) < tol
# Test that adjusted w obtains 4th order convergence
r, E, dt = convergence_rates(

m=5, solver_function=solver_adjust_w, num_periods=8)
print ’adjust w rates:’, r
assert abs(r[-1] - 4.0) < tol

The complete code appears in the file vib_undamped.py.
Visualizing convergence rates with slope markers. Tony S. Yu has
written a script plotslopes.py that is very useful to indicate the slope
of a graph, especially a graph like lnE = r ln∆t+ lnC arising from the
model E = C∆tr. A copy of the script resides in the src/vib directory.
Let us use it to compare the original method for u′′ + ω2u = 0 with the
same method applied to the equation with a modified ω. We make log-log
plots of the error versus ∆t. For each curve we attach a slope marker us-
ing the slope_marker((x,y), r) function from plotslopes.py, where
(x,y) is the position of the marker and r and the slope ((r, 1)), here
(2,1) and (4,1).

def plot_convergence_rates():
r2, E2, dt2 = convergence_rates(

http://goo.gl/A4Utm7
http://tinyurl.com/nu656p2/vib
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m=5, solver_function=solver, num_periods=8)
plt.loglog(dt2, E2)
r4, E4, dt4 = convergence_rates(

m=5, solver_function=solver_adjust_w, num_periods=8)
plt.loglog(dt4, E4)
plt.legend([’original scheme’, r’adjusted $\omega$’],

loc=’upper left’)
plt.title(’Convergence of finite difference methods’)
from plotslopes import slope_marker
slope_marker((dt2[1], E2[1]), (2,1))
slope_marker((dt4[1], E4[1]), (4,1))

Figure 1.1 displays the two curves with the markers. The match of the
curve slope and the marker slope is excellent.
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100
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Convergence of finite difference methods

original scheme
adjusted ω

Fig. 1.1 Empirical convergence rate curves with special slope marker.

1.2.3 Scaled model

It is advantageous to use dimensionless variables in simulations, because
fewer parameters need to be set. The present problem is made dimen-
sionless by introducing dimensionless variables t̄ = t/tc and ū = u/uc,
where tc and uc are characteristic scales for t and u, respectively. We
refer to Section 2.2.1 in [11] for all details about this scaling.

The scaled ODE problem reads

uc
t2c

d2ū

dt̄2
+ ucū = 0, ucū(0) = I,

uc
tc

dū

dt̄
(0) = 0 .
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A common choice is to take tc as one period of the oscillations, tc = 2π/w,
and uc = I. This gives the dimensionless model

d2ū

dt̄2
+ 4π2ū = 0, ū(0) = 1, ū′(0) = 0 . (1.13)

Observe that there are no physical parameters in (1.13)! We can therefore
perform a single numerical simulation ū(t̄) and afterwards recover any
u(t;ω, I) by

u(t;ω, I) = ucū(t/tc) = Iū(ωt/(2π)) .

We can easily check this assertion: the solution of the scaled problem
is ū(t̄) = cos(2πt̄). The formula for u in terms of ū gives u = I cos(ωt),
which is nothing but the solution of the original problem with dimensions.

The scaled model can by run by calling solver(I=1, w=2*pi, dt,
T). Each period is now 1 and T simply counts the number of periods.
Choosing dt as 1./M gives M time steps per period.

1.3 Visualization of long time simulations

Figure 1.2 shows a comparison of the exact and numerical solution for
the scaled model (1.13) with ∆t = 0.1, 0.05. From the plot we make the
following observations:

• The numerical solution seems to have correct amplitude.
• There is an angular frequency error which is reduced by decreasing

the time step.
• The total angular frequency error grows with time.

By angular frequency error we mean that the numerical angular frequency
differs from the exact ω. This is evident by looking at the peaks of the
numerical solution: these have incorrect positions compared with the
peaks of the exact cosine solution. The effect can be mathematically
expressed by writing the numerical solution as I cos ω̃t, where ω̃ is not
exactly equal to ω. Later, we shall mathematically quantify this numerical
angular frequency ω̃.
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Fig. 1.2 Effect of halving the time step.

1.3.1 Using a moving plot window

In vibration problems it is often of interest to investigate the system’s
behavior over long time intervals. Errors in the angular frequency accu-
mulate and become more visible as time grows. We can investigate long
time series by introducing a moving plot window that can move along
with the p most recently computed periods of the solution. The SciTools
package contains a convenient tool for this: MovingPlotWindow. Typing
pydoc scitools.MovingPlotWindow shows a demo and a description
of its use. The function below utilizes the moving plot window and is
in fact called by the main function in the vib_undamped module if the
number of periods in the simulation exceeds 10.

def visualize_front(u, t, I, w, savefig=False, skip_frames=1):
"""
Visualize u and the exact solution vs t, using a
moving plot window and continuous drawing of the
curves as they evolve in time.
Makes it easy to plot very long time series.
Plots are saved to files if savefig is True.
Only each skip_frames-th plot is saved (e.g., if
skip_frame=10, only each 10th plot is saved to file;
this is convenient if plot files corresponding to
different time steps are to be compared).
"""
import scitools.std as st
from scitools.MovingPlotWindow import MovingPlotWindow
from math import pi

# Remove all old plot files tmp_*.png
import glob, os
for filename in glob.glob(’tmp_*.png’):

os.remove(filename)

P = 2*pi/w # one period

https://github.com/hplgit/scitools
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umin = 1.2*u.min(); umax = -umin
dt = t[1] - t[0]
plot_manager = MovingPlotWindow(

window_width=8*P,
dt=dt,
yaxis=[umin, umax],
mode=’continuous drawing’)

frame_counter = 0
for n in range(1,len(u)):

if plot_manager.plot(n):
s = plot_manager.first_index_in_plot
st.plot(t[s:n+1], u[s:n+1], ’r-1’,

t[s:n+1], I*cos(w*t)[s:n+1], ’b-1’,
title=’t=%6.3f’ % t[n],
axis=plot_manager.axis(),
show=not savefig) # drop window if savefig

if savefig and n % skip_frames == 0:
filename = ’tmp_%04d.png’ % frame_counter
st.savefig(filename)
print ’making plot file’, filename, ’at t=%g’ % t[n]
frame_counter += 1

plot_manager.update(n)

We run the scaled problem (the default values for the command-line
arguments –I and –w correspond to the scaled problem) for 40 periods
with 20 time steps per period:

Terminal

Terminal> python vib_undamped.py --dt 0.05 --num_periods 40

The moving plot window is invoked, and we can follow the numerical
and exact solutions as time progresses. From this demo we see that the
angular frequency error is small in the beginning, and that it becomes
more prominent with time. A new run with ∆t = 0.1 (i.e., only 10 time
steps per period) clearly shows that the phase errors become significant
even earlier in the time series, deteriorating the solution further.

1.3.2 Making animations

Producing standard video formats. The visualize_front function
stores all the plots in files whose names are numbered: tmp_0000.png,
tmp_0001.png, tmp_0002.png, and so on. From these files we may make
a movie. The Flash format is popular,

Terminal

Terminal> ffmpeg -r 25 -i tmp_%04d.png -c:v flv movie.flv
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The ffmpeg program can be replaced by the avconv program in the
above command if desired (but at the time of this writing it seems to
be more momentum in the ffmpeg project). The -r option should come
first and describes the number of frames per second in the movie (even
if we would like to have slow movies, keep this number as large as 25,
otherwise files are skipped from the movie). The -i option describes the
name of the plot files. Other formats can be generated by changing the
video codec and equipping the video file with the right extension:

Format Codec and filename
Flash -c:v flv movie.flv
MP4 -c:v libx264 movie.mp4
WebM -c:v libvpx movie.webm
Ogg -c:v libtheora movie.ogg

The video file can be played by some video player like vlc, mplayer,
gxine, or totem, e.g.,

Terminal

Terminal> vlc movie.webm

A web page can also be used to play the movie. Today’s standard is to
use the HTML5 video tag:

<video autoplay loop controls
width=’640’ height=’365’ preload=’none’>

<source src=’movie.webm’ type=’video/webm; codecs="vp8, vorbis"’>
</video>

Modern browsers do not support all of the video formats. MP4 is needed
to successfully play the videos on Apple devices that use the Safari
browser. WebM is the preferred format for Chrome, Opera, Firefox, and
Internet Explorer v9+. Flash was a popular format, but older browsers
that required Flash can play MP4. All browsers that work with Ogg
can also work with WebM. This means that to have a video work in all
browsers, the video should be available in the MP4 and WebM formats.
The proper HTML code reads

<video autoplay loop controls
width=’640’ height=’365’ preload=’none’>

<source src=’movie.mp4’ type=’video/mp4;
codecs="avc1.42E01E, mp4a.40.2"’>

<source src=’movie.webm’ type=’video/webm;
codecs="vp8, vorbis"’>

</video>
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The MP4 format should appear first to ensure that Apple devices will
load the video correctly.

Caution: number the plot files correctly

To ensure that the individual plot frames are shown in correct order,
it is important to number the files with zero-padded numbers (0000,
0001, 0002, etc.). The printf format %04d specifies an integer in a
field of width 4, padded with zeros from the left. A simple Unix
wildcard file specification like tmp_*.png will then list the frames
in the right order. If the numbers in the filenames were not zero-
padded, the frame tmp_11.png would appear before tmp_2.png in
the movie.

Playing PNG files in a web browser. The scitools movie command
can create a movie player for a set of PNG files such that a web browser
can be used to watch the movie. This interface has the advantage that
the speed of the movie can easily be controlled, a feature that scientists
often appreciate. The command for creating an HTML with a player for
a set of PNG files tmp_*.png goes like

Terminal

Terminal> scitools movie output_file=vib.html fps=4 tmp_*.png

The fps argument controls the speed of the movie (“frames per second”).
To watch the movie, load the video file vib.html into some browser,

e.g.,
Terminal

Terminal> google-chrome vib.html # invoke web page

Clicking on Start movie to see the result. Moving this movie to some
other place requires moving vib.html and all the PNG files tmp_*.png:

Terminal

Terminal> mkdir vib_dt0.1
Terminal> mv tmp_*.png vib_dt0.1
Terminal> mv vib.html vib_dt0.1/index.html

Making animated GIF files. The convert program from the ImageMag-
ick software suite can be used to produce animated GIF files from a set
of PNG files:
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Terminal

Terminal> convert -delay 25 tmp_vib*.png tmp_vib.gif

The -delay option needs an argument of the delay between each frame,
measured in 1/100 s, so 4 frames/s here gives 25/100 s delay. Note,
however, that in this particular example with ∆t = 0.05 and 40 periods,
making an animated GIF file out of the large number of PNG files is a
very heavy process and not considered feasible. Animated GIFs are best
suited for animations with not so many frames and where you want to
see each frame and play them slowly.

1.3.3 Using Bokeh to compare graphs

Instead of a moving plot frame, one can use tools that allow panning
by the mouse. For example, we can show four periods of several signals
in several plots and then scroll with the mouse through the rest of the
simulation simultaneously in all the plot windows. The Bokeh plotting
library offers such tools, but the plots must be displayed in a web browser.
The documentation of Bokeh is excellent, so here we just show how the
library can be used to compare a set of u curves corresponding to long
time simulations. (By the way, the guidance to correct pronunciation of
Bokeh in the documentation and on Wikipedia is not directly compatible
with a YouTube video...).

Imagine we have performed experiments for a set of ∆t values. We
want each curve, together with the exact solution, to appear in a plot,
and then arrange all plots in a grid-like fashion:

http://bokeh.pydata.org/en/latest/docs/quickstart.html
http://bokeh.pydata.org/en/0.10.0/docs/faq.html#how-do-you-pronounce-bokeh
https://en.wikipedia.org/wiki/Bokeh
https://www.youtube.com/watch?v=OR8HSHevQTM
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Furthermore, we want the axes to couple such that if we move into the
future in one plot, all the other plots follows (note the displaced t axes!):

A function for creating a Bokeh plot, given a list of u arrays and
corresponding t arrays, is implemented below. The code combines data
fro different simulations, described compactly in a list of strings legends.

def bokeh_plot(u, t, legends, I, w, t_range, filename):
"""
Make plots for u vs t using the Bokeh library.
u and t are lists (several experiments can be compared).
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legens contain legend strings for the various u,t pairs.
"""
if not isinstance(u, (list,tuple)):

u = [u] # wrap in list
if not isinstance(t, (list,tuple)):

t = [t] # wrap in list
if not isinstance(legends, (list,tuple)):

legends = [legends] # wrap in list

import bokeh.plotting as plt
plt.output_file(filename, mode=’cdn’, title=’Comparison’)
# Assume that all t arrays have the same range
t_fine = np.linspace(0, t[0][-1], 1001) # fine mesh for u_e
tools = ’pan,wheel_zoom,box_zoom,reset,’\

’save,box_select,lasso_select’
u_range = [-1.2*I, 1.2*I]
font_size = ’8pt’
p = [] # list of plot objects
# Make the first figure
p_ = plt.figure(

width=300, plot_height=250, title=legends[0],
x_axis_label=’t’, y_axis_label=’u’,
x_range=t_range, y_range=u_range, tools=tools,
title_text_font_size=font_size)

p_.xaxis.axis_label_text_font_size=font_size
p_.yaxis.axis_label_text_font_size=font_size
p_.line(t[0], u[0], line_color=’blue’)
# Add exact solution
u_e = u_exact(t_fine, I, w)
p_.line(t_fine, u_e, line_color=’red’, line_dash=’4 4’)
p.append(p_)
# Make the rest of the figures and attach their axes to
# the first figure’s axes
for i in range(1, len(t)):

p_ = plt.figure(
width=300, plot_height=250, title=legends[i],
x_axis_label=’t’, y_axis_label=’u’,
x_range=p[0].x_range, y_range=p[0].y_range, tools=tools,
title_text_font_size=font_size)

p_.xaxis.axis_label_text_font_size = font_size
p_.yaxis.axis_label_text_font_size = font_size
p_.line(t[i], u[i], line_color=’blue’)
p_.line(t_fine, u_e, line_color=’red’, line_dash=’4 4’)
p.append(p_)

# Arrange all plots in a grid with 3 plots per row
grid = [[]]
for i, p_ in enumerate(p):

grid[-1].append(p_)
if (i+1) % 3 == 0:

# New row
grid.append([])

plot = plt.gridplot(grid, toolbar_location=’left’)
plt.save(plot)
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plt.show(plot)

A particular example using the bokeh_plot function appears below.

def demo_bokeh():
"""Solve a scaled ODE u’’ + u = 0."""
from math import pi
w = 1.0 # Scaled problem (frequency)
P = 2*np.pi/w # Period
num_steps_per_period = [5, 10, 20, 40, 80]
T = 40*P # Simulation time: 40 periods
u = [] # List of numerical solutions
t = [] # List of corresponding meshes
legends = []
for n in num_steps_per_period:

dt = P/n
u_, t_ = solver(I=1, w=w, dt=dt, T=T)
u.append(u_)
t.append(t_)
legends.append(’# time steps per period: %d’ % n)

bokeh_plot(u, t, legends, I=1, w=w, t_range=[0, 4*P],
filename=’tmp.html’)

1.3.4 Using a line-by-line ascii plotter

Plotting functions vertically, line by line, in the terminal window us-
ing ascii characters only is a simple, fast, and convenient visualization
technique for long time series. Note that the time axis then is positive
downwards on the screen, so we can let the solution be visualized “for-
ever”. The tool scitools.avplotter.Plotter makes it easy to create
such plots:

def visualize_front_ascii(u, t, I, w, fps=10):
"""
Plot u and the exact solution vs t line by line in a
terminal window (only using ascii characters).
Makes it easy to plot very long time series.
"""
from scitools.avplotter import Plotter
import time
from math import pi
P = 2*pi/w
umin = 1.2*u.min(); umax = -umin

p = Plotter(ymin=umin, ymax=umax, width=60, symbols=’+o’)
for n in range(len(u)):

print p.plot(t[n], u[n], I*cos(w*t[n])), \
’%.1f’ % (t[n]/P)

time.sleep(1/float(fps))
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The call p.plot returns a line of text, with the t axis marked and a
symbol + for the first function (u) and o for the second function (the
exact solution). Here we append to this text a time counter reflecting how
many periods the current time point corresponds to. A typical output
(ω = 2π, ∆t = 0.05) looks like this:

| o+ 14.0
| + o 14.0
| + o 14.1
| + o 14.1
| + o 14.2

+| o 14.2
+ | 14.2

+ o | 14.3
+ o | 14.4

+ o | 14.4
+o | 14.5
o + | 14.5
o + | 14.6

o + | 14.6
o + | 14.7

o | + 14.7
| + 14.8
| o + 14.8
| o + 14.9
| o + 14.9
| o+ 15.0

1.3.5 Empirical analysis of the solution
For oscillating functions like those in Figure 1.2 we may compute the
amplitude and frequency (or period) empirically. That is, we run through
the discrete solution points (tn, un) and find all maxima and minima
points. The distance between two consecutive maxima (or minima) points
can be used as estimate of the local period, while half the difference
between the u value at a maximum and a nearby minimum gives an
estimate of the local amplitude.

The local maxima are the points where

un−1 < un > un+1, n = 1, . . . , Nt − 1, (1.14)

and the local minima are recognized by

un−1 > un < un+1, n = 1, . . . , Nt − 1 . (1.15)

In computer code this becomes
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def minmax(t, u):
minima = []; maxima = []
for n in range(1, len(u)-1, 1):

if u[n-1] > u[n] < u[n+1]:
minima.append((t[n], u[n]))

if u[n-1] < u[n] > u[n+1]:
maxima.append((t[n], u[n]))

return minima, maxima

Note that the two returned objects are lists of tuples.
Let (ti, ei), i = 0, . . . ,M − 1, be the sequence of all the M maxima

points, where ti is the time value and ei the corresponding u value. The
local period can be defined as pi = ti+1 − ti. With Python syntax this
reads

def periods(maxima):
p = [extrema[n][0] - maxima[n-1][0]

for n in range(1, len(maxima))]
return np.array(p)

The list p created by a list comprehension is converted to an array
since we probably want to compute with it, e.g., find the corresponding
frequencies 2*pi/p.

Having the minima and the maxima, the local amplitude can be
calculated as the difference between two neighboring minimum and
maximum points:

def amplitudes(minima, maxima):
a = [(abs(maxima[n][1] - minima[n][1]))/2.0

for n in range(min(len(minima),len(maxima)))]
return np.array(a)

The code segments are found in the file vib_empirical_analysis.py.
Since a[i] and p[i] correspond to the i-th amplitude estimate and

the i-th period estimate, respectively, it is most convenient to visualize
the a and p values with the index i on the horizontal axis. (There is no
unique time point associated with either of these estimate since values
at two different time points were used in the computations.)

In the analysis of very long time series, it is advantageous to compute
and plot p and a instead of u to get an impression of the development
of the oscillations. Let us do this for the scaled problem and ∆t =
0.1, 0.05, 0.01. A ready-made function

plot_empirical_freq_and_amplitude(u, t, I, w)

computes the empirical amplitudes and periods, and creates a plot where
the amplitudes and angular frequencies are visualized together with the

http://tinyurl.com/nu656p2/vib/vib_empirical_analysis.py
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exact amplitude I and the exact angular frequency w. We can make a
little program for creating the plot:

from vib_undamped import solver, plot_empirical_freq_and_amplitude
from math import pi
dt_values = [0.1, 0.05, 0.01]
u_cases = []
t_cases = []
for dt in dt_values:

# Simulate scaled problem for 40 periods
u, t = solver(I=1, w=2*pi, dt=dt, T=40)
u_cases.append(u)
t_cases.append(t)

plot_empirical_freq_and_amplitude(u_cases, t_cases, I=1, w=2*pi)

Figure 1.3 shows the result: we clearly see that lowering ∆t improves
the angular frequency significantly, while the amplitude seems to be
more accurate. The lines with ∆t = 0.01, corresponding to 100 steps
per period, can hardly be distinguished from the exact values. The next
section shows how we can get mathematical insight into why amplitudes
are good while frequencies are more inaccurate.
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Fig. 1.3 Empirical angular frequency (left) and amplitude (right) for three different time
steps.

1.4 Analysis of the numerical scheme

1.4.1 Deriving a solution of the numerical scheme

After having seen the phase error grow with time in the previous section,
we shall now quantify this error through mathematical analysis. The key
tool in the analysis will be to establish an exact solution of the discrete
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equations. The difference equation (1.7) has constant coefficients and is
homogeneous. Such equations are known to have solutions on the form
un = CAn, where A is some number to be determined from the difference
equation and C is found as the initial condition (C = I). Recall that n in
un is a superscript labeling the time level, while n in An is an exponent.

With oscillating functions as solutions, the algebra will be considerably
simplified if we seek an A on the form

A = eiω̃∆t,

and solve for the numerical frequency ω̃ rather than A. Note that i =
√
−1

is the imaginary unit. (Using a complex exponential function gives simpler
arithmetics than working with a sine or cosine function.) We have

An = eiω̃∆t n = eiω̃tn = cos(ω̃tn) + i sin(ω̃tn) .

The physically relevant numerical solution can be taken as the real part
of this complex expression.

The calculations go as

[DtDtu]n = un+1 − 2un + un−1

∆t2

= I
An+1 − 2An + An−1

∆t2

= I

∆t2
(eiω̃(tn+∆t) − 2eiω̃tn + eiω̃(tn−∆t))

= Ieiω̃tn
1
∆t2

(
eiω̃∆t + eiω̃(−∆t) − 2

)
= Ieiω̃tn

2
∆t2

(cosh(iω̃∆t)− 1)

= Ieiω̃tn
2
∆t2

(cos(ω̃∆t)− 1)

= −Ieiω̃tn 4
∆t2

sin2( ω̃∆t2 )

The last line follows from the relation cosx − 1 = −2 sin2(x/2) (try
cos(x)-1 in wolframalpha.com to see the formula).

The scheme (1.7) with un = Ieiω̃∆t n inserted now gives

− Ieiω̃tn 4
∆t2

sin2( ω̃∆t2 ) + ω2Ieiω̃tn = 0, (1.16)

http://www.wolframalpha.com
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which after dividing by Ieiω̃tn results in

4
∆t2

sin2( ω̃∆t2 ) = ω2 . (1.17)

The first step in solving for the unknown ω̃ is

sin2( ω̃∆t2 ) =
(
ω∆t

2

)2
.

Then, taking the square root, applying the inverse sine function, and
multiplying by 2/∆t, results in

ω̃ = ± 2
∆t

sin−1
(
ω∆t

2

)
. (1.18)

1.4.2 The error in the numerical frequency

The first observation of (1.18) tells that there is a phase error since the
numerical frequency ω̃ never equals the exact frequency ω. But how good
is the approximation (1.18)? That is, what is the error ω − ω̃ or ω̃/ω?
Taylor series expansion for small ∆t may give an expression that is easier
to understand than the complicated function in (1.18):

>>> from sympy import *
>>> dt, w = symbols(’dt w’)
>>> w_tilde_e = 2/dt*asin(w*dt/2)
>>> w_tilde_series = w_tilde_e.series(dt, 0, 4)
>>> print w_tilde_series
w + dt**2*w**3/24 + O(dt**4)

This means that

ω̃ = ω

(
1 + 1

24ω
2∆t2

)
+O(∆t4) . (1.19)

The error in the numerical frequency is of second-order in ∆t, and the
error vanishes as∆t→ 0. We see that ω̃ > ω since the term ω3∆t2/24 > 0
and this is by far the biggest term in the series expansion for small ω∆t.
A numerical frequency that is too large gives an oscillating curve that
oscillates too fast and therefore “lags behind” the exact oscillations, a
feature that can be seen in the left plot in Figure 1.2.

Figure 1.4 plots the discrete frequency (1.18) and its approximation
(1.19) for ω = 1 (based on the program vib_plot_freq.py). Although
ω̃ is a function of ∆t in (1.19), it is misleading to think of ∆t as the

http://tinyurl.com/nu656p2/vib/vib_plot_freq.py


26 1 Vibration ODEs

important discretization parameter. It is the product ω∆t that is the key
discretization parameter. This quantity reflects the number of time steps
per period of the oscillations. To see this, we set P = NP∆t, where P is
the length of a period, and NP is the number of time steps during a period.
Since P and ω are related by P = 2π/ω, we get that ω∆t = 2π/NP ,
which shows that ω∆t is directly related to NP .

The plot shows that at least NP ∼ 25 − 30 points per period are
necessary for reasonable accuracy, but this depends on the length of the
simulation (T ) as the total phase error due to the frequency error grows
linearly with time (see Exercise 1.2).
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Fig. 1.4 Exact discrete frequency and its second-order series expansion.

1.4.3 Empirical convergence rates and adjusted ω

The expression (1.19) suggest that adjusting omega to

ω

(
1− 1

24ω
2∆t2

)
,

could have effect on the convergence rate of the global error in u (cf. Sec-
tion 1.2.2). With the convergence_rates function in vib_undamped.py
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we can easily check this. A special solver, with adjusted w, is available
as the function solver_adjust_w. A call to convergence_rates with
this solver reveals that the rate is 4.0! With the original, physical ω the
rate is 2.0 - as expected from using second-order finite difference approxi-
mations, as expected from the forthcoming derivation of the global error,
and as expected from truncation error analysis analysis as explained in
Appendix B.4.1.

Adjusting ω is an ideal trick for this simple problem, but when adding
damping and nonlinear terms, we have no simple formula for the impact
on ω, and therefore we cannot use the trick.

1.4.4 Exact discrete solution
Perhaps more important than the ω̃ = ω +O(∆t2) result found above is
the fact that we have an exact discrete solution of the problem:

un = I cos (ω̃n∆t) , ω̃ = 2
∆t

sin−1
(
ω∆t

2

)
. (1.20)

We can then compute the error mesh function

en = ue(tn)− un = I cos (ωn∆t)− I cos (ω̃n∆t) . (1.21)

From the formula cos 2x−cos 2y = −2 sin(x−y) sin(x+y) we can rewrite
en so the expression is easier to interpret:

en = −2I sin
(
t
1
2 (ω − ω̃)

)
sin
(
t
1
2 (ω + ω̃)

)
. (1.22)

The error mesh function is ideal for verification purposes and you are
strongly encouraged to make a test based on (1.20) by doing Exercise 1.11.

1.4.5 Convergence
We can use (1.19), (1.21), or (1.22) to show convergence of the numerical
scheme, i.e., en → 0 as ∆t→ 0, which implies that the numerical solution
approaches the exact solution as ∆t approaches to zero. We have that

lim
∆t→0

ω̃ = lim
∆t→0

2
∆t

sin−1
(
ω∆t

2

)
= ω,

by L’Hopital’s rule. This result could also been computed WolframAlpha,
or we could use the limit functionality in sympy:

http://www.wolframalpha.com/input/?i=%282%2Fx%29*asin%28w*x%2F2%29+as+x-%3E0
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>>> import sympy as sym
>>> dt, w = sym.symbols(’x w’)
>>> sym.limit((2/dt)*sym.asin(w*dt/2), dt, 0, dir=’+’)
w

Also (1.19) can be used to establish that ω̃ → ω when ∆t→ 0. It then
follows from the expression(s) for en that en → 0.

1.4.6 The global error

To achieve more analytical insight into the nature of the global error,
we can Taylor expand the error mesh function (1.21). Since ω̃ in (1.18)
contains ∆t in the denominator we use the series expansion for ω̃ inside
the cosine function. A relevant sympy session is

>>> from sympy import *
>>> dt, w, t = symbols(’dt w t’)
>>> w_tilde_e = 2/dt*asin(w*dt/2)
>>> w_tilde_series = w_tilde_e.series(dt, 0, 4)
>>> w_tilde_series
w + dt**2*w**3/24 + O(dt**4)

Series expansions in sympy have the inconvenient O() term that prevents
further calculations with the series. We can use the removeO() command
to get rid of the O() term:

>>> w_tilde_series = w_tilde_series.removeO()
>>> w_tilde_series
dt**2*w**3/24 + w

Using this w_tilde_series expression for w̃ in (1.21), dropping I (which
is a common factor), and performing a series expansion of the error yields

>>> error = cos(w*t) - cos(w_tilde_series*t)
>>> error.series(dt, 0, 6)
dt**2*t*w**3*sin(t*w)/24 + dt**4*t**2*w**6*cos(t*w)/1152 + O(dt**6)

Since we are mainly interested in the leading-order term in such expan-
sions (the term with lowest power in ∆t, which goes most slowly to zero),
we use the .as_leading_term(dt) construction to pick out this term:

>>> error.series(dt, 0, 6).as_leading_term(dt)
dt**2*t*w**3*sin(t*w)/24

The last result means that the leading order global (true) error at a
point t is proportional to ω3t∆t2. Considering only the discrete tn values
for t, tn is related to ∆t through tn = n∆t. The factor sin(ωt) can at
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most be 1, so we use this value to bound the leading-order expression to
its maximum value

en = 1
24nω

3∆t3 .

This is the dominating term of the error at a point.
We are interested in the accumulated global error, which can be

taken as the `2 norm of en. The norm is simply computed by summing
contributions from all mesh points:

||en||2`2 = ∆t
Nt∑
n=0

1
242n

2ω6∆t6 = 1
242ω

6∆t7
Nt∑
n=0

n2 .

The sum
∑Nt
n=0 n

2 is approximately equal to 1
3N

3
t . Replacing Nt by T/∆t

and taking the square root gives the expression

||en||`2 = 1
24

√
T 3

3 ω3∆t2 .

This is our expression for the global (or integrated) error. A primary
result from this expression is that the global error is proportional to ∆t2.

1.4.7 Stability
Looking at (1.20), it appears that the numerical solution has constant
and correct amplitude, but an error in the angular frequency. A constant
amplitude is not necessarily the case, however! To see this, note that if
only ∆t is large enough, the magnitude of the argument to sin−1 in (1.18)
may be larger than 1, i.e., ω∆t/2 > 1. In this case, sin−1(ω∆t/2) has
a complex value and therefore ω̃ becomes complex. Type, for example,
asin(x) in wolframalpha.com to see basic properties of sin−1(x)).

A complex ω̃ can be written ω̃ = ω̃r+iω̃i. Since sin−1(x) has a negative
imaginary part for x > 1, ω̃i < 0, which means that eiω̃t = e−ω̃iteiω̃rt

will lead to exponential growth in time because e−ω̃it with ω̃i < 0 has a
positive exponent.

Stability criterion

We do not tolerate growth in the amplitude since such growth is not
present in the exact solution. Therefore, we must impose a stability

http://www.wolframalpha.com
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criterion so that the argument in the inverse sine function leads to
real and not complex values of ω̃. The stability criterion reads

ω∆t

2 ≤ 1 ⇒ ∆t ≤ 2
ω
. (1.23)

With ω = 2π, ∆t > π−1 = 0.3183098861837907 will give growing
solutions. Figure 1.5 displays what happens when ∆t = 0.3184, which is
slightly above the critical value: ∆t = π−1 + 9.01 · 10−5.

Fig. 1.5 Growing, unstable solution because of a time step slightly beyond the stability
limit.

1.4.8 About the accuracy at the stability limit

An interesting question is whether the stability condition ∆t < 2/ω is
unfortunate, or more precisely: would it be meaningful to take larger
time steps to speed up computations? The answer is a clear no. At
the stability limit, we have that sin−1 ω∆t/2 = sin−1 1 = π/2, and
therefore ω̃ = π/∆t. (Note that the approximate formula (1.19) is very
inaccurate for this value of ∆t as it predicts ω̃ = 2.34/pi, which is a 25
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percent reduction.) The corresponding period of the numerical solution
is P̃ = 2π/ω̃ = 2∆t, which means that there is just one time step ∆t
between a peak (maximum) and a through (minimum) in the numerical
solution. This is the shortest possible wave that can be represented in
the mesh! In other words, it is not meaningful to use a larger time step
than the stability limit.

Also, the error in angular frequency when ∆t = 2/ω is severe: Fig-
ure 1.6 shows a comparison of the numerical and analytical solution
with ω = 2π and ∆t = 2/ω = π−1. Already after one period, the
numerical solution has a through while the exact solution has a peak
(!). The error in frequency when ∆t is at the stability limit becomes
ω − ω̃ = ω(1 − π/2) ≈ −0.57ω. The corresponding error in the period
is P − P̃ ≈ 0.36P . The error after m periods is then 0.36mP . This
error has reached half a period when m = 1/(2 · 0.36) ≈ 1.38, which
theoretically confirms the observations in Figure 1.6 that the numerical
solution is a through ahead of a peak already after one and a half period.
Consequently, ∆t should be chosen much less than the stability limit to
achieve meaningful numerical computations.
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Fig. 1.6 Numerical solution with ∆t exactly at the stability limit.

https://simple.wikipedia.org/wiki/Wave_(physics)


32 1 Vibration ODEs

Summary

From the accuracy and stability analysis we can draw three impor-
tant conclusions:

1. The key parameter in the formulas is p = ω∆t. The period of
oscillations is P = 2π/ω, and the number of time steps per period
is NP = P/∆t. Therefore, p = ω∆t = 2π/NP , showing that the
critical parameter is the number of time steps per period. The
smallest possible NP is 2, showing that p ∈ (0, π].

2. Provided p ≤ 2, the amplitude of the numerical solution is
constant.

3. The ratio of the numerical angular frequency and the exact one
is ω̃/ω ≈ 1 + 1

24p
2. The error 1

24p
2 leads to wrongly displaced

peaks of the numerical solution, and the error in peak location
grows linearly with time (see Exercise 1.2).

1.5 Alternative schemes based on 1st-order equations

A standard technique for solving second-order ODEs is to rewrite them
as a system of first-order ODEs and then choose a solution strategy from
the vast collection of methods for first-order ODE systems. Given the
second-order ODE problem

u′′ + ω2u = 0, u(0) = I, u′(0) = 0,

we introduce the auxiliary variable v = u′ and express the ODE problem
in terms of first-order derivatives of u and v:

u′ = v, (1.24)
v′ = −ω2u . (1.25)

The initial conditions become u(0) = I and v(0) = 0.
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1.5.1 The Forward Euler scheme

A Forward Euler approximation to our 2×2 system of ODEs (1.24)-(1.25)
becomes

[D+
t u = v]n, (1.26)

[D+
t v = −ω2u]n, (1.27)

or written out,

un+1 = un +∆tvn, (1.28)
vn+1 = vn −∆tω2un . (1.29)

Let us briefly compare this Forward Euler method with the centered
difference scheme for the second-order differential equation. We have
from (1.28) and (1.29) applied at levels n and n− 1 that

un+1 = un +∆tvn = un +∆t(vn−1 −∆tω2un−1) .

Since from (1.28)
vn−1 = 1

∆t
(un − un−1),

it follows that

un+1 = 2un − un−1 −∆t2ω2un−1,

which is very close to the centered difference scheme, but the last term
is evaluated at tn−1 instead of tn. Rewriting, so that ∆t2ω2un−1 appears
alone on the right-hand side, and then dividing by ∆t2, the new left-hand
side is an approximation to u′′ at tn, while the right-hand side is sampled
at tn−1. All terms should be sampled at the same mesh point, so using
ω2un−1 instead of ω2un points to a kind of mathematical error in the
derivation of the scheme. This error turns out to be rather crucial for
the accuracy of the Forward Euler method applied to vibration problems
(Section 1.5.4 has examples).

The reasoning above does not imply that the Forward Euler scheme
is not correct, but more that it is almost equivalent to a second-order
accurate scheme for the second-order ODE formulation, and that the
error committed has to do with a wrong sampling point.
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1.5.2 The Backward Euler scheme

A Backward Euler approximation to the ODE system is equally easy to
write up in the operator notation:

[D−t u = v]n+1, (1.30)
[D−t v = −ωu]n+1 . (1.31)

This becomes a coupled system for un+1 and vn+1:

un+1 −∆tvn+1 = un, (1.32)
vn+1 +∆tω2un+1 = vn . (1.33)

We can compare (1.32)-(1.33) with the centered scheme (1.7) for the
second-order differential equation. To this end, we eliminate vn+1 in
(1.32) using (1.33) solved with respect to vn+1. Thereafter, we eliminate
vn using (1.32) solved with respect to vn+1 and also replacing n+ 1 by
n and n by n− 1. The resulting equation involving only un+1, un, and
un−1 can be ordered as

un+1 − 2un + un−1

∆t2
= −ω2un+1,

which has almost the same form as the centered scheme for the second-
order differential equation, but the right-hand side is evaluated at un+1

and not un. This inconsistent sampling of terms has a dramatic effect on
the numerical solution, as we demonstrate in Section 1.5.4.

1.5.3 The Crank-Nicolson scheme

The Crank-Nicolson scheme takes this form in the operator notation:

[Dtu = vt]n+ 1
2 , (1.34)

[Dtv = −ω2ut]n+ 1
2 . (1.35)

Writing the equations out and rearranging terms, shows that this is also
a coupled system of two linear equations at each time level:
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un+1 − 1
2∆tv

n+1 = un + 1
2∆tv

n, (1.36)

vn+1 + 1
2∆tω

2un+1 = vn − 1
2∆tω

2un . (1.37)

We may compare also this scheme to the centered discretization of
the second-order ODE. It turns out that the Crank-Nicolson scheme is
equivalent to the discretization

un+1 − 2un + un−1

∆t2
= −ω2 1

4(un+1 + 2un + un−1) = −ω2un +O(∆t2) .
(1.38)

That is, the Crank-Nicolson is equivalent to (1.7) for the second-order
ODE, apart from an extra term of size ∆t2, but this is an error of the
same order as in the finite difference approximation on the left-hand
side of the equation anyway. The fact that the Crank-Nicolson scheme
is so close to (1.7) makes it a much better method than the Forward or
Backward Euler methods for vibration problems, as will be illustrated in
Section 1.5.4.

Deriving (1.38) is a bit tricky. We start with rewriting the Crank-
Nicolson equations as follows

un+1 − un = 1
2∆t(v

n+1 + vn), (1.39)

vn+1 = vn − 1
2∆tω

2(un+1 + un), (1.40)

and add the latter at the previous time level as well:

vn = vn−1 − 1
2∆tω

2(un + un−1) (1.41)

We can also rewrite (1.39) at the previous time level as

vn + vn−1 = 2
∆t

(un − un−1) . (1.42)

Inserting (1.40) for vn+1 in (1.39) and (1.41) for vn in (1.39) yields after
some reordering:

un+1 − un = 1
2(−1

2∆tω
2(un+1 + 2un + un−1) + vn + vn−1) .
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Now, vn+vn−1 can be eliminated by means of (1.42). The result becomes

un+1 − 2un + un−1 = −∆t2ω2 1
4(un+1 + 2un + un−1) . (1.43)

It can be shown that

1
4(un+1 + 2un + un−1) ≈ un +O(∆t2),

meaning that (1.43) is an approximation to the centered scheme (1.7) for
the second-order ODE where the sampling error in the term ∆t2ω2un is
of the same order as the approximation errors in the finite differences,
i.e., O(∆t2). The Crank-Nicolson scheme written as (1.43) therefore has
consistent sampling of all terms at the same time point tn.

1.5.4 Comparison of schemes

We can easily compare methods like the ones above (and many more!)
with the aid of the Odespy package. Below is a sketch of the code.

import odespy
import numpy as np

def f(u, t, w=1):
# v, u numbering for EulerCromer to work well
v, u = u # u is array of length 2 holding our [v, u]
return [-w**2*u, v]

def run_solvers_and_plot(solvers, timesteps_per_period=20,
num_periods=1, I=1, w=2*np.pi):

P = 2*np.pi/w # duration of one period
dt = P/timesteps_per_period
Nt = num_periods*timesteps_per_period
T = Nt*dt
t_mesh = np.linspace(0, T, Nt+1)

legends = []
for solver in solvers:

solver.set(f_kwargs={’w’: w})
solver.set_initial_condition([0, I])
u, t = solver.solve(t_mesh)

There is quite some more code dealing with plots also, and we refer to the
source file vib_undamped_odespy.py for details. Observe that keyword
arguments in f(u,t,w=1) can be supplied through a solver parameter
f_kwargs (dictionary of additional keyword arguments to f).

https://github.com/hplgit/odespy
http://tinyurl.com/nu656p2/vib/vib_undamped_odespy.py
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Specification of the Forward Euler, Backward Euler, and Crank-
Nicolson schemes is done like this:

solvers = [
odespy.ForwardEuler(f),
# Implicit methods must use Newton solver to converge
odespy.BackwardEuler(f, nonlinear_solver=’Newton’),
odespy.CrankNicolson(f, nonlinear_solver=’Newton’),
]

The vib_undamped_odespy.py program makes two plots of the com-
puted solutions with the various methods in the solvers list: one plot
with u(t) versus t, and one phase plane plot where v is plotted against
u. That is, the phase plane plot is the curve (u(t), v(t)) parameterized
by t. Analytically, u = I cos(ωt) and v = u′ = −ωI sin(ωt). The exact
curve (u(t), v(t)) is therefore an ellipse, which often looks like a circle
in a plot if the axes are automatically scaled. The important feature,
however, is that the exact curve (u(t), v(t)) is closed and repeats itself
for every period. Not all numerical schemes are capable of doing that,
meaning that the amplitude instead shrinks or grows with time.

Figure 1.7 show the results. Note that Odespy applies the label Mid-
pointImplicit for what we have specified as CrankNicolson in the code
(CrankNicolson is just a synonym for class MidpointImplicit in the
Odespy code). The Forward Euler scheme in Figure 1.7 has a pronounced
spiral curve, pointing to the fact that the amplitude steadily grows, which
is also evident in Figure 1.8. The Backward Euler scheme has a similar
feature, except that the spriral goes inward and the amplitude is signifi-
cantly damped. The changing amplitude and the spiral form decreases
with decreasing time step. The Crank-Nicolson scheme looks much more
accurate. In fact, these plots tell that the Forward and Backward Euler
schemes are not suitable for solving our ODEs with oscillating solutions.
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Fig. 1.7 Comparison of classical schemes in the phase plane for two time step values.
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Fig. 1.8 Comparison of solution curves for classical schemes.

1.5.5 Runge-Kutta methods

We may run two other popular standard methods for first-order ODEs,
the 2nd- and 4th-order Runge-Kutta methods, to see how they perform.
Figures 1.9 and 1.10 show the solutions with larger ∆t values than what
was used in the previous two plots.
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Fig. 1.9 Comparison of Runge-Kutta schemes in the phase plane.

The visual impression is that the 4th-order Runge-Kutta method is
very accurate, under all circumstances in these tests, while the 2nd-order
scheme suffers from amplitude errors unless the time step is very small.

The corresponding results for the Crank-Nicolson scheme are shown
in Figure 1.11. It is clear that the Crank-Nicolson scheme outperforms
the 2nd-order Runge-Kutta method. Both schemes have the same order
of accuracy O(∆t2), but their differences in the accuracy that matters
in a real physical application is very clearly pronounced in this example.
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Fig. 1.10 Comparison of Runge-Kutta schemes.

Exercise 1.13 invites you to investigate how the amplitude is computed
by a series of famous methods for first-order ODEs.
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Fig. 1.11 Long-time behavior of the Crank-Nicolson scheme in the phase plane.

1.5.6 Analysis of the Forward Euler scheme

We may try to find exact solutions of the discrete equations (1.28)-(1.29)
in the Forward Euler method to better understand why this otherwise
useful method has so bad performance for vibration ODEs. An “ansatz”
for the solution of the discrete equations is

un = IAn,

vn = qIAn,
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where q and A are scalars to be determined. We could have used a
complex exponential form eiω̃n∆t since we get oscillatory solutions, but
the oscillations grow in the Forward Euler method, so the numerical
frequency ω̃ will be complex anyway (producing an exponentially growing
amplitude). Therefore, it is easier to just work with potentially complex
A and q as introduced above.

The Forward Euler scheme leads to

A = 1 +∆tq,

A = 1−∆tω2q−1 .

We can easily eliminate A, get q2 + ω2 = 0, and solve for

q = ±iω,

which gives

A = 1±∆tiω .

We shall take the real part of An as the solution. The two values of A are
complex conjugates, and the real part of An will be the same for both
roots. This is easy to realize if we rewrite the complex numbers in polar
form, which is also convenient for further analysis and understanding.
The polar form reiθ of a complex number x+ iy has r =

√
x2 + y2 and

θ = tan−1(y/x). Hence, the polar form of the two values for A becomes

1±∆tiω =
√

1 + ω2∆t2e±i tan−1(ω∆t) .

Now it is very easy to compute An:

(1±∆tiω)n = (1 + ω2∆t2)n/2e±ni tan−1(ω∆t) .

Since cos(θn) = cos(−θn), the real parts of the two numbers become the
same. We therefore continue with the solution that has the plus sign.

The general solution is un = CAn, where C is a constant determined
from the initial condition: u0 = C = I. We have un = IAn and vn = qIAn.
The final solutions are just the real part of the expressions in polar form:

un = I(1 + ω2∆t2)n/2 cos(n tan−1(ω∆t)), (1.44)
vn = −ωI(1 + ω2∆t2)n/2 sin(n tan−1(ω∆t)) . (1.45)
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The expression (1 + ω2∆t2)n/2 causes growth of the amplitude, since
a number greater than one is raised to a positive exponent n/2. We
can develop a series expression to better understand the formula for the
amplitude. Introducing p = ω∆t as the key variable and using sympy
gives

>>> from sympy import *
>>> p = symbols(’p’, real=True)
>>> n = symbols(’n’, integer=True, positive=True)
>>> amplitude = (1 + p**2)**(n/2)
>>> amplitude.series(p, 0, 4)
1 + n*p**2/2 + O(p**4)

The amplitude goes like 1 + 1
2nω

2∆t2, clearly growing linearly in time
(with n).

We can also investigate the error in the angular frequency by a series
expansion:

>>> n*atan(p).series(p, 0, 4)
n*(p - p**3/3 + O(p**4))

This means that the solution for un can be written as

un = (1 + 1
2nω

2∆t2 +O(∆t4)) cos
(
ωt− 1

3ωt∆t
2 +O(∆t4)

)
.

The error in the angular frequency is of the same order as in the scheme
(1.7) for the second-order ODE, but the error in the amplitude is severe.

1.6 Energy considerations

The observations of various methods in the previous section can be better
interpreted if we compute a quantity reflecting the total energy of the
system. It turns out that this quantity,

E(t) = 1
2(u′)2 + 1

2ω
2u2,

is constant for all t. Checking that E(t) really remains constant brings
evidence that the numerical computations are sound. It turns out that E
is proportional to the mechanical energy in the system. Conservation of
energy is much used to check numerical simulations, so it is well invested
time to dive into this subject.
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1.6.1 Derivation of the energy expression

We start out with multiplying

u′′ + ω2u = 0,

by u′ and integrating from 0 to T :∫ T

0
u′′u′dt+

∫ T

0
ω2uu′dt = 0 .

Observing that

u′′u′ = d

dt

1
2(u′)2, uu′ = d

dt

1
2u

2,

we get ∫ T

0
( d
dt

1
2(u′)2 + d

dt

1
2ω

2u2)dt = E(T )− E(0) = 0,

where we have introduced

E(t) = 1
2(u′)2 + 1

2ω
2u2 . (1.46)

The important result from this derivation is that the total energy is
constant:

E(t) = E(0) .

E(t) is closely related to the system’s energy

The quantity E(t) derived above is physically not the mechanical
energy of a vibrating mechanical system, but the energy per unit
mass. To see this, we start with Newton’s second law F = ma (F
is the sum of forces, m is the mass of the system, and a is the
acceleration). The displacement u is related to a through a = u′′.
With a spring force as the only force we have F = −ku, where k is
a spring constant measuring the stiffness of the spring. Newton’s
second law then implies the differential equation

−ku = mu′′ ⇒ mu′′ + ku = 0 .
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This equation of motion can be turned into an energy balance
equation by finding the work done by each term during a time
interval [0, T ]. To this end, we multiply the equation by du = u′dt
and integrate: ∫ T

0
muu′dt+

∫ T

0
kuu′dt = 0 .

The result is

Ẽ(t) = Ek(t) + Ep(t) = 0,

where

Ek(t) = 1
2mv

2, v = u′, (1.47)

is the kinetic energy of the system, and

Ep(t) = 1
2ku

2 (1.48)

is the potential energy. The sum Ẽ(t) is the total mechanical energy.
The derivation demonstrates the famous energy principle that, under
the right physical circumstances, any change in the kinetic energy is
due to a change in potential energy and vice versa. (This principle
breaks down when we introduce damping in the system, as we do
in Section 1.10.)

The equation mu′′ + ku = 0 can be divided by m and written
as u′′ + ω2u = 0 for ω =

√
k/m. The energy expression E(t) =

1
2(u′)2+ 1

2ω
2u2 derived earlier is then Ẽ(t)/m, i.e., mechanical energy

per unit mass.

Energy of the exact solution. Analytically, we have u(t) = I cosωt, if
u(0) = I and u′(0) = 0, so we can easily check the energy evolution and
confirm that E(t) is constant:

E(t) = 1
2I

2(−ω sinωt)2+ 1
2ω

2I2 cos2 ωt = 1
2ω

2(sin2 ωt+cos2 ωt) = 1
2ω

2 .

Growth of energy in the Forward Euler scheme. The energy at time
level n+ 1 in the Forward Euler scheme can easily be shown to increase:



44 1 Vibration ODEs

En+1 = 1
2(vn+1)2 + 1

2ω
2(un+1)2

= 1
2(vn − ω2∆tun)2 + 1

2ω
2(un +∆tvn)2

= (1 +∆t2ω2)En .

1.6.2 An error measure based on energy

The constant energy is well expressed by its initial value E(0), so that
the error in mechanical energy can be computed as a mesh function by

enE = 1
2

(
un+1 − un−1

2∆t

)2

+ 1
2ω

2(un)2−E(0), n = 1, . . . , Nt−1, (1.49)

where

E(0) = 1
2V

2 + 1
2ω

2I2,

if u(0) = I and u′(0) = V . Note that we have used a centered approxi-
mation to u′: u′(tn) ≈ [D2tu]n.

A useful norm of the mesh function enE for the discrete mechanical
energy can be the maximum absolute value of enE :

||enE ||`∞ = max
1≤n<Nt

|enE | .

Alternatively, we can compute other norms involving integration over all
mesh points, but we are often interested in worst case deviation of the
energy, and then the maximum value is of particular relevance.

A vectorized Python implementation of enE takes the form

# import numpy as np and compute u, t
dt = t[1]-t[0]
E = 0.5*((u[2:] - u[:-2])/(2*dt))**2 + 0.5*w**2*u[1:-1]**2
E0 = 0.5*V**2 + 0.5**w**2*I**2
e_E = E - E0
e_E_norm = np.abs(e_E).max()

The convergence rates of the quantity e_E_norm can be used for
verification. The value of e_E_norm is also useful for comparing schemes
through their ability to preserve energy. Below is a table demonstrating
the relative error in total energy for various schemes (computed by the
vib_undamped_odespy.py program). The test problem is u′′ + 4π2u = 0

http://tinyurl.com/nu656p2/vib/vib_undamped_odespy.py
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with u(0) = 1 and u′(0) = 0, so the period is 1 and E(t) ≈ 4.93. We
clearly see that the Crank-Nicolson and the Runge-Kutta schemes are
superior to the Forward and Backward Euler schemes already after one
period.

Method T ∆t max |enE | /e0
E

Forward Euler 1 0.025 1.678 · 100

Backward Euler 1 0.025 6.235 · 10−1

Crank-Nicolson 1 0.025 1.221 · 10−2

Runge-Kutta 2nd-order 1 0.025 6.076 · 10−3

Runge-Kutta 4th-order 1 0.025 8.214 · 10−3

However, after 10 periods, the picture is much more dramatic:

Method T ∆t max |enE | /e0
E

Forward Euler 10 0.025 1.788 · 104

Backward Euler 10 0.025 1.000 · 100

Crank-Nicolson 10 0.025 1.221 · 10−2

Runge-Kutta 2nd-order 10 0.025 6.250 · 10−2

Runge-Kutta 4th-order 10 0.025 8.288 · 10−3

The Runge-Kutta and Crank-Nicolson methods hardly change their
energy error with T , while the error in the Forward Euler method grows
to huge levels and a relative error of 1 in the Backward Euler method
points to E(t)→ 0 as t grows large.

Running multiple values of ∆t, we can get some insight into the
convergence of the energy error:

Method T ∆t max |enE | /e0
E

Forward Euler 10 0.05 1.120 · 108

Forward Euler 10 0.025 1.788 · 104

Forward Euler 10 0.0125 1.374 · 102

Backward Euler 10 0.05 1.000 · 100

Backward Euler 10 0.025 1.000 · 100

Backward Euler 10 0.0125 9.928 · 10−1

Crank-Nicolson 10 0.05 4.756 · 10−2

Crank-Nicolson 10 0.025 1.221 · 10−2

Crank-Nicolson 10 0.0125 3.125 · 10−3

Runge-Kutta 2nd-order 10 0.05 6.152 · 10−1

Runge-Kutta 2nd-order 10 0.025 6.250 · 10−2

Runge-Kutta 2nd-order 10 0.0125 7.631 · 10−3

Runge-Kutta 4th-order 10 0.05 3.510 · 10−2

Runge-Kutta 4th-order 10 0.025 8.288 · 10−3

Runge-Kutta 4th-order 10 0.0125 2.058 · 10−3

A striking fact from this table is that the error of the Forward Euler
method is reduced by the same factor as ∆t is reduced by, while the
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error in the Crank-Nicolson method has a reduction proportional to ∆t2
(we cannot say anything for the Backward Euler method). However, for
the RK2 method, halving ∆t reduces the error by almost a factor of 10
(!), and for the RK4 method the reduction seems proportional to ∆t2
only (and the trend is confirmed by running smaller time steps, so for
∆t = 3.9 · 10−4 the relative error of RK2 is a factor 10 smaller than that
of RK4!).

1.7 The Euler-Cromer method

While the Runge-Kutta methods and the Crank-Nicolson scheme work
well for the vibration equation modeled as a first-order ODE system,
both were inferior to the straightforward centered difference scheme for
the second-order equation u′′ + ω2u = 0. However, there is a similarly
successful scheme available for the first-order system u′ = v, v′ = −ω2u,
to be presented below. The ideas of the scheme and their further devel-
opments have become very popular in particle and rigid body dynamics
and hence widely used by physicists.

1.7.1 Forward-backward discretization

The idea is to apply a Forward Euler discretization to the first equation
and a Backward Euler discretization to the second. In operator notation
this is stated as

[D+
t u = v]n, (1.50)

[D−t v = −ω2u]n+1 . (1.51)

We can write out the formulas and collect the unknowns on the left-hand
side:

un+1 = un +∆tvn, (1.52)
vn+1 = vn −∆tω2un+1 . (1.53)

We realize that after un+1 has been computed from (1.52), it may be
used directly in (1.53) to compute vn+1.
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In physics, it is more common to update the v equation first, with
a forward difference, and thereafter the u equation, with a backward
difference that applies the most recently computed v value:

vn+1 = vn −∆tω2un, (1.54)
un+1 = un +∆tvn+1 . (1.55)

The advantage of ordering the ODEs as in (1.54)-(1.55) becomes evident
when considering complicated models. Such models are included if we
write our vibration ODE more generally as

u′′ + g(u, u′, t) = 0 .

We can rewrite this second-order ODE as two first-order ODEs,

v′ = −g(u, v, t),
u′ = v .

This rewrite allows the following scheme to be used:

vn+1 = vn −∆t g(un, vn, t),
un+1 = un +∆t vn+1 .

We realize that the first update works well with any g since old values
un and vn are used. Switching the equations would demand un+1 and
vn+1 values in g and result in nonlinear algebraic equations to be solved
at each time level.

The scheme (1.54)-(1.55) goes under several names: forward-backward
scheme, semi-implicit Euler method, semi-explicit Euler, symplectic Euler,
Newton-Störmer-Verlet, and Euler-Cromer. We shall stick to the latter
name. Since both time discretizations are based on first-order difference
approximation, one may think that the scheme is only of first-order, but
this is not true: the use of a forward and then a backward difference
make errors cancel so that the overall error in the scheme is O(∆t2).
This is explained below.

How does the Euler-Cromer method preserve the total energy? We
may run the example from Section 1.6.2:

http://en.wikipedia.org/wiki/Semi-implicit_Euler_method
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Method T ∆t max |enE | /e0
E

Euler-Cromer 10 0.05 2.530 · 10−2

Euler-Cromer 10 0.025 6.206 · 10−3

Euler-Cromer 10 0.0125 1.544 · 10−3

The relative error in the total energy decreases as ∆t2, and the error level
is slightly lower than for the Crank-Nicolson and Runge-Kutta methods.

1.7.2 Equivalence with the scheme for the second-order ODE
We shall now show that the Euler-Cromer scheme for the system of
first-order equations is equivalent to the centered finite difference method
for the second-order vibration ODE (!).

We may eliminate the vn variable from (1.52)-(1.53) or (1.54)-(1.55).
The vn+1 term in (1.54) can be eliminated from (1.55):

un+1 = un +∆t(vn − ω2∆tun) . (1.56)

The vn quantity can be expressed by un and un−1 using (1.55):

vn = un − un−1

∆t
,

and when this is inserted in (1.56) we get

un+1 = 2un − un−1 −∆t2ω2un, (1.57)

which is nothing but the centered scheme (1.7)! The two seemingly dif-
ferent numerical methods are mathematically equivalent. Consequently,
the previous analysis of (1.7) also applies to the Euler-Cromer method.
In particular, the amplitude is constant, given that the stability criterion
is fulfilled, but there is always an angular frequency error (1.19). Exer-
cise 1.18 gives guidance on how to derive the exact discrete solution of
the two equations in the Euler-Cromer method.

Although the Euler-Cromer scheme and the method (1.7) are equiv-
alent, there could be differences in the way they handle the initial
conditions. Let is look into this topic. The initial condition u′ = 0 means
u′ = v = 0. From (1.54) we get

v1 = v0 −∆tω2u0 = ∆tω2u0,

and from (1.55) it follows that
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u1 = u0 +∆tv1 = u0 − ω2∆t2u0 .

When we previously used a centered approximation of u′(0) = 0 combined
with the discretization (1.7) of the second-order ODE, we got a slightly
different result: u1 = u0 − 1

2ω
2∆t2u0. The difference is 1

2ω
2∆t2u0, which

is of second order in ∆t, seemingly consistent with the overall error in
the scheme for the differential equation model.

A different view can also be taken. If we approximate u′(0) = 0 by
a backward difference, (u0 − u−1)/∆t = 0, we get u−1 = u0, and when
combined with (1.7), it results in u1 = u0 − ω2∆t2u0. This means that
the Euler-Cromer method based on (1.55)-(1.54) corresponds to using
only a first-order approximation to the initial condition in the method
from Section 1.1.2.

Correspondingly, using the formulation (1.52)-(1.53) with vn = 0
leads to u1 = u0, which can be interpreted as using a forward difference
approximation for the initial condition u′(0) = 0. Both Euler-Cromer
formulations lead to slightly different values for u1 compared to the
method in Section 1.1.2. The error is 1

2ω
2∆t2u0.

1.7.3 Implementation
Solver function. The function below, found in vib_undamped_
EulerCromer.py, implements the Euler-Cromer scheme (1.54)-(1.55):

import numpy as np

def solver(I, w, dt, T):
"""
Solve v’ = - w**2*u, u’=v for t in (0,T], u(0)=I and v(0)=0,
by an Euler-Cromer method.
"""
dt = float(dt)
Nt = int(round(T/dt))
u = np.zeros(Nt+1)
v = np.zeros(Nt+1)
t = np.linspace(0, Nt*dt, Nt+1)

v[0] = 0
u[0] = I
for n in range(0, Nt):

v[n+1] = v[n] - dt*w**2*u[n]
u[n+1] = u[n] + dt*v[n+1]

return u, v, t

Verification. Since the Euler-Cromer scheme is equivalent to the finite
difference method for the second-order ODE u′′ + ω2u = 0 (see Sec-

http://tinyurl.com/nu656p2/vib/vib_undamped_EulerCromer.py
http://tinyurl.com/nu656p2/vib/vib_undamped_EulerCromer.py
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tion 1.7.2), the performance of the above solver function is the same as
for the solver function in Section 1.2. The only difference is the formula
for the first time step, as discussed above. This deviation in the Euler-
Cromer scheme means that the discrete solution listed in Section 1.4.4 is
not a solution of the Euler-Cromer scheme!

To verify the implementation of the Euler-Cromer method we can
adjust v[1] so that the computer-generated values can be compared
with the formula (1.20) from in Section 1.4.4. This adjustment is done in
an alternative solver function, solver_ic_fix in vib_EulerCromer.py.
Since we now have an exact solution of the discrete equations available,
we can write a test function test_solver for checking the equality of
computed values with the formula (1.20):

def test_solver():
"""
Test solver with fixed initial condition against
equivalent scheme for the 2nd-order ODE u’’ + u = 0.
"""
I = 1.2; w = 2.0; T = 5
dt = 2/w # longest possible time step
u, v, t = solver_ic_fix(I, w, dt, T)
from vib_undamped import solver as solver2 # 2nd-order ODE
u2, t2 = solver2(I, w, dt, T)
error = np.abs(u - u2).max()
tol = 1E-14
assert error < tol

Another function, demo, visualizes the difference between the Euler-
Cromer scheme and the scheme (1.7) for the second-oder ODE, arising
from the mismatch in the first time level.

Using Odespy. The Euler-Cromer method is also available in the Odespy
package. The important thing to remember, when using this implemen-
tation, is that we must order the unknowns as v and u, so the u vector
at each time level consists of the velocity v as first component and the
displacement u as second component:

# Define ODE
def f(u, t, w=1):

v, u = u
return [-w**2*u, v]

# Initialize solver
I = 1
w = 2*np.pi
import odespy
solver = odespy.EulerCromer(f, f_kwargs={’w’: w})
solver.set_initial_condition([0, I])
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# Compute time mesh
P = 2*np.pi/w # duration of one period
dt = P/timesteps_per_period
Nt = num_periods*timesteps_per_period
T = Nt*dt
import numpy as np
t_mesh = np.linspace(0, T, Nt+1)

# Solve ODE
u, t = solver.solve(t_mesh)
u = u[:,1] # Extract displacement

Convergence rates. We may use the convergence_rates function in
the file vib_undamped.py to investigate the convergence rate of the
Euler-Cromer method, see the convergence_rate function in the file
vib_undamped_EulerCromer.py. Since we could eliminate v to get a
scheme for u that is equivalent to the finite difference method for the
second-order equation in u, we would expect the convergence rates to
be the same, i.e., O(∆t2). However, measuring the convergence rate of
u in the Euler-Cromer scheme shows that it is O(∆t)! Adjusting the
initial condition does not change the rate. Adjusting ω, as outlined in
Section 1.4.2, gives a 4th-order method there, while there is no increase
in the measured rate in the Euler-Cromer scheme. It is obvious that the
Euler-Cromer scheme is dramatically much better than the two other
first-order methods, Forward Euler and Backward Euler, but this is not
reflected in the convergence rate of u.

1.7.4 The Störmer-Verlet algorithm

Another very popular algorithm for vibration problems, especially for
long time simulations, is the Stömer-Verlet algorithm. It has become the
method among physicists for molecular simulations as well as particle
and rigid body dynamics.

The method can be derived by applying the Euler-Cromer idea twice,
in a symmetric fashion, during the interval [tn, tn+1]:

1. solve v′ = −ωu by a Forward Euler step in [tn, tn+ 1
2
]

2. solve u′ = v by a Backward Euler step in [tn, tn+ 1
2
]

3. solve u′ = v by a Forward Euler step in [tn+ 1
2
, tn+1]

4. solve v′ = −ωu by a Backward Euler step in [tn+ 1
2
, tn+1]

With mathematics,
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vn+ 1
2 − vn

1
2∆t

= −ω2un,

un+ 1
2 − un

1
2∆t

= vn+ 1
2 ,

un+1 − un− 1
2

1
2∆t

= vn+ 1
2 ,

vn+1 − vn+ 1
2

1
2∆t

= −ω2un+1 .

The two steps in the middle can be combined to

un+1 − un−1

∆t
= vn+ 1

2 ,

and consequently

vn+ 1
2 = vn − 1

2∆tω
2un, (1.58)

un+1 = un +∆tvn+ 1
2 , (1.59)

vn+1 = vn+ 1
2 − 1

2∆tω
2un+1 . (1.60)

Writing the last equation as vn = vn−
1
2 − 1

2∆tω
2un and using this vn in

the first equation gives vn+ 1
2 = vn−

1
2 −∆tω2un, and the scheme can be

written as two steps:

vn+ 1
2 = vn−

1
2 −∆tω2un, (1.61)

un+1 = un +∆tvn+ 1
2 , (1.62)

which is nothing but straightforward centered differences for the 2× 2
ODE system on a staggered mesh, see Section 1.8.1. We have thus
seen that four different reasonings (discretizing u′′ + ω2u directly, using
Euler-Cromer, using Stömer-Verlet, and using centered differences for the
2times2 system on a staggered mesh) all end up with the same equations!
The main difference is that the traditional Euler-Cromer displays first-
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order convergence in ∆t (due to less symmetry in the way u and v are
treated) while the others are O(∆t2) schemes.

The most numerical stable scheme, with respect to accumulation of
rounding errors, is (1.61)-(1.62). It has, according to [6], better properties
in this regard than the direct scheme for the second-order ODE.

1.8 Staggered mesh

A more intuitive discretization than the Euler-Cromer method, yet equiv-
alent, employs solely centered differences in a natural way for the 2× 2
first-order ODE system. The scheme is in fact fully equivalent to the
second-order scheme for u′′ + ωu = 0, also for the first time step. Such a
scheme needs to operate on a staggered mesh in time. Staggered meshes
are very popular in many physical application, maybe foremost fluid
dynamics and electromagnetics, so the topic is important to learn.

1.8.1 The Euler-Cromer scheme on a staggered mesh

In a staggered mesh, the unknowns are sought at different points in the
mesh. Specifically, u is sought at integer time points tn and v is sought at
tn+1/2 between two u points. The unknowns are then u1, v3/2, u2, v5/2, and
so on. We typically use the notation un and vn+ 1

2 for the two unknown
mesh functions. Figure 1.12 presents a graphical sketch of two mesh
functions u and v on a staggered mesh.

On a staggered mesh it is natural to use centered difference approxi-
mations, expressed in operator notation as

[Dtu = v]n+ 1
2 , (1.63)

[Dtv = −ωu]n+1 . (1.64)

or if we switch the sequence of the equations:

[Dtv = −ωu]n, (1.65)
[Dtu = v]n+ 1

2 . (1.66)

Writing out the formulas gives
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Fig. 1.12 Examples on mesh functions on a staggered mesh in time.

vn+ 1
2 = vn−

1
2 −∆tω2un, (1.67)

un+1 = un +∆tvn+ 1
2 . (1.68)

We can eliminate the v values and get back the centered scheme based
on the second-order differential equation u′′ + ω2u = 0, so all these three
schemes are equivalent. However, they differ somewhat in the treatment
of the initial conditions.

Suppose we have u(0) = I and u′(0) = v(0) = 0 as mathematical
initial conditions. This means u0 = I and

v(0) ≈ 1
2(v− 1

2 + v
1
2 ) = 0, ⇒ v−

1
2 = −v 1

2 .

Using the discretized equation (1.67) for n = 0 yields

v
1
2 = v−

1
2 −∆tω2I,

and eliminating v− 1
2 = −v 1

2 results in
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v
1
2 = −1

2∆tω
2I,

and

u1 = u0 − 1
2∆t

2ω2I,

which is exactly the same equation for u1 as we had in the centered scheme
based on the second-order differential equation (and hence corresponds
to a centered difference approximation of the initial condition for u′(0)).
The conclusion is that a staggered mesh is fully equivalent with that
scheme, while the forward-backward version gives a slight deviation in
the computation of u1.

We can redo the derivation of the initial conditions when u′(0) = V :

v(0) ≈ 1
2(v− 1

2 + v
1
2 ) = V, ⇒ v−

1
2 = 2V − v 1

2 .

Using this v− 1
2 in

v
1
2 = v−

1
2 −∆tω2I,

then gives v 1
2 = V − 1

2∆tω
2I. The general initial conditions are therefore

u0 = I, (1.69)

v
1
2 = V − 1

2∆tω
2I . (1.70)

1.8.2 Implementation of the scheme on a staggered mesh

The algorithm goes like this:

1. Set the initial values (1.69) and (1.70).
2. For n = 1, 2, . . .:

a. Compute un from (1.68).
b. Compute vn+ 1

2 from (1.67).

Implementation with integer indices. Translating the schemes (1.68)
and (1.67) to computer code faces the problem of how to store and access
vn+ 1

2 , since arrays only allow integer indices with base 0. We must then
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introduce a convention: v1+ 1
2 is stored in v[n] while v1− 1

2 is stored in
v[n-1]. We can then write the algorithm in Python as

def solver(I, w, dt, T):
dt = float(dt)
Nt = int(round(T/dt))
u = zeros(Nt+1)
v = zeros(Nt+1)
t = linspace(0, Nt*dt, Nt+1) # mesh for u
t_v = t + dt/2 # mesh for v

u[0] = I
v[0] = 0 - 0.5*dt*w**2*u[0]
for n in range(1, Nt+1):

u[n] = u[n-1] + dt*v[n-1]
v[n] = v[n-1] - dt*w**2*u[n]

return u, t, v, t_v

Note that u and v are returned together with the mesh points such that
the complete mesh function for u is described by u and t, while v and
t_v represent the mesh function for v.

Implementation with half-integer indices. Some prefer to see a closer
relationship between the code and the mathematics for the quantities
with half-integer indices. For example, we would like to replace the
updating equation for v[n] by

v[n+half] = v[n-half] - dt*w**2*u[n]

This is easy to do if we could be sure that n+half means n and n-half
means n-1. A possible solution is to define half as a special object such
that an integer plus half results in the integer, while an integer minus
half equals the integer minus 1. A simple Python class may realize the
half object:

class HalfInt:
def __radd__(self, other):

return other

def __rsub__(self, other):
return other - 1

half = HalfInt()

The __radd__ function is invoked for all expressions n+half ("right add"
with self as half and other as n). Similarly, the __rsub__ function is
invoked for n-half and results in n-1.

Using the half object, we can implement the algorithms in an even
more readable way:
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def solver(I, w, dt, T):
"""
Solve u’=v, v’ = - w**2*u for t in (0,T], u(0)=I and v(0)=0,
by a central finite difference method with time step dt on
a staggered mesh with v as unknown at (i+1/2)*dt time points.
"""
dt = float(dt)
Nt = int(round(T/dt))
u = zeros(Nt+1)
v = zeros(Nt+1)
t = linspace(0, Nt*dt, Nt+1) # mesh for u
t_v = t + dt/2 # mesh for v

u[0] = I
v[0+half] = 0 - 0.5*dt*w**2*u[0]
for n in range(1, Nt+1):

u[n] = u[n-1] + dt*v[n-half]
v[n+half] = v[n-half] - dt*w**2*u[n]

return u, t, v[:-1], t_v[:-1]

Verification of this code is easy as we can just compare the computed u
with the u produced by the solver function in vib_undamped.py (which
solves u′′ + ω2u = 0 directly). The values should coincide to machine
precision since the two numerical methods are mathematically equivalent.
We refer to the file vib_undamped_staggered.py for the details of a
unit test (test_staggered) that checks this property.

1.9 Exercises and Problems

Problem 1.1: Use linear/quadratic functions for verification

Consider the ODE problem

u′′ + ω2u = f(t), u(0) = I, u′(0) = V, t ∈ (0, T ] .

a) Discretize this equation according to [DtDtu+ ω2u = f ]n and derive
the equation for the first time step (u1).

b) For verification purposes, we use the method of manufactured solutions
(MMS) with the choice of ue(t) = ct + d. Find restrictions on c and d
from the initial conditions. Compute the corresponding source term f .
Show that [DtDtt]n = 0 and use the fact that the DtDt operator is linear,
[DtDt(ct + d)]n = c[DtDtt]n + [DtDtd]n = 0, to show that ue is also a
perfect solution of the discrete equations.

http://tinyurl.com/nu656p2/vib/vib_undamped_staggered.py
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c) Use sympy to do the symbolic calculations above. Here is a sketch of
the program vib_undamped_verify_mms.py:

import sympy as sym
V, t, I, w, dt = sym.symbols(’V t I w dt’) # global symbols
f = None # global variable for the source term in the ODE

def ode_source_term(u):
"""Return the terms in the ODE that the source term
must balance, here u’’ + w**2*u.
u is symbolic Python function of t."""
return sym.diff(u(t), t, t) + w**2*u(t)

def residual_discrete_eq(u):
"""Return the residual of the discrete eq. with u inserted."""
R = ...
return sym.simplify(R)

def residual_discrete_eq_step1(u):
"""Return the residual of the discrete eq. at the first
step with u inserted."""
R = ...
return sym.simplify(R)

def DtDt(u, dt):
"""Return 2nd-order finite difference for u_tt.
u is a symbolic Python function of t.
"""
return ...

def main(u):
"""
Given some chosen solution u (as a function of t, implemented
as a Python function), use the method of manufactured solutions
to compute the source term f, and check if u also solves
the discrete equations.
"""
print ’=== Testing exact solution: %s ===’ % u
print "Initial conditions u(0)=%s, u’(0)=%s:" % \

(u(t).subs(t, 0), sym.diff(u(t), t).subs(t, 0))

# Method of manufactured solution requires fitting f
global f # source term in the ODE
f = sym.simplify(ode_lhs(u))

# Residual in discrete equations (should be 0)
print ’residual step1:’, residual_discrete_eq_step1(u)
print ’residual:’, residual_discrete_eq(u)

def linear():
main(lambda t: V*t + I)

if __name__ == ’__main__’:
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linear()

Fill in the various functions such that the calls in the main function
works.

d) The purpose now is to choose a quadratic function ue = bt2 +ct+d as
exact solution. Extend the sympy code above with a function quadratic
for fitting f and checking if the discrete equations are fulfilled. (The
function is very similar to linear.)

e) Will a polynomial of degree three fulfill the discrete equations?

f) Implement a solver function for computing the numerical solution
of this problem.

g) Write a test function for checking that the quadratic solution is com-
puted correctly (to machine precision, but the round-off errors accumulate
and increase with T ) by the solver function.
Filename: vib_undamped_verify_mms.

Exercise 1.2: Show linear growth of the phase with time

Consider an exact solution I cos(ωt) and an approximation I cos(ω̃t).
Define the phase error as the time lag between the peak I in the exact
solution and the corresponding peak in the approximation afterm periods
of oscillations. Show that this phase error is linear in m.
Filename: vib_phase_error_growth.

Exercise 1.3: Improve the accuracy by adjusting the
frequency

According to (1.19), the numerical frequency deviates from the exact
frequency by a (dominating) amount ω3∆t2/24 > 0. Replace the w
parameter in the algorithm in the solver function in vib_undamped.py
by w*(1 - (1./24)*w**2*dt**2 and test how this adjustment in the
numerical algorithm improves the accuracy (use ∆t = 0.1 and simulate
for 80 periods, with and without adjustment of ω).
Filename: vib_adjust_w.
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Exercise 1.4: See if adaptive methods improve the phase
error

Adaptive methods for solving ODEs aim at adjusting ∆t such that
the error is within a user-prescribed tolerance. Implement the equa-
tion u′′ + u = 0 in the Odespy software. Use the example from Sec-
tion 3.2.11 in [9]. Run the scheme with a very low tolerance (say 10−14)
and for a long time, check the number of time points in the solver’s mesh
(len(solver.t_all)), and compare the phase error with that produced
by the simple finite difference method from Section 1.1.2 with the same
number of (equally spaced) mesh points. The question is whether it pays
off to use an adaptive solver or if equally many points with a simple
method gives about the same accuracy.
Filename: vib_undamped_adaptive.

Exercise 1.5: Use a Taylor polynomial to compute u1

As an alternative to computing u1 by (1.8), one can use a Taylor polyno-
mial with three terms:

u(t1) ≈ u(0) + u′(0)∆t+ 1
2u
′′(0)∆t2

With u′′ = −ω2u and u′(0) = 0, show that this method also leads to
(1.8). Generalize the condition on u′(0) to be u′(0) = V and compute u1

in this case with both methods.
Filename: vib_first_step.

Problem 1.6: Derive and investigate the velocity Verlet
method

The velocity Verlet method for u′′ + ω2u = 0 is based on the following
ideas:

1. step u forward from tn to tn+1 using a three-term Taylor series,
2. replace u′′ by −ω2u
3. discretize v′ = −ω2u by a Crank-Nicolson method.

Derive the scheme, implement it, and determine empirically the conver-
gence rate.

https://github.com/hplgit/odespy
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Problem 1.7: Find the minimal resolution of an oscillatory
function

Sketch the function on a given mesh which has the highest possible
frequency. That is, this oscillatory “cos-like” function has its maxima and
minima at every two grid points. Find an expression for the frequency of
this function, and use the result to find the largest relevant value of ω∆t
when ω is the frequency of an oscillating function and ∆t is the mesh
spacing.
Filename: vib_largest_wdt.

Exercise 1.8: Visualize the accuracy of finite differences for a
cosine function

We introduce the error fraction

E = [DtDtu]n
u′′(tn)

to measure the error in the finite difference approximation DtDtu to u′′.
Compute E for the specific choice of a cosine/sine function of the form
u = exp (iωt) and show that

E =
( 2
ω∆t

)2
sin2(ω∆t2 ) .

Plot E as a function of p = ω∆t. The relevant values of p are [0, π] (see
Exercise 1.7 for why p > π does not make sense). The deviation of the
curve from unity visualizes the error in the approximation. Also expand
E as a Taylor polynomial in p up to fourth degree (use, e.g., sympy).
Filename: vib_plot_fd_exp_error.

Exercise 1.9: Verify convergence rates of the error in energy

We consider the ODE problem u′′ + ω2u = 0, u(0) = I, u′(0) = V , for
t ∈ (0, T ]. The total energy of the solution E(t) = 1

2(u′)2 + 1
2ω

2u2 should
stay constant. The error in energy can be computed as explained in
Section 1.6.

Make a test function in a separate file, where code from
vib_undamped.py is imported, but the convergence_rates and
test_convergence_rates functions are copied and modified to also
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incorporate computations of the error in energy and the convergence
rate of this error. The expected rate is 2, just as for the solution itself.
Filename: test_error_conv.

Exercise 1.10: Use linear/quadratic functions for verification

This exercise is a generalization of Problem 1.1 to the extended model
problem (1.71) where the damping term is either linear or quadratic.
Solve the various subproblems and see how the results and problem
settings change with the generalized ODE in case of linear or quadratic
damping. By modifying the code from Problem 1.1, sympy will do most
of the work required to analyze the generalized problem.
Filename: vib_verify_mms.

Exercise 1.11: Use an exact discrete solution for verification

Write a test function in a separate file that employs the exact discrete
solution (1.20) to verify the implementation of the solver function in
the file vib_undamped.py.
Filename: test_vib_undamped_exact_discrete_sol.

Exercise 1.12: Use analytical solution for convergence rate
tests

The purpose of this exercise is to perform convergence tests of the problem
(1.71) when s(u) = cu, F (t) = A sinφt and there is no damping. Find the
complete analytical solution to the problem in this case (most textbooks
on mechanics or ordinary differential equations list the various elements
you need to write down the exact solution, or you can use symbolic
tools like sympy or wolframalpha.com). Modify the convergence_rate
function from the vib_undamped.py program to perform experiments
with the extended model. Verify that the error is of order ∆t2.
Filename: vib_conv_rate.
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Exercise 1.13: Investigate the amplitude errors of many
solvers

Use the program vib_undamped_odespy.py from Section 1.5.4 (utilize
the function amplitudes) to investigate how well famous methods for
1st-order ODEs can preserve the amplitude of u in undamped oscillations.
Test, for example, the 3rd- and 4th-order Runge-Kutta methods (RK3,
RK4), the Crank-Nicolson method (CrankNicolson), the 2nd- and 3rd-
order Adams-Bashforth methods (AdamsBashforth2, AdamsBashforth3),
and a 2nd-order Backwards scheme (Backward2Step). The relevant gov-
erning equations are listed in the beginning of Section 1.5.

Running the code, we get the plots seen in Figure 1.13, 1.14,
and 1.15. They show that RK4 is superior to the others, but that also
CrankNicolson performs well. In fact, with RK4 the amplitude changes
by less than 0.1 per cent over the interval.
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Fig. 1.13 The amplitude as it changes over 100 periods for RK3 and RK4.

Filename: vib_amplitude_errors.
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Fig. 1.14 The amplitude as it changes over 100 periods for Crank-Nicolson and Backward
2 step.

Problem 1.14: Minimize memory usage of a simple vibration
solver

We consider the model problem u′′+ω2u = 0, u(0) = I, u′(0) = V , solved
by a second-order finite difference scheme. A standard implementation
typically employs an array u for storing all the un values. However, at
some time level n+1 where we want to compute u[n+1], all we need
of previous u values are from level n and n-1. We can therefore avoid
storing the entire array u, and instead work with u[n+1], u[n], and
u[n-1], named as u, u_n, u_nmp1, for instance. Another possible naming
convention is u, u_n[0], u_n[-1]. Store the solution in a file for later
visualization. Make a test function that verifies the implementation by
comparing with the another code for the same problem.
Filename: vib_memsave0.
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Fig. 1.15 The amplitude as it changes over 100 periods for Adams-Bashforth 2 and 3.

Problem 1.15: Minimize memory usage of a general vibration
solver

The program vib.py stores the complete solution u0, u1, . . . , uNt in mem-
ory, which is convenient for later plotting. Make a memory minimizing
version of this program where only the last three un+1, un, and un−1 val-
ues are stored in memory under the names u, u_n, and u_nm1 (this is the
naming convention used in this book). Write each computed (tn+1, u

n+1)
pair to file. Visualize the data in the file (a cool solution is to read one
line at a time and plot the u value using the line-by-line plotter in the
visualize_front_ascii function - this technique makes it trivial to
visualize very long time simulations).
Filename: vib_memsave.

Exercise 1.16: Implement the Euler-Cromer scheme for the
generalized model

We consider the generalized model problem

http://tinyurl.com/nu656p2/vib/vib.py
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mu′′ + f(u′) + s(u) = F (t), u(0) = I, u′(0) = V .

a) Implement the Euler-Cromer method from Section 1.10.8.

b) We expect the Euler-Cromer method to have first-order convergence
rate. Make a unit test based on this expectation.

c) Consider a system with m = 4, f(v) = b|v|v, b = 0.2, s = 2u,
F = 0. Compute the solution using the centered difference scheme from
Section 1.10.1 and the Euler-Cromer scheme for the longest possible time
step ∆t. We can use the result from the case without damping, i.e., the
largest ∆t = 2/ω, ω ≈

√
0.5 in this case, but since b will modify the

frequency, we take the longest possible time step as a safety factor 0.9
times 2/ω. Refine ∆t three times by a factor of two and compare the
two curves.
Filename: vib_EulerCromer.

Problem 1.17: Interpret [DtDtu]n as a forward-backward
difference

Show that the difference [DtDtu]n is equal to [D+
t D

−
t u]n and D−t D+

t u]n.
That is, instead of applying a centered difference twice one can alterna-
tively apply a mixture of forward and backward differences.
Filename: vib_DtDt_fw_bw.

Exercise 1.18: Analysis of the Euler-Cromer scheme

The Euler-Cromer scheme for the model problem u′′+ω2u = 0, u(0) = I,
u′(0) = 0, is given in (1.55)-(1.54). Find the exact discrete solutions of
this scheme and show that the solution for un coincides with that found
in Section 1.4.

Hint. Use an “ansatz” un = I exp (iω̃∆t n) and vn = qun, where ω̃ and
q are unknown parameters. The following formula is handy:

eiω̃∆t + eiω̃(−∆t) − 2 = 2 (cosh(iω̃∆t)− 1) = −4 sin2( ω̃∆t2 ) .
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1.10 Generalization: damping, nonlinearities, and
excitation

We shall now generalize the simple model problem from Section 1.1 to
include a possibly nonlinear damping term f(u′), a possibly nonlinear
spring (or restoring) force s(u), and some external excitation F (t):

mu′′ + f(u′) + s(u) = F (t), u(0) = I, u′(0) = V, t ∈ (0, T ] . (1.71)

We have also included a possibly nonzero initial value of u′(0). The
parameters m, f(u′), s(u), F (t), I, V , and T are input data.

There are two main types of damping (friction) forces: linear f(u′) = bu,
or quadratic f(u′) = bu′|u′|. Spring systems often feature linear damping,
while air resistance usually gives rise to quadratic damping. Spring forces
are often linear: s(u) = cu, but nonlinear versions are also common, the
most famous is the gravity force on a pendulum that acts as a spring
with s(u) ∼ sin(u).

1.10.1 A centered scheme for linear damping

Sampling (1.71) at a mesh point tn, replacing u′′(tn) by [DtDtu]n, and
u′(tn) by [D2tu]n results in the discretization

[mDtDtu+ f(D2tu) + s(u) = F ]n, (1.72)

which written out means

m
un+1 − 2un + un−1

∆t2
+ f(u

n+1 − un−1

2∆t ) + s(un) = F n, (1.73)

where F n as usual means F (t) evaluated at t = tn. Solving (1.73) with
respect to the unknown un+1 gives a problem: the un+1 inside the f
function makes the equation nonlinear unless f(u′) is a linear function,
f(u′) = bu′. For now we shall assume that f is linear in u′. Then

m
un+1 − 2un + un−1

∆t2
+ b

un+1 − un−1

2∆t + s(un) = F n, (1.74)

which gives an explicit formula for u at each new time level:
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un+1 = (2mun+( b2∆t−m)un−1+∆t2(F n−s(un)))(m+ b

2∆t)
−1 . (1.75)

For the first time step we need to discretize u′(0) = V as [D2tu = V ]0
and combine with (1.75) for n = 0. The discretized initial condition leads
to

u−1 = u1 − 2∆tV, (1.76)

which inserted in (1.75) for n = 0 gives an equation that can be solved
for u1:

u1 = u0 +∆tV + ∆t2

2m (−bV − s(u0) + F 0) . (1.77)

1.10.2 A centered scheme for quadratic damping

When f(u′) = bu′|u′|, we get a quadratic equation for un+1 in (1.73).
This equation can be straightforwardly solved by the well-known formula
for the roots of a quadratic equation. However, we can also avoid the
nonlinearity by introducing an approximation with an error of order no
higher than what we already have from replacing derivatives with finite
differences.

We start with (1.71) and only replace u′′ by DtDtu, resulting in

[mDtDtu+ bu′|u′|+ s(u) = F ]n . (1.78)

Here, u′|u′| is to be computed at time tn. The idea is now to introduce a
geometric mean, defined by

(w2)n ≈ wn−
1
2wn+ 1

2 ,

for some quantity w depending on time. The error in the geometric mean
approximation is O(∆t2), the same as in the approximation u′′ ≈ DtDtu.
With w = u′ it follows that

[u′|u′|]n ≈ u′(tn+ 1
2
)|u′(tn− 1

2
)| .

The next step is to approximate u′ at tn±1/2, and fortunately a centered
difference fits perfectly into the formulas since it involves u values at the
mesh points only. With the approximations
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u′(tn+1/2) ≈ [Dtu]n+ 1
2 , u′(tn−1/2) ≈ [Dtu]n− 1

2 , (1.79)

we get

[u′|u′|]n ≈ [Dtu]n+ 1
2 |[Dtu]n− 1

2 | = un+1 − un

∆t

|un − un−1|
∆t

. (1.80)

The counterpart to (1.73) is then

m
un+1 − 2un + un−1

∆t2
+ b

un+1 − un

∆t

|un − un−1|
∆t

+ s(un) = F n, (1.81)

which is linear in the unknown un+1. Therefore, we can easily solve (1.81)
with respect to un+1 and achieve the explicit updating formula

un+1 =
(
m+ b|un − un−1|

)−1
×(

2mun −mun−1 + bun|un − un−1|+∆t2(F n − s(un))
)
.

(1.82)

In the derivation of a special equation for the first time step we run into
some trouble: inserting (1.76) in (1.82) for n = 0 results in a complicated
nonlinear equation for u1. By thinking differently about the problem we
can easily get away with the nonlinearity again. We have for n = 0 that
b[u′|u′|]0 = bV |V |. Using this value in (1.78) gives

[mDtDtu+ bV |V |+ s(u) = F ]0 . (1.83)

Writing this equation out and using (1.76) results in the special equation
for the first time step:

u1 = u0 +∆tV + ∆t2

2m
(
−bV |V | − s(u0) + F 0

)
. (1.84)

1.10.3 A forward-backward discretization of the quadratic
damping term

The previous section first proposed to discretize the quadratic damping
term |u′|u′ using centered differences: [|D2t|D2tu]n. As this gives rise to
a nonlinearity in un+1, it was instead proposed to use a geometric mean



70 1 Vibration ODEs

combined with centered differences. But there are other alternatives.
To get rid of the nonlinearity in [|D2t|D2tu]n, one can think differently:
apply a backward difference to |u′|, such that the term involves known
values, and apply a forward difference to u′ to make the term linear in
the unknown un+1. With mathematics,

[β|u′|u′]n ≈ β|[D−t u]n|[D+
t u]n = β

∣∣∣∣∣un − un−1

∆t

∣∣∣∣∣ un+1 − un

∆t
. (1.85)

The forward and backward differences have both an error proportional to
∆t so one may think the discretization above leads to a first-order scheme.
However, by looking at the formulas, we realize that the forward-backward
differences in (1.85) result in exactly the same scheme as in (1.81) where
we used a geometric mean and centered differences and committed errors
of size O(∆t2). Therefore, the forward-backward differences in (1.85)
act in a symmetric way and actually produce a second-order accurate
discretization of the quadratic damping term.

1.10.4 Implementation

The algorithm arising from the methods in Sections 1.10.1 and 1.10.2
is very similar to the undamped case in Section 1.1.2. The difference is
basically a question of different formulas for u1 and un+1. This is actually
quite remarkable. The equation (1.71) is normally impossible to solve by
pen and paper, but possible for some special choices of F , s, and f . On
the contrary, the complexity of the nonlinear generalized model (1.71)
versus the simple undamped model is not a big deal when we solve the
problem numerically!

The computational algorithm takes the form

1. u0 = I
2. compute u1 from (1.77) if linear damping or (1.84) if quadratic damp-

ing
3. for n = 1, 2, . . . , Nt − 1:

a. compute un+1 from (1.75) if linear damping or (1.82) if quadratic
damping

Modifying the solver function for the undamped case is fairly easy, the
big difference being many more terms and if tests on the type of damping:
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def solver(I, V, m, b, s, F, dt, T, damping=’linear’):
"""
Solve m*u’’ + f(u’) + s(u) = F(t) for t in (0,T],
u(0)=I and u’(0)=V,
by a central finite difference method with time step dt.
If damping is ’linear’, f(u’)=b*u, while if damping is
’quadratic’, f(u’)=b*u’*abs(u’).
F(t) and s(u) are Python functions.
"""
dt = float(dt); b = float(b); m = float(m) # avoid integer div.
Nt = int(round(T/dt))
u = np.zeros(Nt+1)
t = np.linspace(0, Nt*dt, Nt+1)

u[0] = I
if damping == ’linear’:

u[1] = u[0] + dt*V + dt**2/(2*m)*(-b*V - s(u[0]) + F(t[0]))
elif damping == ’quadratic’:

u[1] = u[0] + dt*V + \
dt**2/(2*m)*(-b*V*abs(V) - s(u[0]) + F(t[0]))

for n in range(1, Nt):
if damping == ’linear’:

u[n+1] = (2*m*u[n] + (b*dt/2 - m)*u[n-1] +
dt**2*(F(t[n]) - s(u[n])))/(m + b*dt/2)

elif damping == ’quadratic’:
u[n+1] = (2*m*u[n] - m*u[n-1] + b*u[n]*abs(u[n] - u[n-1])

+ dt**2*(F(t[n]) - s(u[n])))/\
(m + b*abs(u[n] - u[n-1]))

return u, t

The complete code resides in the file vib.py.

1.10.5 Verification

Constant solution. For debugging and initial verification, a constant
solution is often very useful. We choose ue(t) = I, which implies V = 0.
Inserted in the ODE, we get F (t) = s(I) for any choice of f . Since the
discrete derivative of a constant vanishes (in particular, [D2tI]n = 0,
[DtI]n = 0, and [DtDtI]n = 0), the constant solution also fulfills the
discrete equations. The constant should therefore be reproduced to
machine precision. The function test_constant in vib.py implements
this test.

Linear solution. Now we choose a linear solution: ue = ct + d. The
initial condition u(0) = I implies d = I, and u′(0) = V forces c to be V .
Inserting ue = V t+ I in the ODE with linear damping results in

http://tinyurl.com/nu656p2/vib/vib.py
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0 + bV + s(V t+ I) = F (t),

while quadratic damping requires the source term

0 + b|V |V + s(V t+ I) = F (t) .

Since the finite difference approximations used to compute u′ all are exact
for a linear function, it turns out that the linear ue is also a solution of
the discrete equations. Exercise 1.10 asks you to carry out all the details.

Quadratic solution. Choosing ue = bt2 +V t+I, with b arbitrary, fulfills
the initial conditions and fits the ODE if F is adjusted properly. The
solution also solves the discrete equations with linear damping. However,
this quadratic polynomial in t does not fulfill the discrete equations
in case of quadratic damping, because the geometric mean used in the
approximation of this term introduces an error. Doing Exercise 1.10 will
reveal the details. One can fit F n in the discrete equations such that
the quadratic polynomial is reproduced by the numerical method (to
machine precision).

Catching bugs. How good are the constant and quadratic solutions at
catching bugs in the implementation?

• Use m instead of 2*m in the denominator of u[1]: constant works,
while quadratic fails.

• Use b*dt instead of b*dt/2 in the updating formula for u[n+1] in
case of linear damping: constant and quadratic fail.

• Use F[n+1] instead of F[n] in case of linear or quadratic damping:
constant solution works, quadratic fails.

We realize that the constant solution is very useful to catch bugs because
of its simplicity (easy to predict what the different terms in the formula
should evaluate to), while it seems the quadratic solution is capable
of detecting all other types of typos in the scheme (?). This results
demonstrates why we focus so much on exact, simple polynomial solutions
of the numerical schemes in these writings.

1.10.6 Visualization

The functions for visualizations differ significantly from those in the
undamped case in the vib_undamped.py program because, in the present
general case, we do not have an exact solution to include in the plots.
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Moreover, we have no good estimate of the periods of the oscillations as
there will be one period determined by the system parameters, essentially
the approximate frequency

√
s′(0)/m for linear s and small damping,

and one period dictated by F (t) in case the excitation is periodic. This
is, however, nothing that the program can depend on or make use of.
Therefore, the user has to specify T and the window width to get a plot
that moves with the graph and shows the most recent parts of it in long
time simulations.

The vib.py code contains several functions for analyzing the time
series signal and for visualizing the solutions.

1.10.7 User interface
The main function is changed substantially from the vib_undamped.py
code, since we need to specify the new data c, s(u), and F (t). In addition,
we must set T and the plot window width (instead of the number of peri-
ods we want to simulate as in vib_undamped.py). To figure out whether
we can use one plot for the whole time series or if we should follow the most
recent part of u, we can use the plot_empricial_freq_and_amplitude
function’s estimate of the number of local maxima. This number is now
returned from the function and used in main to decide on the visualization
technique.

def main():
import argparse
parser = argparse.ArgumentParser()
parser.add_argument(’--I’, type=float, default=1.0)
parser.add_argument(’--V’, type=float, default=0.0)
parser.add_argument(’--m’, type=float, default=1.0)
parser.add_argument(’--c’, type=float, default=0.0)
parser.add_argument(’--s’, type=str, default=’u’)
parser.add_argument(’--F’, type=str, default=’0’)
parser.add_argument(’--dt’, type=float, default=0.05)
parser.add_argument(’--T’, type=float, default=140)
parser.add_argument(’--damping’, type=str, default=’linear’)
parser.add_argument(’--window_width’, type=float, default=30)
parser.add_argument(’--savefig’, action=’store_true’)
a = parser.parse_args()
from scitools.std import StringFunction
s = StringFunction(a.s, independent_variable=’u’)
F = StringFunction(a.F, independent_variable=’t’)
I, V, m, c, dt, T, window_width, savefig, damping = \

a.I, a.V, a.m, a.c, a.dt, a.T, a.window_width, a.savefig, \
a.damping

u, t = solver(I, V, m, c, s, F, dt, T)
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num_periods = empirical_freq_and_amplitude(u, t)
if num_periods <= 15:

figure()
visualize(u, t)

else:
visualize_front(u, t, window_width, savefig)

show()

The program vib.py contains the above code snippets and can solve the
model problem (1.71). As a demo of vib.py, we consider the case I = 1,
V = 0, m = 1, c = 0.03, s(u) = sin(u), F (t) = 3 cos(4t), ∆t = 0.05, and
T = 140. The relevant command to run is

Terminal

Terminal> python vib.py --s ’sin(u)’ --F ’3*cos(4*t)’ --c 0.03

This results in a moving window following the function on the screen.
Figure 1.16 shows a part of the time series.

0 10 20 30 40 50 60
t

1.0

0.5

0.0

0.5

1.0

u

dt=0.05

Fig. 1.16 Damped oscillator excited by a sinusoidal function.

http://tinyurl.com/pu5uyfn/pub/mov-vib/vib_generalized_dt0.05/index.html
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1.10.8 The Euler-Cromer scheme for the generalized model

The ideas of the Euler-Cromer method from Section 1.7 carry over to the
generalized model. We write (1.71) as two equations for u and v = u′.
The first equation is taken as the one with v′ on the left-hand side:

v′ = 1
m

(F (t)− s(u)− f(v)), (1.86)

u′ = v . (1.87)

The idea is to step (1.86) forward using a standard Forward Euler method,
while we update u from (1.87) with a Backward Euler method, utilizing
the recent, computed vn+1 value. In detail,

vn+1 − vn

∆t
= 1
m

(F (tn)− s(un)− f(vn)), (1.88)

un+1 − un

∆t
= vn+1, (1.89)

resulting in the explicit scheme

vn+1 = vn +∆t
1
m

(F (tn)− s(un)− f(vn)), (1.90)

un+1 = un +∆t vn+1 . (1.91)

We immediately note one very favorable feature of this scheme: all the
nonlinearities in s(u) and f(v) are evaluated at a previous time level.
This makes the Euler-Cromer method easier to apply and hence much
more convenient than the centered scheme for the second-order ODE
(1.71).

The initial conditions are trivially set as

v0 = V, (1.92)
u0 = I . (1.93)
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1.10.9 The Störmer-Verlet algorithm for the generalized
model

We can easily apply the ideas from Section 1.7.4 to extend that method
to the generalized model

v′ = 1
m

(F (t)− s(u)− f(v)),

u′ = v .

However, since the scheme is essentially centered differences for the ODE
system on a staggered mesh, we do not go into detail here, but refer to
Section 1.10.10.

1.10.10 A staggered Euler-Cromer scheme for a generalized
model

The more general model for vibration problems,

mu′′ + f(u′) + s(u) = F (t), u(0) = I, u′(0) = V, t ∈ (0, T ], (1.94)

can be rewritten as a first-order ODE system

v′ = m−1 (F (t)− f(v)− s(u)) , (1.95)
u′ = v . (1.96)

It is natural to introduce a staggered mesh (see Section 1.8.1) and
seek u at mesh points tn (the numerical value is denoted by un) and v
between mesh points at tn+1/2 (the numerical value is denoted by vn+ 1

2 ).
A centered difference approximation to (1.96)-(1.95) can then be written
in operator notation as

[Dtv = m−1 (F (t)− f(v)− s(u))]n, (1.97)
[Dtu = v]n+ 1

2 . (1.98)

Written out,
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vn+ 1
2 − vn− 1

2

∆t
= m−1 (F n − f(vn)− s(un)) , (1.99)

un − un−1

∆t
= vn+ 1

2 . (1.100)

With linear damping, f(v) = bv, we can use an arithmetic mean for
f(vn): f(vn) ≈= 1

2(f(vn− 1
2 ) + f(vn+ 1

2 )). The system (1.99)-(1.100) can
then be solved with respect to the unknowns un and vn+ 1

2 :

vn+ 1
2 =

(
1 + b

2m∆t

)−1 (
vn−

1
2 +∆tm−1

(
F n − 1

2f(vn− 1
2 )− s(un)

))
,

(1.101)
un = un−1 +∆tvn−

1
2 . (1.102)

In case of quadratic damping, f(v) = b|v|v, we can use a geometric
mean: f(vn) ≈ b|vn− 1

2 |vn+ 1
2 . Inserting this approximation in (1.99)-

(1.100) and solving for the unknowns un and vn+ 1
2 results in

vn+ 1
2 = (1 + b

m
|vn−

1
2 |∆t)−1

(
vn−

1
2 +∆tm−1 (F n − s(un))

)
, (1.103)

un = un−1 +∆tvn−
1
2 . (1.104)

The initial conditions are derived at the end of Section 1.8.1:

u0 = I, (1.105)

v
1
2 = V − 1

2∆tω
2I . (1.106)

1.10.11 The PEFRL 4th-order accurate algorithm

A variant of the Euler-Cromer type of algorithm, which provides an
error O(∆t4) if f(v) = 0, is called PEFRL [14]. This algorithm is very
well suited for integrating dynamic systems (especially those without
damping) over very long time periods. Define

g(u, v) = 1
m

(F (t)− s(u)− f(v)) .

The algorithm is explicit and features these simple steps:
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un+1,1 = un + ξ∆tvn, (1.107)

vn+1,1 = vn + 1
2(1− 2λ)∆tg(un+1,1, vn), (1.108)

un+1,2 = un+1,1 + χ∆tvn+1,1, (1.109)
vn+1,2 = vn+1,1 + λ∆tg(un+1,2, vn+1,1), (1.110)
un+1,3 = un+1,2 + (1− 2(χ+ ξ))∆tvn+1,2, (1.111)
vn+1,3 = vn+1,2 + λ∆tg(un+1,3, vn+1,2), (1.112)
un+1,4 = un+1,3 + χ∆tvn+1,3, (1.113)

vn+1 = vn+1,3 + 1
2(1− 2λ)∆tg(un+1,4, vn+1,3), (1.114)

un+1 = un+1,4 + ξ∆tvn+1 (1.115)

The parameters ξ, λ, and ξ have the values

ξ = 0.1786178958448091, (1.116)
λ = −0.2123418310626054, (1.117)
χ = −0.06626458266981849 (1.118)

1.11 Exercises and Problems

Exercise 1.19: Implement the solver via classes

Reimplement the vib.py program using a class Problem to hold all the
physical parameters of the problem, a class Solver to hold the numerical
parameters and compute the solution, and a class Visualizer to display
the solution.

Hint. Use the ideas and examples from Section ?? and ?? in [9]. More
specifically, make a superclass Problem for holding the scalar physical
parameters of a problem and let subclasses implement the s(u) and F (t)
functions as methods. Try to call up as much existing functionality in
vib.py as possible.
Filename: vib_class.
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Problem 1.20: Use a backward difference for the damping
term

As an alternative to discretizing the damping terms βu′ and β|u′|u′ by
centered differences, we may apply backward differences:

[u′]n ≈ [D−t u]n,
[|u′|u′]n

≈ [|D−t u|D−t u]n

= |[D−t u]n|[D−t u]n .

The advantage of the backward difference is that the damping term
is evaluated using known values un and un−1 only. Extend the vib.py
code with a scheme based on using backward differences in the damping
terms. Add statements to compare the original approach with centered
difference and the new idea launched in this exercise. Perform numerical
experiments to investigate how much accuracy that is lost by using the
backward differences.
Filename: vib_gen_bwdamping.

Exercise 1.21: Use the forward-backward scheme with
quadratic damping

We consider the generalized model with quadratic damping, expressed
as a system of two first-order equations as in Section 1.10.10:

u′ = v,

v′ = 1
m

(F (t)− β|v|v − s(u)) .

However, contrary to what is done in Section 1.10.10, we want to apply
the idea of a forward-backward discretization: u is marched forward by
a one-sided Forward Euler scheme applied to the first equation, and
thereafter v can be marched forward by a Backward Euler scheme in
the second equation, see in Section 1.7. Express the idea in operator
notation and write out the scheme. Unfortunately, the backward difference
for the v equation creates a nonlinearity |vn+1|vn+1. To linearize this
nonlinearity, use the known value vn inside the absolute value factor, i.e.,

http://tinyurl.com/nu656p2/vib/vib.py
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|vn+1|vn+1 ≈ |vn|vn+1. Show that the resulting scheme is equivalent to
the one in Section 1.10.10 for some time level n ≥ 1.

What we learn from this exercise is that the first-order differences
and the linearization trick play together in “the right way” such that
the scheme is as good as when we (in Section 1.10.10) carefully apply
centered differences and a geometric mean on a staggered mesh to achieve
second-order accuracy. There is a difference in the handling of the initial
conditions, though, as explained at the end of Section 1.7. Filename:
vib_gen_bwdamping.

1.12 Applications of vibration models

The following text derives some of the most well-known physical problems
that lead to second-order ODE models of the type addressed in this book.
We consider a simple spring-mass system; thereafter extended with
nonlinear spring, damping, and external excitation; a spring-mass system
with sliding friction; a simple and a physical (classical) pendulum; and
an elastic pendulum.

1.12.1 Oscillating mass attached to a spring

ku

u(t)

m

Fig. 1.17 Simple oscillating mass.

The most fundamental mechanical vibration system is depicted in
Figure 1.17. A body with mass m is attached to a spring and can move
horizontally without friction (in the wheels). The position of the body is
given by the vector r(t) = u(t)i, where i is a unit vector in x direction.
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There is only one force acting on the body: a spring force Fs = −kui,
where k is a constant. The point x = 0, where u = 0, must therefore
correspond to the body’s position where the spring is neither extended
nor compressed, so the force vanishes.

The basic physical principle that governs the motion of the body is
Newton’s second law of motion: F = ma, where F is the sum of forces
on the body, m is its mass, and a = r̈ is the acceleration. We use the
dot for differentiation with respect to time, which is usual in mechanics.
Newton’s second law simplifies here to −Fs = müi, which translates to

−ku = mü .

Two initial conditions are needed: u(0) = I, u̇(0) = V . The ODE problem
is normally written as

mü+ ku = 0, u(0) = I, u̇(0) = V . (1.119)

It is not uncommon to divide by m and introduce the frequency ω =√
k/m:

ü+ ω2u = 0, u(0) = I, u̇(0) = V . (1.120)

This is the model problem in the first part of this chapter, with the small
difference that we write the time derivative of u with a dot above, while
we used u′ and u′′ in previous parts of the book.

Since only one scalar mathematical quantity, u(t), describes the com-
plete motion, we say that the mechanical system has one degree of
freedom (DOF).

Scaling. For numerical simulations it is very convenient to scale (1.120)
and thereby get rid of the problem of finding relevant values for all the
parameters m, k, I, and V . Since the amplitude of the oscillations are
dictated by I and V (or more precisely, V/ω), we scale u by I (or V/ω if
I = 0):

ū = u

I
, t̄ = t

tc
.

The time scale tc is normally chosen as the inverse period 2π/ω or angular
frequency 1/ω, most often as tc = 1/ω. Inserting the dimensionless
quantities ū and t̄ in (1.120) results in the scaled problem

d2ū

dt̄2
+ ū = 0, ū(0) = 1, ū

t̄
(0) = β = V

Iω
,
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where β is a dimensionless number. Any motion that starts from rest
(V = 0) is free of parameters in the scaled model!
The physics. The typical physics of the system in Figure 1.17 can be
described as follows. Initially, we displace the body to some position I, say
at rest (V = 0). After releasing the body, the spring, which is extended,
will act with a force −kIi and pull the body to the left. This force causes
an acceleration and therefore increases velocity. The body passes the
point x = 0, where u = 0, and the spring will then be compressed and
act with a force kxi against the motion and cause retardation. At some
point, the motion stops and the velocity is zero, before the spring force
kxi has worked long enough to push the body in positive direction. The
result is that the body accelerates back and forth. As long as there is no
friction forces to damp the motion, the oscillations will continue forever.

1.12.2 General mechanical vibrating system

m F(t)

u(t)

bu′

ku

Fig. 1.18 General oscillating system.

The mechanical system in Figure 1.17 can easily be extended to the
more general system in Figure 1.18, where the body is attached to a
spring and a dashpot, and also subject to an environmental force F (t)i.
The system has still only one degree of freedom since the body can only
move back and forth parallel to the x axis. The spring force was linear,
Fs = −kui, in Section 1.12.1, but in more general cases it can depend
nonlinearly on the position. We therefore set Fs = s(u)i. The dashpot,
which acts as a damper, results in a force Fd that depends on the body’s
velocity u̇ and that always acts against the motion. The mathematical
model of the force is written Fd = f(u̇)i. A positive u̇ must result in
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a force acting in the positive x direction. Finally, we have the external
environmental force Fe = F (t)i.

Newton’s second law of motion now involves three forces:

F (t)i+ f(u̇)i− s(u)i = müi .

The common mathematical form of the ODE problem is

mü+ f(u̇) + s(u) = F (t), u(0) = I, u̇(0) = V . (1.121)

This is the generalized problem treated in the last part of the present
chapter, but with prime denoting the derivative instead of the dot.

The most common models for the spring and dashpot are linear:
f(u̇) = bu̇ with a constant b ≥ 0, and s(u) = ku for a constant k.

Scaling. A specific scaling requires specific choices of f , s, and F . Suppose
we have

f(u̇) = b|u̇|u̇, s(u) = ku, F (t) = A sin(φt) .

We introduce dimensionless variables as usual, ū = u/uc and t̄ = t/tc.
The scale uc depends both on the initial conditions and F , but as time
grows, the effect of the initial conditions die out and F will drive the
motion. Inserting ū and t̄ in the ODE gives

m
uc
t2c

d2ū

dt̄2
+ b

u2
c

t2c

∣∣∣∣dūdt̄
∣∣∣∣ dūdt̄ + kucū = A sin(φtct̄) .

We divide by uc/t2c and demand the coefficients of the ū and the forcing
term from F (t) to have unit coefficients. This leads to the scales

tc =
√
m

k
, uc = A

k
.

The scaled ODE becomes

d2ū

dt̄2
+ 2β

∣∣∣∣dūdt̄
∣∣∣∣ dūdt̄ + ū = sin(γt̄), (1.122)

where there are two dimensionless numbers:

β = Ab

2mk, γ = φ

√
m

k
.

The β number measures the size of the damping term (relative to unity)
and is assumed to be small, basically because b is small. The φ number
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is the ratio of the time scale of free vibrations and the time scale of
the forcing. The scaled initial conditions have two other dimensionless
numbers as values:

ū(0) = Ik

A
,

dū

dt̄
= tc
uc
V = V

A

√
mk .

1.12.3 A sliding mass attached to a spring
Consider a variant of the oscillating body in Section 1.12.1 and Figure 1.17:
the body rests on a flat surface, and there is sliding friction between the
body and the surface. Figure 1.19 depicts the problem.

s(u)

u(t)

m

Fig. 1.19 Sketch of a body sliding on a surface.

The body is attached to a spring with spring force −s(u)i. The friction
force is proportional to the normal force on the surface, −mgj, and given
by −f(u̇)i, where

f(u̇) =


−µmg, u̇ < 0,
µmg, u̇ > 0,
0, u̇ = 0

Here, µ is a friction coefficient. With the signum function

sign(x) =


−1, x < 0,
1, x > 0,
0, x = 0

we can simply write f(u̇) = µmg sign(u̇) (the sign function is implemented
by numpy.sign).

The equation of motion becomes
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mü+ µmgsign(u̇) + s(u) = 0, u(0) = I, u̇(0) = V . (1.123)

1.12.4 A jumping washing machine

A washing machine is placed on four springs with efficient dampers.
If the machine contains just a few clothes, the circular motion of the
machine induces a sinusoidal external force and the machine will jump
up and down if the frequency of the external force is close to the natural
frequency of the machine and its spring-damper system.

1.12.5 Motion of a pendulum

Simple pendulum. A classical problem in mechanics is the motion of a
pendulum. We first consider a simple pendulum (sometimes also called
a mathematical pendulum): a small body of mass m is attached to
a massless wire and can oscillate back and forth in the gravity field.
Figure 1.20 shows a sketch of the problem.

g

m

L

θ

Fig. 1.20 Sketch of a simple pendulum.

The motion is governed by Newton’s 2nd law, so we need to find
expressions for the forces and the acceleration. Three forces on the body

https://en.wikipedia.org/wiki/Pendulum
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are considered: an unknown force S from the wire, the gravity force mg,
and an air resistance force, 1

2CD%A|v|v, hereafter called the drag force,
directed against the velocity of the body. Here, CD is a drag coefficient,
% is the density of air, A is the cross section area of the body, and v is
the magnitude of the velocity.

We introduce a coordinate system with polar coordinates and unit
vectors ir and iθ as shown in Figure 1.21. The position of the center of
mass of the body is

r(t) = x0i+ y0j + Lir,

where i and j are unit vectors in the corresponding Cartesian coordinate
system in the x and y directions, respectively. We have that ir = cos θi+
sin θj.

(x0 ,y0 )

mg

iθ

m

ir

∼|v|v

S

θ

Fig. 1.21 Forces acting on a simple pendulum.

The forces are now expressed as follows.

• Wire force: −Sir
• Gravity force: −mgj = mg(− sin θ iθ + cos θ ir)
• Drag force: −1

2CD%A|v|v iθ
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Since a positive velocity means movement in the direction of iθ, the drag
force must be directed along −iθ so it works against the motion. We
assume motion in air so that the added mass effect can be neglected
(for a spherical body, the added mass is 1

2%V , where V is the volume
of the body). Also the buoyancy effect can be neglected for motion in
the air when the density difference between the fluid and the body is so
significant.

The velocity of the body is found from r:

v(t) = ṙ(t) = d

dθ
(x0i+ y0j + Lir)

dθ

dt
= Lθ̇iθ,

since d
dθ ir = iθ. It follows that v = |v| = Lθ̇. The acceleration is

a(t) = v̇(r) = d

dt
(Lθ̇iθ) = Lθ̈iθ + Lθ̇

diθ
dθ
θ̇ == Lθ̈iθ − Lθ̇2ir,

since d
dθ iθ = −ir.

Newton’s 2nd law of motion becomes

−Sir +mg(− sin θ iθ + cos θ ir)−
1
2CD%AL

2|θ̇|θ̇ iθ = mLθ̈θ̇ iθ − Lθ̇2ir,

leading to two component equations

−S +mg cos θ = −Lθ̇2, (1.124)

−mg sin θ − 1
2CD%AL

2|θ̇|θ̇ = mLθ̈ . (1.125)

From (1.124) we get an expression for S = mg cos θ + Lθ̇2, and from
(1.125) we get a differential equation for the angle θ(t). This latter
equation is ordered as

mθ̈ + 1
2CD%AL|θ̇|θ̇ + mg

L
sin θ = 0 . (1.126)

Two initial conditions are needed: θ = Θ and θ̇ = Ω. Normally, the
pendulum motion is started from rest, which means Ω = 0.

Equation (1.126) fits the general model used in (1.71) in Section 1.10
if we define u = θ, f(u′) = 1

2CD%AL|u̇|u̇, s(u) = L−1mg sin u, and
F = 0. If the body is a sphere with radius R, we can take CD = 0.4 and
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A = πR2. Exercise 1.25 asks you to scale the equations and carry out
specific simulations with this model.

Physical pendulum. The motion of a compound or physical pendulum
where the wire is a rod with mass, can be modeled very similarly. The
governing equation is Ia = T where I is the moment of inertia of the
entire body about the point (x0, y0), and T is the sum of moments of
the forces with respect to (x0, y0). The vector equation reads

r×(−Sir+mg(− sin θiθ+cos θir)−
1
2CD%AL

2|θ̇|θ̇iθ) = I(Lθ̈θ̇iθ−Lθ̇2ir) .

The component equation in iθ direction gives the equation of motion for
θ(t):

Iθ̈ + 1
2CD%AL

3|θ̇|θ̇ +mgL sin θ = 0 . (1.127)

1.12.6 Dynamic free body diagram during pendulum motion

Usually one plots the mathematical quantities as functions of time to
visualize the solution of ODE models. Exercise 1.25 asks you to do this for
the motion of a pendulum in the previous section. However, sometimes it
is more instructive to look at other types of visualizations. For example,
we have the pendulum and the free body diagram in Figures 1.20 and 1.21.
We may think of these figures as animations in time instead. Especially
the free body diagram will show both the motion of the pendulum and
the size of the forces during the motion. The present section exemplifies
how to make such a dynamic body diagram. Two typical snapshots of
free body diagrams are displayed below (the drag force is magnified 5
times to become more visual!).
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Dynamic physical sketches, coupled to the numerical solution of differ-
ential equations, requires a program to produce a sketch for the situation
at each time level. Pysketcher is such a tool. In fact (and not surprising!)
Figures 1.20 and 1.21 were drawn using Pysketcher. The details of the
drawings are explained in the Pysketcher tutorial. Here, we outline how
this type of sketch can be used to create an animated free body diagram
during the motion of a pendulum.

Pysketcher is actually a layer of useful abstractions on top of standard
plotting packages. This means that we in fact apply Matplotlib to make
the animated free body diagram, but instead of dealing with a wealth of
detailed Matplotlib commands, we can express the drawing in terms of
more high-level objects, e.g., objects for the wire, angle θ, body with mass
m, arrows for forces, etc. When the position of these objects are given
through variables, we can just couple those variables to the dynamic
solution of our ODE and thereby make a unique drawing for each θ value
in a simulation.

Writing the solver. Let us start with the most familiar part of the
current problem: writing the solver function. We use Odespy for this
purpose. We also work with dimensionless equations. Since θ can be
viewed as dimensionless, we only need to introduce a dimensionless time,
here taken as t̄ = t/

√
L/g. The resulting dimensionless mathematical

model for θ, the dimensionless angular velocity ω, the dimensionless wire
force S̄, and the dimensionless drag force D̄ is then

https://github.com/hplgit/pysketcher
http://hplgit.github.io/pysketcher/doc/web/index.html
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dω

dt̄
= −α|ω|ω − sin θ, (1.128)

dθ

dt̄
= ω, (1.129)

S̄ = ω2 + cos θ, (1.130)
D̄ = −α|ω|ω, (1.131)

with

α = CD%πR
2L

2m .

as a dimensionless parameter expressing the ratio of the drag force and
the gravity force. The dimensionless ω is made non-dimensional by the
time, so ω

√
L/g is the corresponding angular frequency with dimensions.

A suitable function for computing (1.128)-(1.131) is listed below.

def simulate(alpha, Theta, dt, T):
import odespy

def f(u, t, alpha):
omega, theta = u
return [-alpha*omega*abs(omega) - sin(theta),

omega]

import numpy as np
Nt = int(round(T/float(dt)))
t = np.linspace(0, Nt*dt, Nt+1)
solver = odespy.RK4(f, f_args=[alpha])
solver.set_initial_condition([0, Theta])
u, t = solver.solve(

t, terminate=lambda u, t, n: abs(u[n,1]) < 1E-3)
omega = u[:,0]
theta = u[:,1]
S = omega**2 + np.cos(theta)
drag = -alpha*np.abs(omega)*omega
return t, theta, omega, S, drag

Drawing the free body diagram. The sketch function below applies
Pysketcher objects to build a diagram like that in Figure 1.21, except
that we have removed the rotation point (x0, y0) and the unit vectors
in polar coordinates as these objects are not important for an animated
free body diagram.

import sys
try:

from pysketcher import *
except ImportError:
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print ’Pysketcher must be installed from’
print ’https://github.com/hplgit/pysketcher’
sys.exit(1)

# Overall dimensions of sketch
H = 15.
W = 17.

drawing_tool.set_coordinate_system(
xmin=0, xmax=W, ymin=0, ymax=H,
axis=False)

def sketch(theta, S, mg, drag, t, time_level):
"""
Draw pendulum sketch with body forces at a time level
corresponding to time t. The drag force is in
drag[time_level], the force in the wire is S[time_level],
the angle is theta[time_level].
"""
import math
a = math.degrees(theta[time_level]) # angle in degrees
L = 0.4*H # Length of pendulum
P = (W/2, 0.8*H) # Fixed rotation point

mass_pt = path.geometric_features()[’end’]
rod = Line(P, mass_pt)

mass = Circle(center=mass_pt, radius=L/20.)
mass.set_filled_curves(color=’blue’)
rod_vec = rod.geometric_features()[’end’] - \

rod.geometric_features()[’start’]
unit_rod_vec = unit_vec(rod_vec)
mass_symbol = Text(’$m$’, mass_pt + L/10*unit_rod_vec)

rod_start = rod.geometric_features()[’start’] # Point P
vertical = Line(rod_start, rod_start + point(0,-L/3))

def set_dashed_thin_blackline(*objects):
"""Set linestyle of objects to dashed, black, width=1."""
for obj in objects:

obj.set_linestyle(’dashed’)
obj.set_linecolor(’black’)
obj.set_linewidth(1)

set_dashed_thin_blackline(vertical)
set_dashed_thin_blackline(rod)
angle = Arc_wText(r’$\theta$’, rod_start, L/6, -90, a,

text_spacing=1/30.)

magnitude = 1.2*L/2 # length of a unit force in figure
force = mg[time_level] # constant (scaled eq: about 1)
force *= magnitude
mg_force = Force(mass_pt, mass_pt + force*point(0,-1),

’’, text_pos=’end’)
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force = S[time_level]
force *= magnitude
rod_force = Force(mass_pt, mass_pt - force*unit_vec(rod_vec),

’’, text_pos=’end’,
text_spacing=(0.03, 0.01))

force = drag[time_level]
force *= magnitude
air_force = Force(mass_pt, mass_pt -

force*unit_vec((rod_vec[1], -rod_vec[0])),
’’, text_pos=’end’,
text_spacing=(0.04,0.005))

body_diagram = Composition(
{’mg’: mg_force, ’S’: rod_force, ’air’: air_force,
’rod’: rod, ’body’: mass
’vertical’: vertical, ’theta’: angle,})

body_diagram.draw(verbose=0)
drawing_tool.savefig(’tmp_%04d.png’ % time_level, crop=False)
# (No cropping: otherwise movies will be very strange!)

Making the animated free body diagram. It now remains to couple
the simulate and sketch functions. We first run simulate:

from math import pi, radians, degrees
import numpy as np
alpha = 0.4
period = 2*pi # Use small theta approximation
T = 12*period # Simulate for 12 periods
dt = period/40 # 40 time steps per period
a = 70 # Initial amplitude in degrees
Theta = radians(a)

t, theta, omega, S, drag = simulate(alpha, Theta, dt, T)

The next step is to run through the time levels in the simulation and
make a sketch at each level:

for time_level, t_ in enumerate(t):
sketch(theta, S, mg, drag, t_, time_level)

The individual sketches are (by the sketch function) saved in files with
names tmp_%04d.png. These can be combined to videos using (e.g.)
ffmpeg. A complete function animate for running the simulation and
creating video files is listed below.

def animate():
# Clean up old plot files
import os, glob
for filename in glob.glob(’tmp_*.png’) + glob.glob(’movie.*’):

os.remove(filename)
# Solve problem
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from math import pi, radians, degrees
import numpy as np
alpha = 0.4
period = 2*pi # Use small theta approximation
T = 12*period # Simulate for 12 periods
dt = period/40 # 40 time steps per period
a = 70 # Initial amplitude in degrees
Theta = radians(a)

t, theta, omega, S, drag = simulate(alpha, Theta, dt, T)

# Visualize drag force 5 times as large
drag *= 5
mg = np.ones(S.size) # Gravity force (needed in sketch)

# Draw animation
import time
for time_level, t_ in enumerate(t):

sketch(theta, S, mg, drag, t_, time_level)
time.sleep(0.2) # Pause between each frame on the screen

# Make videos
prog = ’ffmpeg’
filename = ’tmp_%04d.png’
fps = 6
codecs = {’flv’: ’flv’, ’mp4’: ’libx264’,

’webm’: ’libvpx’, ’ogg’: ’libtheora’}
for ext in codecs:

lib = codecs[ext]
cmd = ’%(prog)s -i %(filename)s -r %(fps)s ’ % vars()
cmd += ’-vcodec %(lib)s movie.%(ext)s’ % vars()
print(cmd)
os.system(cmd)

1.12.7 Motion of an elastic pendulum

Consider a pendulum as in Figure 1.20, but this time the wire is elastic.
The length of the wire when it is not stretched is L0, while L(t) is the
stretched length at time t during the motion.

Stretching the elastic wire a distance ∆L gives rise to a spring force
k∆L in the opposite direction of the stretching. Let n be a unit normal
vector along the wire from the point r0 = (x0, y0) and in the direction of
iθ, see Figure 1.21 for definition of (x0, y0) and iθ. Obviously, we have
n = iθ, but in this modeling of an elastic pendulum we do not need polar
coordinates. Instead, it is more straightforward to develop the equation
in Cartesian coordinates.

A mathematical expression for n is
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n = r − r0

L(t) ,

where L(t) = ||r − r0|| is the current length of the elastic wire. The
position vector r in Cartesian coordinates reads r(t) = x(t)i + y(t)j,
where i and j are unit vectors in the x and y directions, respectively. It
is convenient to introduce the Cartesian components nx and ny of the
normal vector:

n = r − r0

L(t) = x(t)− x0

L(t) i+ y(t)− y0

L(t) j = nxi+ nyj .

The stretch ∆L in the wire is

∆t = L(t)− L0 .

The force in the wire is then −Sn = −k∆Ln.
The other forces are the gravity and the air resistance, just as in

Figure 1.21. For motion in air we can neglect the added mass and
buoyancy effects. The main difference is that we have a model for S
in terms of the motion (as soon as we have expressed ∆L by r). For
simplicity, we drop the air resistance term (but Exercise 1.27 asks you to
include it).

Newton’s second law of motion applied to the body now results in

mr̈ = −k(L− L0)n−mgj (1.132)

The two components of (1.132) are

ẍ = − k
m

(L− L0)nx, (1.133)

(1.134)

ÿ = − k
m

(L− L0)ny − g . (1.135)

Remarks about an elastic vs a non-elastic pendulum. Note that the
derivation of the ODEs for an elastic pendulum is more straightforward
than for a classical, non-elastic pendulum, since we avoid the details with
polar coordinates, but instead work with Newton’s second law directly in
Cartesian coordinates. The reason why we can do this is that the elastic
pendulum undergoes a general two-dimensional motion where all the
forces are known or expressed as functions of x(t) and y(t), such that
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we get two ordinary differential equations. The motion of the non-elastic
pendulum, on the other hand, is constrained: the body has to move along
a circular path, and the force S in the wire is unknown.

The non-elastic pendulum therefore leads to a differential-algebraic
equation, i.e., ODEs for x(t) and y(t) combined with an extra constraint
(x− x0)2 + (y − y0)2 = L2 ensuring that the motion takes place along
a circular path. The extra constraint (equation) is compensated by an
extra unknown force −Sn. Differential-algebraic equations are normally
hard to solve, especially with pen and paper. Fortunately, for the non-
elastic pendulum we can do a trick: in polar coordinates the unknown
force S appears only in the radial component of Newton’s second law,
while the unknown degree of freedom for describing the motion, the
angle θ(t), is completely governed by the asimuthal component. This
allows us to decouple the unknowns S and θ. But this is a kind of trick
and not a widely applicable method. With an elastic pendulum we use
straightforward reasoning with Newton’s 2nd law and arrive at a standard
ODE problem that (after scaling) is easy solve on a computer.

Initial conditions. What is the initial position of the body? We imagine
that first the pendulum hangs in equilibrium in its vertical position, and
then it is displaced an angle Θ. The equilibrium position is governed by
the ODEs with the accelerations set to zero. The x component leads to
x(t) = x0, while the y component gives

0 = − k
m

(L−L0)ny − g = k

m
(L(0)−L0)− g ⇒ L(0) = L0 +mg/k,

since ny = −11 in this position. The corresponding y value is then from
ny = −1:

y(t) = y0 − L(0) = y0 − (L0 +mg/k) .

Let us now choose (x0, y0) such that the body is at the origin in the
equilibrium position:

x0 = 0, y0 = L0 +mg/k .

Displacing the body an angle Θ to the right leads to the initial position

x(0) = (L0 +mg/k) sinΘ, y(0) = (L0 +mg/k)(1− cosΘ) .
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The initial velocities can be set to zero: x′(0) = y′(0) = 0.
The complete ODE problem. We can summarize all the equations as
follows:

ẍ = − k
m

(L− L0)nx,

ÿ = − k
m

(L− L0)ny − g,

L =
√

(x− x0)2 + (y − y0)2,

nx = x− x0

L
,

ny = y − y0

L
,

x(0) = (L0 +mg/k) sinΘ,
x′(0) = 0,
y(0) = (L0 +mg/k)(1− cosΘ),
y′(0) = 0 .

We insert nx and ny in the ODEs:

ẍ = − k
m

(
1− L0

L

)
(x− x0), (1.136)

ÿ = − k
m

(
1− L0

L

)
(y − y0)− g, (1.137)

L =
√

(x− x0)2 + (y − y0)2, (1.138)
x(0) = (L0 +mg/k) sinΘ, (1.139)
x′(0) = 0, (1.140)
y(0) = (L0 +mg/k)(1− cosΘ), (1.141)
y′(0) = 0 . (1.142)

Scaling. The elastic pendulum model can be used to study both an
elastic pendulum and a classic, non-elastic pendulum. The latter problem
is obtained by letting k → ∞. Unfortunately, a serious problem with
the ODEs (1.136)-(1.137) is that for large k, we have a very large factor
k/m multiplied by a very small number 1 − L0/L, since for large k,
L ≈ L0 (very small deformations of the wire). The product is subject
to significant round-off errors for many relevant physical values of the
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parameters. To circumvent the problem, we introduce a scaling. This will
also remove physical parameters from the problem such that we end up
with only one dimensionless parameter, closely related to the elasticity of
the wire. Simulations can then be done by setting just this dimensionless
parameter.

The characteristic length can be taken such that in equilibrium, the
scaled length is unity, i.e., the characteristic length is L0 +mg/k:

x̄ = x

L0 +mg/k
, ȳ = y

L0 +mg/k
.

We must then also work with the scaled length L̄ = L/(L0 +mg/k).
Introducing t̄ = t/tc, where tc is a characteristic time we have to decide

upon later, one gets

d2x̄

dt̄2
= −t2c

k

m

(
1− L0

L0 +mg/k

1
L̄

)
x̄,

d2ȳ

dt̄2
= −t2c

k

m

(
1− L0

L0 +mg/k

1
L̄

)
(ȳ − 1)− t2c

g

L0 +mg/k
,

L̄ =
√
x̄2 + (ȳ − 1)2,

x̄(0) = sinΘ,
x̄′(0) = 0,
ȳ(0) = 1− cosΘ,
ȳ′(0) = 0 .

For a non-elastic pendulum with small angles, we know that the frequency
of the oscillations are ω =

√
L/g. It is therefore natural to choose a

similar expression here, either the length in the equilibrium position,

t2c = L0 +mg/k

g
.

or simply the unstretched length,

t2c = L0

g
.

These quantities are not very different (since the elastic model is valid
only for quite small elongations), so we take the latter as it is the simplest
one.

The ODEs become
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d2x̄

dt̄2
= −L0k

mg

(
1− L0

L0 +mg/k

1
L̄

)
x̄,

d2ȳ

dt̄2
= −L0k

mg

(
1− L0

L0 +mg/k

1
L̄

)
(ȳ − 1)− L0

L0 +mg/k
,

L̄ =
√
x̄2 + (ȳ − 1)2 .

We can now identify a dimensionless number

β = L0

L0 +mg/k
= 1

1 + mg
L0k

,

which is the ratio of the unstretched length and the stretched length in
equilibrium. The non-elastic pendulum will have β = 1 (k →∞). With
β the ODEs read

d2x̄

dt̄2
= − β

1− β

(
1− β

L̄

)
x̄, (1.143)

d2ȳ

dt̄2
= − β

1− β

(
1− β

L̄

)
(ȳ − 1)− β, (1.144)

L̄ =
√
x̄2 + (ȳ − 1)2, (1.145)

x̄(0) = (1 + ε) sinΘ, (1.146)
dx̄

dt̄
(0) = 0, (1.147)

ȳ(0) = 1− (1 + ε) cosΘ, (1.148)
dȳ

dt̄
(0) = 0, (1.149)

We have here added a parameter ε, which is an additional downward
stretch of the wire at t = 0. This parameter makes it possible to do a
desired test: vertical oscillations of the pendulum. Without ε, starting
the motion from (0, 0) with zero velocity will result in x = y = 0 for
all times (also a good test!), but with an initial stretch so the body’s
position is (0, ε), we will have oscillatory vertical motion with amplitude
ε (see Exercise 1.26).

Remark on the non-elastic limit. We immediately see that as k →∞
(i.e., we obtain a non-elastic pendulum), β → 1, L̄→ 1, and we have very
small values 1− βL̄−1 divided by very small values 1− β in the ODEs.
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However, it turns out that we can set β very close to one and obtain a
path of the body that within the visual accuracy of a plot does not show
any elastic oscillations. (Should the division of very small values become
a problem, one can study the limit by L’Hospital’s rule:

lim
β→1

1− βL̄−1

1− β = 1
L̄
,

and use the limit L̄−1 in the ODEs for β values very close to 1.)

1.12.8 Vehicle on a bumpy road

r0

Fig. 1.22 Sketch of one-wheel vehicle on a bumpy road.

We consider a very simplistic vehicle, on one wheel, rolling along a
bumpy road. The oscillatory nature of the road will induce an exter-
nal forcing on the spring system in the vehicle and cause vibrations.
Figure 1.22 outlines the situation.

To derive the equation that governs the motion, we must first establish
the position vector of the black mass at the top of the spring. Suppose
the spring has length L without any elongation or compression, suppose
the radius of the wheel is R, and suppose the height of the black mass at
the top is H. With the aid of the r0 vector in Figure 1.22, the position
r of the center point of the mass is

r = r0 + 2Rj + Lj + uj + 1
2Hj, (1.150)
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where u is the elongation or compression in the spring according to the
(unknown and to be computed) vertical displacement u relative to the
road. If the vehicle travels with constant horizontal velocity v and h(x)
is the shape of the road, then the vector r0 is

r0 = vti+ h(vt)j,

if the motion starts from x = 0 at time t = 0.
The forces on the mass is the gravity, the spring force, and an optional

damping force that is proportional to the vertical velocity u̇. Newton’s
second law of motion then tells that

mr̈ = −mgj − s(u)− bu̇j .

This leads to

mü = −s(u)− bu̇−mg −mh′′(vt)v2

To simplify a little bit, we omit the gravity force mg in comparison
with the other terms. Introducing u′ for u̇ then gives a standard damped,
vibration equation with external forcing:

mu′′ + bu′ + s(u) = −mh′′(vt)v2 . (1.151)

Since the road is normally known just as a set of array values, h′′ must be
computed by finite differences. Let ∆x be the spacing between measured
values hi = h(i∆x) on the road. The discrete second-order derivative h′′
reads

qi = hi−1 − 2hi + hi+1

∆x2 , i = 1, . . . , Nx − 1 .

We may for maximum simplicity set the end points as q0 = q1 and
qNx = qNx−1. The term −mh′′(vt)v2 corresponds to a force with discrete
time values

F n = −mqnv2, ∆t = v−1∆x .

This force can be directly used in a numerical model

[mDtDtu+ bD2tu+ s(u) = F ]n .

Software for computing u and also making an animated sketch of the
motion like we did in Section 1.12.6 is found in a separate project on
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the web: https://github.com/hplgit/bumpy. You may start looking
at the tutorial.

1.12.9 Bouncing ball

A bouncing ball is a ball in free vertically fall until it impacts the ground,
but during the impact, some kinetic energy is lost, and a new motion
upwards with reduced velocity starts. After the motion is retarded, a new
free fall starts, and the process is repeated. At some point the velocity
close to the ground is so small that the ball is considered to be finally at
rest.

The motion of the ball falling in air is governed by Newton’s second
law F = ma, where a is the acceleration of the body, m is the mass, and
F is the sum of all forces. Here, we neglect the air resistance so that
gravity −mg is the only force. The height of the ball is denoted by h
and v is the velocity. The relations between h, v, and a,

h′(t) = v(t), v′(t) = a(t),

combined with Newton’s second law gives the ODE model

h′′(t) = −g, (1.152)

or expressed alternatively as a system of first-order equations:

v′(t) = −g, (1.153)
h′(t) = v(t) . (1.154)

These equations govern the motion as long as the ball is away from the
ground by a small distance εh > 0. When h < εh, we have two cases.

1. The ball impacts the ground, recognized by a sufficiently large negative
velocity (v < −εv). The velocity then changes sign and is reduced
by a factor CR, known as the coefficient of restitution. For plotting
purposes, one may set h = 0.

2. The motion stops, recognized by a sufficiently small velocity (|v| < εv)
close to the ground.

https://github.com/hplgit/bumpy
http://hplgit.github.io/bumpy/doc/pub/bumpy.pdf
http://en.wikipedia.org/wiki/Coefficient_of_restitution
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1.12.10 Two-body gravitational problem

Consider two astronomical objects A and B that attract each other by
gravitational forces. A and B could be two stars in a binary system, a
planet orbiting a star, or a moon orbiting a planet. Each object is acted
upon by the gravitational force due to the other object. Consider motion
in a plane (for simplicity) and let (xA, yA) and (xB, yB) be the positions
of object A and B, respectively.

The governing equations. Newton’s second law of motion applied to
each object is all we need to set up a mathematical model for this physical
problem:

mAẍA = F , (1.155)
mBẍB = −F , (1.156)

where F is the gravitational force

F = GmAmB

||r||3
r,

where

r(t) = xB(t)− xA(t),

and G is the gravitational constant: G = 6.674 · 10−11 Nm2/kg2.

Scaling. A problem with these equations is that the parameters are very
large (mA, mB, ||r||) or very small (G). The rotation time for binary
stars can be very small and large as well. It is therefore advantageous to
scale the equations. A natural length scale could be the initial distance
between the objects: L = r(0). We write the dimensionless quantities as

x̄A = xA
L
, x̄B = xB

L
, t̄ = t

tc
.

The gravity force is transformed to

F = GmAmB

L2||r̄||3
r̄, r̄ = x̄B − x̄A,

so the first ODE for xA becomes

d2x̄A
dt̄2

= GmBt
2
c

L3
r̄

||r̄||3
.
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Assuming that quantities with a bar and their derivatives are around unity
in size, it is natural to choose tc such that the fraction GmBtc/L

2 = 1:

tc =
√

L3

GmB
.

From the other equation for xB we get another candidate for tc with
mA instead of mB. Which mass we choose play a role if mA � mB or
mB � mA. One solution is to use the sum of the masses:

tc =
√

L3

G(mA +mB) .

Taking a look at Kepler’s laws of planetary motion, the orbital period for
a planet around the star is given by the tc above, except for a missing
factor of 2π, but that means that t−1

c is just the angular frequency
of the motion. Our characteristic time tc is therefore highly relevant.
Introducing the dimensionless number

α = mA

mB
,

we can write the dimensionless ODE as

d2x̄A
dt̄2

= 1
1 + α

r̄

||r̄||3
, (1.157)

d2x̄B
dt̄2

= 1
1 + α−1

r̄

||r̄||3
. (1.158)

In the limit mA � mB, i.e., α� 1, object B stands still, say x̄B = 0,
and object A orbits according to

d2x̄A
dt̄2

= − x̄A
||x̄A||3

.

Solution in a special case: planet orbiting a star. To better see the
motion, and that our scaling is reasonable, we introduce polar coordinates
r and θ:

x̄A = r cos θi+ r sin θj,

which means x̄A can be written as x̄A = rir. Since

https://en.wikipedia.org/wiki/Kepler%27s_laws_of_planetary_motion
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d

dt
ir = θ̇iθ,

d

dt
iθ = −θ̇ir,

we have

d2x̄A
dt̄2

= (r̈ − rθ̇2)ir + (rθ̈ + 2ṙθ̇)iθ .

The equation of motion for mass A is then

r̈ − rθ̇2 = − 1
r2 ,

rθ̈ + 2ṙθ̇ = 0 .

The special case of circular motion, r = 1, fulfills the equations, since the
latter equation then gives θ̇ = const and the former then gives θ̇ = 1, i.e.,
the motion is r(t) = 1, θ(t) = t, with unit angular frequency as expected
and period 2π as expected.

1.12.11 Electric circuits

Although the term “mechanical vibrations” is used in the present book,
we must mention that the same type of equations arise when modeling
electric circuits. The current I(t) in a circuit with an inductor with
inductance L, a capacitor with capacitance C, and overall resistance R,
is governed by

Ï + R

L
İ + 1

LC
I = V̇ (t), (1.159)

where V (t) is the voltage source powering the circuit. This equation
has the same form as the general model considered in Section 1.10 if
we set u = I, f(u′) = bu′ and define b = R/L, s(u) = L−1C−1u, and
F (t) = V̇ (t).

1.13 Exercises

Exercise 1.22: Simulate resonance

We consider the scaled ODE model (1.122) from Section 1.12.2. After
scaling, the amplitude of u will have a size about unity as time grows and
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the effect of the initial conditions die out due to damping. However, as
γ → 1, the amplitude of u increases, especially if β is small. This effect
is called resonance. The purpose of this exercise is to explore resonance.
a) Figure out how the solver function in vib.py can be called for the
scaled ODE (1.122).
b) Run γ = 5, 1.5, 1.1, 1 for β = 0.005, 0.05, 0.2. For each β value, present
an image with plots of u(t) for the four γ values.
Filename: resonance.

Exercise 1.23: Simulate oscillations of a sliding box
Consider a sliding box on a flat surface as modeled in Section 1.12.3. As
spring force we choose the nonlinear formula

s(u) = k

α
tanh(αu) = ku+ 1

3α
2ku3 + 2

15α
4ku5 +O(u6) .

a) Plot g(u) = α−1 tanh(αu) for various values of α. Assume u ∈ [−1, 1].
b) Scale the equations using I as scale for u and

√
m/k as time scale.

c) Implement the scaled model in b). Run it for some values of the
dimensionless parameters.
Filename: sliding_box.

Exercise 1.24: Simulate a bouncing ball
Section 1.12.9 presents a model for a bouncing ball. Choose one of the two
ODE formulation, (1.152) or (1.153)-(1.154), and simulate the motion of
a bouncing ball. Plot h(t). Think about how to plot v(t).
Hint. A naive implementation may get stuck in repeated impacts for
large time step sizes. To avoid this situation, one can introduce a state
variable that holds the mode of the motion: free fall, impact, or rest. Two
consecutive impacts imply that the motion has stopped.
Filename: bouncing_ball.

Exercise 1.25: Simulate a simple pendulum
Simulation of simple pendulum can be carried out by using the math-
ematical model derived in Section 1.12.5 and calling up functionality
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in the vib.py file (i.e., solve the second-order ODE by centered finite
differences).
a) Scale the model. Set up the dimensionless governing equation for θ
and expressions for dimensionless drag and wire forces.
b) Write a function for computing θ and the dimensionless drag force
and the force in the wire, using the solver function in the vib.py file.
Plot these three quantities below each other (in subplots) so the graphs
can be compared. Run two cases, first one in the limit of Θ small and no
drag, and then a second one with Θ = 40 degrees and α = 0.8.
Filename: simple_pendulum.

Exercise 1.26: Simulate an elastic pendulum
Section 1.12.7 describes a model for an elastic pendulum, resulting in a
system of two ODEs. The purpose of this exercise is to implement the
scaled model, test the software, and generalize the model.
a) Write a function simulate that can simulate an elastic pendulum
using the scaled model. The function should have the following arguments:

def simulate(
beta=0.9, # dimensionless parameter
Theta=30, # initial angle in degrees
epsilon=0, # initial stretch of wire
num_periods=6, # simulate for num_periods
time_steps_per_period=60, # time step resolution
plot=True, # make plots or not
):

To set the total simulation time and the time step, we use our knowledge
of the scaled, classical, non-elastic pendulum: u′′ + u = 0, with solution
u = Θ cos t̄. The period of these oscillations is P = 2π and the frequency
is unity. The time for simulation is taken as num_periods times P . The
time step is set as P divided by time_steps_per_period.

The simulate function should return the arrays of x, y, θ, and t,
where θ = tan−1(x/(1 − y)) is the angular displacement of the elastic
pendulum corresponding to the position (x, y).

If plot is True, make a plot of ȳ(t̄) versus x̄(t̄), i.e., the physical
motion of the mass at (x̄, ȳ). Use the equal aspect ratio on the axis such
that we get a physically correct picture of the motion. Also make a plot
of θ(t̄), where θ is measured in degrees. If Θ < 10 degrees, add a plot
that compares the solutions of the scaled, classical, non-elastic pendulum
and the elastic pendulum (θ(t)).

http://tinyurl.com/nu656p2/vib/vib.py
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Although the mathematics here employs a bar over scaled quantities,
the code should feature plain names x for x̄, y for ȳ, and t for t̄ (rather
than x_bar, etc.). These variable names make the code easier to read
and compare with the mathematics.
Hint 1. Equal aspect ratio is set by plt.gca().set_aspect(’equal’)
in Matplotlib (import matplotlib.pyplot as plt) and in
SciTools by the command plt.plot(..., daspect=[1,1,1],
daspectmode=’equal’) (provided you have done import scitools.std
as plt).
Hint 2. If you want to use Odespy to solve the equations, order the
ODEs like ˙̄x, x̄,˙̄y, ȳ such that odespy.EulerCromer can be applied.
b) Write a test function for testing that Θ = 0 and ε = 0 gives x = y = 0
for all times.
c) Write another test function for checking that the pure vertical motion
of the elastic pendulum is correct. Start with simplifying the ODEs for
pure vertical motion and show that ȳ(t̄) fulfills a vibration equation with
frequency

√
β/(1− β). Set up the exact solution.

Write a test function that uses this special case to verify the simulate
function. There will be numerical approximation errors present in the
results from simulate so you have to believe in correct results and set a
(low) tolerance that corresponds to the computed maximum error. Use a
small ∆t to obtain a small numerical approximation error.
d) Make a function demo(beta, Theta) for simulating an elastic pen-
dulum with a given β parameter and initial angle Θ. Use 600 time steps
per period to get every accurate results, and simulate for 3 periods.
Filename: elastic_pendulum.

Exercise 1.27: Simulate an elastic pendulum with air
resistance
This is a continuation Exercise 1.26. Air resistance on the body with
mass m can be modeled by the force −1

2%CDA|v|v, where CD is a drag
coefficient (0.2 for a sphere), % is the density of air (1.2 kg m−3), A is
the cross section area (A = πR2 for a sphere, where R is the radius), and
v is the velocity of the body. Include air resistance in the original model,
scale the model, write a function simulate_drag that is a copy of the
simulate function from Exercise 1.26, but with the new ODEs included,
and show plots of how air resistance influences the motion.
Filename: elastic_pendulum_drag.
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Remarks. Test functions are challenging to construct for the prob-
lem with air resistance. You can reuse the tests from Exercise 1.27 for
simulate_drag, but these tests does not verify the new terms arising
from air resistance.

Exercise 1.28: Implement the PEFRL algorithm

We consider the motion of a planet around a star (Section 1.12.10). The
simplified case where one mass is very much bigger than the other and
one object is at rest, results in the scaled ODE model

ẍ+ (x2 + y2)−3/2x = 0,
ÿ + (x2 + y2)−3/2y = 0 .

a) It is easy to show that x(t) and y(t) go like sine and cosine functions.
Use this idea to derive the exact solution.

b) One believes that a planet may orbit a star for billions of years. We
are now interested in how accurate methods we actually need for such
calculations. A first task is to determine what the time interval of interest
is in scaled units. Take the earth and sun as typical objects and find the
characteristic time used in the scaling of the equations (tc =

√
L3/(mG)),

where m is the mass of the sun, L is the distance between the sun and the
earth, and G is the gravitational constant. Find the scaled time interval
corresponding to one billion years.

c) Solve the equations using 4th-order Runge-Kutta and the Euler-
Cromer methods. You may benefit from applying Odespy for this purpose.
With each solver, simulate 10000 orbits and print the maximum position
error and CPU time as a function of time step. Note that the maximum
position error does not necessarily occur at the end of the simulation.
The position error achieved with each solver will depend heavily on the
size of the time step. Let the time step correspond to 200, 400, 800 and
1600 steps per orbit, respectively. Are the results as expected? Explain
briefly. When you develop your program, have in mind that it will be
extended with an implementation of the other algorithms (as requested
in d) and e) later) and experiments with this algorithm as well.

d) Implement a solver based on the PEFRL method from Section 1.10.11.
Verify its 4th-order convergence using an equation u′′ + u = 0.
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e) The simulations done previously with the 4th-order Runge-Kutta
and Euler-Cromer are now to be repeated with the PEFRL solver, so
the code must be extended accordingly. Then run the simulations and
comment on the performance of PEFRL compared to the other two.

f) Use the PEFRL solver to simulate 100000 orbits with a fixed time
step corresponding to 1600 steps per period. Record the maximum error
within each subsequent group of 1000 orbits. Plot these errors and fit
(least squares) a mathematical function to the data. Print also the total
CPU time spent for all 100000 orbits.

Now, predict the error and required CPU time for a simulation of 1
billion years (orbits). Is it feasible on today’s computers to simulate the
planetary motion for one billion years?
Filename: vib_PEFRL.

Remarks. This exercise investigates whether it is feasible to predict
planetary motion for the life time of a solar system.





Wave equations 2

A very wide range of physical processes lead to wave motion, where
signals are propagated through a medium in space and time, normally
with little or no permanent movement of the medium itself. The shape
of the signals may undergo changes as they travel through matter, but
usually not so much that the signals cannot be recognized at some later
point in space and time. Many types of wave motion can be described by
the equation utt = ∇· (c2∇u) + f , which we will solve in the forthcoming
text by finite difference methods.

2.1 Simulation of waves on a string

We begin our study of wave equations by simulating one-dimensional
waves on a string, say on a guitar or violin. Let the string in the deformed
state coincide with the interval [0, L] on the x axis, and let u(x, t) be the
displacement at time t in the y direction of a point initially at x. The
displacement function u is governed by the mathematical model

© 2016, Hans Petter Langtangen, Svein Linge. Released under CC Attribution 4.0 license
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∂2u

∂t2
= c2∂

2u

∂x2 , x ∈ (0, L), t ∈ (0, T ] (2.1)

u(x, 0) = I(x), x ∈ [0, L] (2.2)
∂

∂t
u(x, 0) = 0, x ∈ [0, L] (2.3)

u(0, t) = 0, t ∈ (0, T ] (2.4)
u(L, t) = 0, t ∈ (0, T ] (2.5)

The constant c and the function I(x) must be prescribed.
Equation (2.1) is known as the one-dimensional wave equation. Since

this PDE contains a second-order derivative in time, we need two initial
conditions. The condition (2.2) specifies the initial shape of the string,
I(x), and (2.3) expresses that the initial velocity of the string is zero. In
addition, PDEs need boundary conditions, given here as (2.4) and (2.5).
These two conditions specify that the string is fixed at the ends, i.e., that
the displacement u is zero.

The solution u(x, t) varies in space and time and describes waves that
move with velocity c to the left and right.

Sometimes we will use a more compact notation for the partial deriva-
tives to save space:

ut = ∂u

∂t
, utt = ∂2u

∂t2
, (2.6)

and similar expressions for derivatives with respect to other variables.
Then the wave equation can be written compactly as utt = c2uxx.

The PDE problem (2.1)-(2.5) will now be discretized in space and
time by a finite difference method.

2.1.1 Discretizing the domain

The temporal domain [0, T ] is represented by a finite number of mesh
points

0 = t0 < t1 < t2 < · · · < tNt−1 < tNt = T . (2.7)

Similarly, the spatial domain [0, L] is replaced by a set of mesh points

0 = x0 < x1 < x2 < · · · < xNx−1 < xNx = L . (2.8)
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One may view the mesh as two-dimensional in the x, t plane, consisting
of points (xi, tn), with i = 0, . . . , Nx and n = 0, . . . , Nt.
Uniform meshes. For uniformly distributed mesh points we can intro-
duce the constant mesh spacings ∆t and ∆x. We have that

xi = i∆x, i = 0, . . . , Nx, tn = n∆t, n = 0, . . . , Nt . (2.9)

We also have that ∆x = xi − xi−1, i = 1, . . . , Nx, and ∆t = tn − tn−1,
n = 1, . . . , Nt. Figure 2.1 displays a mesh in the x, t plane with Nt = 5,
Nx = 5, and constant mesh spacings.

2.1.2 The discrete solution
The solution u(x, t) is sought at the mesh points. We introduce the mesh
function uni , which approximates the exact solution at the mesh point
(xi, tn) for i = 0, . . . , Nx and n = 0, . . . , Nt. Using the finite difference
method, we shall develop algebraic equations for computing the mesh
function.

2.1.3 Fulfilling the equation at the mesh points
In the finite difference method, we relax the condition that (2.1) holds
at all points in the space-time domain (0, L)× (0, T ] to the requirement
that the PDE is fulfilled at the interior mesh points only:

∂2

∂t2
u(xi, tn) = c2 ∂

2

∂x2u(xi, tn), (2.10)

for i = 1, . . . , Nx− 1 and n = 1, . . . , Nt− 1. For n = 0 we have the initial
conditions u = I(x) and ut = 0, and at the boundaries i = 0, Nx we have
the boundary condition u = 0.

2.1.4 Replacing derivatives by finite differences
The second-order derivatives can be replaced by central differences. The
most widely used difference approximation of the second-order derivative
is

∂2

∂t2
u(xi, tn) ≈ un+1

i − 2uni + un−1
i

∆t2
.
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It is convenient to introduce the finite difference operator notation

[DtDtu]ni = un+1
i − 2uni + un−1

i

∆t2
.

A similar approximation of the second-order derivative in the x direction
reads

∂2

∂x2u(xi, tn) ≈ uni+1 − 2uni + uni−1
∆x2 = [DxDxu]ni .

Algebraic version of the PDE. We can now replace the derivatives in
(2.10) and get

un+1
i − 2uni + un−1

i

∆t2
= c2u

n
i+1 − 2uni + uni−1

∆x2 , (2.11)

or written more compactly using the operator notation:

[DtDtu = c2DxDx]ni . (2.12)

Interpretation of the equation as a stencil. A characteristic feature
of (2.11) is that it involves u values from neighboring points only: un+1

i ,
uni±1, uni , and un−1

i . The circles in Figure 2.1 illustrate such neighboring
mesh points that contribute to an algebraic equation. In this particular
case, we have sampled the PDE at the point (2, 2) and constructed (2.11),
which then involves a coupling of unm11, u2

n, unm12, u2
3, and unm13.

The term stencil is often used about the algebraic equation at a mesh
point, and the geometry of a typical stencil is illustrated in Figure 2.1.
One also often refers to the algebraic equations as discrete equations,
(finite) difference equations or a finite difference scheme.

Algebraic version of the initial conditions. We also need to replace the
derivative in the initial condition (2.3) by a finite difference approximation.
A centered difference of the type

∂

∂t
u(xi, t0) ≈ u1

i − u−1
i

2∆t = [D2tu]0i ,

seems appropriate. Writing out this equation and ordering the terms give

u−1
i = u1

i , i = 0, . . . , Nx . (2.13)

The other initial condition can be computed by

u0
i = I(xi), i = 0, . . . , Nx .
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Fig. 2.1 Mesh in space and time. The circles show points connected in a finite difference
equation.

2.1.5 Formulating a recursive algorithm

We assume that uni and un−1
i are available for i = 0, . . . , Nx. The only

unknown quantity in (2.11) is therefore un+1
i , which we now can solve

for:

un+1
i = −un−1

i + 2uni + C2 (uni+1 − 2uni + uni−1
)
. (2.14)

We have here introduced the parameter

C = c
∆t

∆x
, (2.15)

known as the Courant number.

C is the key parameter in the discrete wave equation

We see that the discrete version of the PDE features only one pa-
rameter, C, which is therefore the key parameter, together with Nx,
that governs the quality of the numerical solution (see Section 2.10
for details). Both the primary physical parameter c and the numeri-
cal parameters ∆x and ∆t are lumped together in C. Note that C
is a dimensionless parameter.
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Given that un−1
i and uni are known for i = 0, . . . , Nx, we find new values

at the next time level by applying the formula (2.14) for i = 1, . . . , Nx−1.
Figure 2.1 illustrates the points that are used to compute u3

2. For the
boundary points, i = 0 and i = Nx, we apply the boundary conditions
un+1
i = 0.
Even though sound reasoning leads up to (2.14), there is still a minor

challenge with it that needs to be resolved. Think of the very first
computational step to be made. The scheme (2.14) is supposed to start
at n = 1, which means that we compute u2 from u1 and u0. Unfortunately,
we do not know the value of u1, so how to proceed? A standard procedure
in such cases is to apply (2.14) also for n = 0. This immediately seems
strange, since it involves u−1

i , which is an undefined quantity outside
the time mesh (and the time domain). However, we can use the initial
condition (2.13) in combination with (2.14) when n = 0 to eliminate u−1

i

and arrive at a special formula for u1
i :

u1
i = u0

i −
1
2C

2
(
u0
i+1 − 2u0

i + u0
i−1

)
. (2.16)

Figure 2.2 illustrates how (2.16) connects four instead of five points: u1
2,

u0
n, unm10, and u0

3.
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Fig. 2.2 Modified stencil for the first time step.

We can now summarize the computational algorithm:
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1. Compute u0
i = I(xi) for i = 0, . . . , Nx

2. Compute u1
i by (2.16) and set u1

i = 0 for the boundary points i = 0
and i = Nx, for n = 1, 2, . . . , N − 1,

3. For each time level n = 1, 2, . . . , Nt − 1
a. apply (2.14) to find un+1

i for i = 1, . . . , Nx − 1
b. set un+1

i = 0 for the boundary points i = 0, i = Nx.

The algorithm essentially consists of moving a finite difference stencil
through all the mesh points, which can be seen as an animation in a web
page or a movie file.

2.1.6 Sketch of an implementation

The algorithm only involves the three most recent time levels, so we need
only three arrays for un+1

i , uni , and un−1
i , i = 0, . . . , Nx. Storing all the

solutions in a two-dimensional array of size (Nx + 1)× (Nt + 1) would be
possible in this simple one-dimensional PDE problem, but is normally
out of the question in three-dimensional (3D) and large two-dimensional
(2D) problems. We shall therefore, in all our PDE solving programs, have
the unknown in memory at as few time levels as possible.

In a Python implementation of this algorithm, we use the array el-
ements u[i] to store un+1

i , u_n[i] to store uni , and u_nm1[i] to store
un−1
i . Our naming convention is to use u for the unknown new spatial

field to be computed and have all previous time levels in a list u_n that
we index as u_n, u_nm1, u_n[-2] and so on. For the wave equation, u_n
has just length 2.

The following Python snippet realizes the steps in the computational
algorithm.

# Given mesh points as arrays x and t (x[i], t[n])
dx = x[1] - x[0]
dt = t[1] - t[0]
C = c*dt/dx # Courant number
Nt = len(t)-1
C2 = C**2 # Help variable in the scheme

# Set initial condition u(x,0) = I(x)
for i in range(0, Nx+1):

u_n[i] = I(x[i])

# Apply special formula for first step, incorporating du/dt=0
for i in range(1, Nx):

u[i] = u_n[i] - \

http://tinyurl.com/pu5uyfn/pub/pub/wave/html/mov-wave/D_stencil_gpl/index.html
http://tinyurl.com/pu5uyfn/pub/pub/wave/html/mov-wave/D_stencil_gpl/index.html
http://tinyurl.com/pu5uyfn/pub/pub/wave/html/mov-wave/D_stencil_gpl/movie.ogg
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0.5*C**2(u_n[i+1] - 2*u_n[i] + u_n[i-1])
u[0] = 0; u[Nx] = 0 # Enforce boundary conditions

# Switch variables before next step
u_nm1[:], u_n[:] = u_n, u

for n in range(1, Nt):
# Update all inner mesh points at time t[n+1]
for i in range(1, Nx):

u[i] = 2u_n[i] - u_nm1[i] - \
C**2(u_n[i+1] - 2*u_n[i] + u_n[i-1])

# Insert boundary conditions
u[0] = 0; u[Nx] = 0

# Switch variables before next step
u_nm1[:], u_n[:] = u_n, u

2.2 Verification

Before implementing the algorithm, it is convenient to add a source
term to the PDE (2.1), since that gives us more freedom in finding test
problems for verification. Physically, a source term acts as a generator
for waves in the interior of the domain.

2.2.1 A slightly generalized model problem

We now address the following extended initial-boundary value problem
for one-dimensional wave phenomena:

utt = c2uxx + f(x, t), x ∈ (0, L), t ∈ (0, T ] (2.17)
u(x, 0) = I(x), x ∈ [0, L] (2.18)
ut(x, 0) = V (x), x ∈ [0, L] (2.19)
u(0, t) = 0, t > 0 (2.20)
u(L, t) = 0, t > 0 (2.21)

Sampling the PDE at (xi, tn) and using the same finite difference
approximations as above, yields

[DtDtu = c2DxDxu+ f ]ni . (2.22)
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Writing this out and solving for the unknown un+1
i results in

un+1
i = −un−1

i + 2uni + C2(uni+1 − 2uni + uni−1) +∆t2fni . (2.23)

The equation for the first time step must be rederived. The discretiza-
tion of the initial condition ut = V (x) at t = 0 becomes

[D2tu = V ]0i ⇒ u−1
i = u1

i − 2∆tVi,

which, when inserted in (2.23) for n = 0, gives the special formula

u1
i = u0

i −∆tVi + 1
2C

2
(
u0
i+1 − 2u0

i + u0
i−1

)
+ 1

2∆t
2f0
i . (2.24)

2.2.2 Using an analytical solution of physical significance
Many wave problems feature sinusoidal oscillations in time and space. For
example, the original PDE problem (2.1)-(2.5) allows an exact solution

ue(x, t) = A sin
(
π

L
x

)
cos

(
π

L
ct

)
. (2.25)

This ue fulfills the PDE with f = 0, boundary conditions ue(0, t) =
ue(L, 0) = 0, as well as initial conditions I(x) = A sin

(
π
Lx
)
and V = 0.

How to use exact solutions for verification
It is common to use such exact solutions of physical interest to
verify implementations. However, the numerical solution uni will
only be an approximation to ue(xi, tn). We have no knowledge of the
precise size of the error in this approximation, and therefore we can
never know if discrepancies between uni and ue(xi, tn) are caused by
mathematical approximations or programming errors. In particular,
if plots of the computed solution uni and the exact one (2.25) look
similar, many are tempted to claim that the implementation works.
However, even if color plots look nice and the accuracy is “deemed
good”, there can still be serious programming errors present!

The only way to use exact physical solutions like (2.25) for serious
and thorough verification is to run a series of simulations on finer
and finer meshes, measure the integrated error in each mesh, and
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from this information estimate the empirical convergence rate of
the method.

An introduction to the computing of convergence rates is given in
Section 3.1.6 in [9]. There is also a detailed example on computing
convergence rates in Section 1.2.2.

In the present problem, one expects the method to have a convergence
rate of 2 (see Section 2.10), so if the computed rates are close to 2 on a
sufficiently fine mesh, we have good evidence that the implementation is
free of programming mistakes.

2.2.3 Manufactured solution and estimation of convergence
rates

Specifying the solution and computing corresponding data. One
problem with the exact solution (2.25) is that it requires a simplification
(V = 0, f = 0) of the implemented problem (2.17)-(2.21). An advantage
of using a manufactured solution is that we can test all terms in the PDE
problem. The idea of this approach is to set up some chosen solution and
fit the source term, boundary conditions, and initial conditions to be
compatible with the chosen solution. Given that our boundary conditions
in the implementation are u(0, t) = u(L, t) = 0, we must choose a solution
that fulfills these conditions. One example is

ue(x, t) = x(L− x) sin t .

Inserted in the PDE utt = c2uxx + f we get

−x(L− x) sin t = −c22 sin t+ f ⇒ f = (2c2 − x(L− x)) sin t .

The initial conditions become

u(x, 0) =I(x) = 0,
ut(x, 0) = V (x) = x(L− x) .

Defining a single discretization parameter. To verify the code, we
compute the convergence rates in a series of simulations, letting each
simulation use a finer mesh than the previous one. Such empirical estima-
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tion of convergence rates relies on an assumption that some measure E
of the numerical error is related to the discretization parameters through

E = Ct∆t
r + Cx∆x

p,

where Ct, Cx, r, and p are constants. The constants r and p are known as
the convergence rates in time and space, respectively. From the accuracy
in the finite difference approximations, we expect r = p = 2, since the
error terms are of order ∆t2 and ∆x2. This is confirmed by truncation
error analysis and other types of analysis.

By using an exact solution of the PDE problem, we will next compute
the error measure E on a sequence of refined meshes and see if the rates
r = p = 2 are obtained. We will not be concerned with estimating the
constants Ct and Cx, simply because we are not interested in their values.

It is advantageous to introduce a single discretization parameter h =
∆t = ĉ∆x for some constant ĉ. Since ∆t and ∆x are related through the
Courant number, ∆t = C∆x/c, we set h = ∆t, and then ∆x = hc/C.
Now the expression for the error measure is greatly simplified:

E = Ct∆t
r+Cx∆xr = Cth

r+Cx
(
c

C

)r
hr = Dhr, D = Ct+Cx

(
c

C

)r
.

Computing errors. We choose an initial discretization parameter h0 and
run experiments with decreasing h: hi = 2−ih0, i = 1, 2, . . . ,m. Halving
h in each experiment is not necessary, but it is a common choice. For
each experiment we must record E and h. A standard choice of error
measure is the `2 or `∞ norm of the error mesh function eni :

E = ||eni ||`2 =
(
∆t∆x

Nt∑
n=0

Nx∑
i=0

(eni )2
) 1

2

, eni = ue(xi, tn)− uni , (2.26)

E = ||eni ||`∞ = max
i,n
|ein| . (2.27)

In Python, one can compute
∑
i(eni )2 at each time step and accumulate

the value in some sum variable, say e2_sum. At the final time step one
can do sqrt(dt*dx*e2_sum). For the `∞ norm one must compare the
maximum error at a time level (e.max()) with the global maximum over
the time domain: e_max = max(e_max, e.max()).

An alternative error measure is to use a spatial norm at one time step
only, e.g., the end time T (n = Nt):
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E = ||eni ||`2 =
(
∆x

Nx∑
i=0

(eni )2
) 1

2

, eni = ue(xi, tn)− uni , (2.28)

E = ||eni ||`∞ = max
0≤i≤Nx

|eni | . (2.29)

The important issue is that our error measure E must be one number
that represents the error in the simulation.
Computing rates. Let Ei be the error measure in experiment (mesh)
number i and let hi be the corresponding discretization parameter (h).
With the error model Ei = Dhri , we can estimate r by comparing two
consecutive experiments:

Ei+1 = Dhri+1,

Ei = Dhri .

Dividing the two equations eliminates the (uninteresting) constant D.
Thereafter, solving for r yields

r = lnEi+1/Ei
ln hi+1/hi

.

Since r depends on i, i.e., which simulations we compare, we add an
index to r: ri, where i = 0, . . . ,m − 2, if we have m experiments:
(h0, E0), . . . , (hm−1, Em−1).

In our present discretization of the wave equation we expect r = 2,
and hence the ri values should converge to 2 as i increases.

2.2.4 Constructing an exact solution of the discrete
equations

With a manufactured or known analytical solution, as outlined above, we
can estimate convergence rates and see if they have the correct asymp-
totic behavior. Experience shows that this is a quite good verification
technique in that many common bugs will destroy the convergence rates.
A significantly better test though, would be to check that the numer-
ical solution is exactly what it should be. This will in general require
exact knowledge of the numerical error, which we do not normally have
(although we in Section 2.10 establish such knowledge in simple cases).
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However, it is possible to look for solutions where we can show that
the numerical error vanishes, i.e., the solution of the original continuous
PDE problem is also a solution of the discrete equations. This property
often arises if the exact solution of the PDE is a lower-order polynomial.
(Truncation error analysis leads to error measures that involve deriva-
tives of the exact solution. In the present problem, the truncation error
involves 4th-order derivatives of u in space and time. Choosing u as a
polynomial of degree three or less will therefore lead to vanishing error.)

We shall now illustrate the construction of an exact solution to both
the PDE itself and the discrete equations. Our chosen manufactured
solution is quadratic in space and linear in time. More specifically, we set

ue(x, t) = x(L− x)(1 + 1
2 t), (2.30)

which by insertion in the PDE leads to f(x, t) = 2(1 + t)c2. This ue
fulfills the boundary conditions u = 0 and demands I(x) = x(L− x) and
V (x) = 1

2x(L− x).
To realize that the chosen ue is also an exact solution of the discrete

equations, we first remind ourselves that tn = n∆t before we establish
that

[DtDtt
2]n = t2n+1 − 2t2n + t2n−1

∆t2
= (n+ 1)2 − 2n2 + (n− 1)2 = 2,

(2.31)

[DtDtt]n = tn+1 − 2tn + tn−1

∆t2
= ((n+ 1)− 2n+ (n− 1))∆t

∆t2
= 0 .
(2.32)

Hence,

[DtDtue]ni = xi(L− xi)[DtDt(1 + 1
2 t)]

n = xi(L− xi)
1
2[DtDtt]n = 0 .

Similarly, we get that

[DxDxue]ni = (1 + 1
2 tn)[DxDx(xL− x2)]i

= (1 + 1
2 tn)[LDxDxx−DxDxx

2]i

= −2(1 + 1
2 tn) .
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Now, fni = 2(1 + 1
2 tn)c2, which results in

[DtDtue − c2DxDxue − f ]ni = 0 + c22(1 + 1
2 tn) + 2(1 + 1

2 tn)c2 = 0 .

Moreover, ue(xi, 0) = I(xi), ∂ue/∂t = V (xi) at t = 0, and ue(x0, t) =
ue(xNx , 0) = 0. Also the modified scheme for the first time step is fulfilled
by ue(xi, tn).

Therefore, the exact solution ue(x, t) = x(L− x)(1 + t/2) of the PDE
problem is also an exact solution of the discrete problem. This means
that we know beforehand what numbers the numerical algorithm should
produce. We can use this fact to check that the computed uni values
from an implementation equals ue(xi, tn), within machine precision. This
result is valid regardless of the mesh spacings ∆x and ∆t! Nevertheless,
there might be stability restrictions on ∆x and ∆t, so the test can only
be run for a mesh that is compatible with the stability criterion (which
in the present case is C ≤ 1, to be derived later).

Notice
A product of quadratic or linear expressions in the various inde-
pendent variables, as shown above, will often fulfill both the PDE
problem and the discrete equations, and can therefore be very useful
solutions for verifying implementations.

However, for 1D wave equations of the type utt = c2uxx we
shall see that there is always another much more powerful way of
generating exact solutions (which consists in just setting C = 1 (!),
as shown in Section 2.10).

2.3 Implementation

This section presents the complete computational algorithm, its imple-
mentation in Python code, animation of the solution, and verification of
the implementation.

A real implementation of the basic computational algorithm from
Sections 2.1.5 and 2.1.6 can be encapsulated in a function, taking all
the input data for the problem as arguments. The physical input data
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consists of c, I(x), V (x), f(x, t), L, and T . The numerical input is the
mesh parameters ∆t and ∆x.

Instead of specifying ∆t and ∆x, we can specify one of them and the
Courant number C instead, since having explicit control of the Courant
number is convenient when investigating the numerical method. Many
find it natural to prescribe the resolution of the spatial grid and set Nx.
The solver function can then compute ∆t = CL/(cNx). However, for
comparing u(x, t) curves (as functions of x) for various Courant numbers
it is more convenient to keep ∆t fixed for all C and let ∆x vary according
to ∆x = c∆t/C. With ∆t fixed, all frames correspond to the same time
t, and this simplifies animations that compare simulations with different
mesh resolutions. Plotting functions of x with different spatial resolution
is trivial, so it is easier to let ∆x vary in the simulations than ∆t.

2.3.1 Callback function for user-specific actions

The solution at all spatial points at a new time level is stored in an array
u of length Nx + 1. We need to decide what to do with this solution, e.g.,
visualize the curve, analyze the values, or write the array to file for later
use. The decision about what to do is left to the user in the form of a
user-supplied function

user_action(u, x, t, n)

where u is the solution at the spatial points x at time t[n]. The
user_action function is called from the solver at each time level n.

If the user wants to plot the solution or store the solution at a time
point, she needs to write such a function and take appropriate actions
inside it. We will show examples on many such user_action functions.

Since the solver function makes calls back to the user’s code via such a
function, this type of function is called a callback function. When writing
general software, like our solver function, which also needs to carry out
special problem- or solution-dependent actions (like visualization), it
is a common technique to leave those actions to user-supplied callback
functions.

The callback function can be used to terminate the solution process if
the user returns True. For example,

def my_user_action_function(u, x, t, n):
return np.abs(u).max() > 10
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is a callback function that will terminate the solver function of the
amplitude of the waves exceed 10, which is here considered as a numerical
instability.

2.3.2 The solver function

A first attempt at a solver function is listed below.

import numpy as np

def solver(I, V, f, c, L, dt, C, T, user_action=None):
"""Solve u_tt=c^2*u_xx + f on (0,L)x(0,T]."""
Nt = int(round(T/dt))
t = np.linspace(0, Nt*dt, Nt+1) # Mesh points in time
dx = dt*c/float(C)
Nx = int(round(L/dx))
x = np.linspace(0, L, Nx+1) # Mesh points in space
C2 = C**2 # Help variable in the scheme
# Make sure dx and dt are compatible with x and t
dx = x[1] - x[0]
dt = t[1] - t[0]

if f is None or f == 0 :
f = lambda x, t: 0

if V is None or V == 0:
V = lambda x: 0

u = np.zeros(Nx+1) # Solution array at new time level
u_n = np.zeros(Nx+1) # Solution at 1 time level back
u_nm1 = np.zeros(Nx+1) # Solution at 2 time levels back

import time; t0 = time.clock() # Measure CPU time

# Load initial condition into u_n
for i in range(0,Nx+1):

u_n[i] = I(x[i])

if user_action is not None:
user_action(u_n, x, t, 0)

# Special formula for first time step
n = 0
for i in range(1, Nx):

u[i] = u_n[i] + dt*V(x[i]) + \
0.5*C2*(u_n[i-1] - 2*u_n[i] + u_n[i+1]) + \
0.5*dt**2*f(x[i], t[n])

u[0] = 0; u[Nx] = 0

if user_action is not None:
user_action(u, x, t, 1)
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# Switch variables before next step
u_nm1[:] = u_n; u_n[:] = u

for n in range(1, Nt):
# Update all inner points at time t[n+1]
for i in range(1, Nx):

u[i] = - u_nm1[i] + 2*u_n[i] + \
C2*(u_n[i-1] - 2*u_n[i] + u_n[i+1]) + \
dt**2*f(x[i], t[n])

# Insert boundary conditions
u[0] = 0; u[Nx] = 0
if user_action is not None:

if user_action(u, x, t, n+1):
break

# Switch variables before next step
u_nm1[:] = u_n; u_n[:] = u

cpu_time = time.clock() - t0
return u, x, t, cpu_time

A couple of remarks about the above code is perhaps necessary:

• Although we give dt and compute dx via C and c, the resulting t and
x meshes do not necessarily correspond exactly to these values because
of rounding errors. To explicitly ensure that dx and dt correspond to
the cell sizes in x and t, we recompute the values.

• According to the convention described in Section 2.3.1, a true value
returned from user_action should terminate the simulation, here
implemented by a break statement inside the for loop in the solver.

2.3.3 Verification: exact quadratic solution

We use the test problem derived in Section 2.2.1 for verification. Below
is a unit test based on this test problem and realized as a proper test
function compatible with the unit test frameworks nose or pytest.

def test_quadratic():
"""Check that u(x,t)=x(L-x)(1+t/2) is exactly reproduced."""

def u_exact(x, t):
return x*(L-x)*(1 + 0.5*t)

def I(x):
return u_exact(x, 0)

def V(x):
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return 0.5*u_exact(x, 0)

def f(x, t):
return 2*(1 + 0.5*t)*c**2

L = 2.5
c = 1.5
C = 0.75
Nx = 6 # Very coarse mesh for this exact test
dt = C*(L/Nx)/c
T = 18

def assert_no_error(u, x, t, n):
u_e = u_exact(x, t[n])
diff = np.abs(u - u_e).max()
tol = 1E-13
assert diff < tol

solver(I, V, f, c, L, dt, C, T,
user_action=assert_no_error)

When this function resides in the file wave1D_u0.py, one can run pytest
to check that all test functions with names test_*() in this file work:

Terminal

Terminal> py.test -s -v wave1D_u0.py

2.3.4 Verification: convergence rates

A more general method, but not so reliable as a verification method, is to
compute the convergence rates and see if they coincide with theoretical
estimates. Here we expect a rate of 2 according to the various results in
Section 2.10. A general function for computing convergence rates can be
written like this:

def convergence_rates(
u_exact, # Python function for exact solution
I, V, f, c, L, # physical parameters
dt0, num_meshes, C, T): # numerical parameters
"""
Half the time step and estimate convergence rates for
for num_meshes simulations.
"""
# First define an appropriate user action function
global error
error = 0 # error computed in the user action function

def compute_error(u, x, t, n):
global error # must be global to be altered here
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# (otherwise error is a local variable, different
# from error defined in the parent function)
if n == 0:

error = 0
else:

error = max(error, np.abs(u - u_exact(x, t[n])).max())

# Run finer and finer resolutions and compute true errors
E = []
h = [] # dt, solver adjusts dx such that C=dt*c/dx
dt = dt0
for i in range(num_meshes):

solver(I, V, f, c, L, dt, C, T,
user_action=compute_error)

# error is computed in the final call to compute_error
E.append(error)
h.append(dt)
dt /= 2 # halve the time step for next simulation

print ’E:’, E
print ’h:’, h
# Convergence rates for two consecutive experiments
r = [np.log(E[i]/E[i-1])/np.log(h[i]/h[i-1])

for i in range(1,num_meshes)]
return r

Using the analytical solution from Section 2.2.2, we can call
convergece_rates to see if we get a convergence rate that approaches 2
and use the final estimate of the rate in an assert statement such that
this function becomes a proper test function:

def test_convrate_sincos():
n = m = 2
L = 1.0
u_exact = lambda x, t: np.cos(m*np.pi/L*t)*np.sin(m*np.pi/L*x)

r = convergence_rates(
u_exact=u_exact,
I=lambda x: u_exact(x, 0),
V=lambda x: 0,
f=0,
c=1,
L=L,
dt0=0.1,
num_meshes=6,
C=0.9,
T=1)

print ’rates sin(x)*cos(t) solution:’, \
[round(r_,2) for r_ in r]

assert abs(r[-1] - 2) < 0.002

Doing py.test -s -v wave1D_u0.py will run also this test function
and show the rates 2.05, 1.98, 2.0, 2.0, and 2.0 (to two decimals).
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2.3.5 Visualization: animating the solution

Now that we have verified the implementation it is time to do a real com-
putation where we also display evolution of the waves on the screen. Since
the solver function knows nothing about what type of visualizations
we may want, it calls the callback function user_action(u, x, t, n).
We must therefore write this function and find the proper statements for
plotting the solution.

Function for administering the simulation. The following viz function

1. defines a user_action callback function for plotting the solution at
each time level,

2. calls the solver function, and
3. combines all the plots (in files) to video in different formats.

def viz(
I, V, f, c, L, dt, C, T, # PDE parameters
umin, umax, # Interval for u in plots
animate=True, # Simulation with animation?
tool=’matplotlib’, # ’matplotlib’ or ’scitools’
solver_function=solver, # Function with numerical algorithm
):
"""Run solver and visualize u at each time level."""

def plot_u_st(u, x, t, n):
"""user_action function for solver."""
plt.plot(x, u, ’r-’,

xlabel=’x’, ylabel=’u’,
axis=[0, L, umin, umax],
title=’t=%f’ % t[n], show=True)

# Let the initial condition stay on the screen for 2
# seconds, else insert a pause of 0.2 s between each plot
time.sleep(2) if t[n] == 0 else time.sleep(0.2)
plt.savefig(’frame_%04d.png’ % n) # for movie making

class PlotMatplotlib:
def __call__(self, u, x, t, n):

"""user_action function for solver."""
if n == 0:

plt.ion()
self.lines = plt.plot(x, u, ’r-’)
plt.xlabel(’x’); plt.ylabel(’u’)
plt.axis([0, L, umin, umax])
plt.legend([’t=%f’ % t[n]], loc=’lower left’)

else:
self.lines[0].set_ydata(u)
plt.legend([’t=%f’ % t[n]], loc=’lower left’)
plt.draw()

time.sleep(2) if t[n] == 0 else time.sleep(0.2)
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plt.savefig(’tmp_%04d.png’ % n) # for movie making

if tool == ’matplotlib’:
import matplotlib.pyplot as plt
plot_u = PlotMatplotlib()

elif tool == ’scitools’:
import scitools.std as plt # scitools.easyviz interface
plot_u = plot_u_st

import time, glob, os

# Clean up old movie frames
for filename in glob.glob(’tmp_*.png’):

os.remove(filename)

# Call solver and do the simulaton
user_action = plot_u if animate else None
u, x, t, cpu = solver_function(

I, V, f, c, L, dt, C, T, user_action)

# Make video files
fps = 4 # frames per second
codec2ext = dict(flv=’flv’, libx264=’mp4’, libvpx=’webm’,

libtheora=’ogg’) # video formats
filespec = ’tmp_%04d.png’
movie_program = ’ffmpeg’ # or ’avconv’
for codec in codec2ext:

ext = codec2ext[codec]
cmd = ’%(movie_program)s -r %(fps)d -i %(filespec)s ’\

’-vcodec %(codec)s movie.%(ext)s’ % vars()
os.system(cmd)

if tool == ’scitools’:
# Make an HTML play for showing the animation in a browser
plt.movie(’tmp_*.png’, encoder=’html’, fps=fps,

output_file=’movie.html’)
return cpu

Dissection of the code. The viz function can either use SciTools
or Matplotlib for visualizing the solution. The user_action function
based on SciTools is called plot_u_st, while the user_action function
based on Matplotlib is a bit more complicated as it is realized as a
class and needs statements that differ from those for making static
plots. SciTools can utilize both Matplotlib and Gnuplot (and many other
plotting programs) for doing the graphics, but Gnuplot is a relevant choice
for large Nx or in two-dimensional problems as Gnuplot is significantly
faster than Matplotlib for screen animations.

A function inside another function, like plot_u_st in the above code
segment, has access to and remembers all the local variables in the
surrounding code inside the viz function (!). This is known in computer
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science as a closure and is very convenient to program with. For example,
the plt and time modules defined outside plot_u are accessible for
plot_u_st when the function is called (as user_action) in the solver
function. Some may think, however, that a class instead of a closure is
a cleaner and easier-to-understand implementation of the user action
function, see Section 2.8.

The plot_u_st function just makes a standard SciTools plot com-
mand for plotting u as a function of x at time t[n]. To achieve a smooth
animation, the plot command should take keyword arguments instead
of being broken into separate calls to xlabel, ylabel, axis, time, and
show. Several plot calls will automatically cause an animation on the
screen. In addition, we want to save each frame in the animation to
file. We then need a filename where the frame number is padded with
zeros, here tmp_0000.png, tmp_0001.png, and so on. The proper printf
construction is then tmp_%04d.png. Section 1.3.2 contains more basic
information on making animations.

The solver is called with an argument plot_u as user_function.
If the user chooses to use SciTools, plot_u is the plot_u_st callback
function, but for Matplotlib it is an instance of the class PlotMatplotlib.
Also this class makes use of variables defined in the viz function: plt
and time. With Matplotlib, one has to make the first plot the standard
way, and then update the y data in the plot at every time level. The
update requires active use of the returned value from plt.plot in the
first plot. This value would need to be stored in a local variable if we
were to use a closure for the user_action function when doing the
animation with Matplotlib. It is much easier to store the variable as
a class attribute self.lines. Since the class is essentially a function,
we implement the function as the special method __call__ such that
the instance plot_u(u, x, t, n) can be called as a standard callback
function from solver.
Making movie files. From the frame_*.png files containing the frames
in the animation we can make video files. Section 1.3.2 presents basic
information on how to use the ffmpeg (or avconv) program for producing
video files in different modern formats: Flash, MP4, Webm, and Ogg.

The viz function creates an ffmpeg or avconv command with the
proper arguments for each of the formats Flash, MP4, WebM, and Ogg.
The task is greatly simplified by having a codec2ext dictionary for
mapping video codec names to filename extensions. As mentioned in
Section 1.3.2, only two formats are actually needed to ensure that all
browsers can successfully play the video: MP4 and WebM.
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Some animations having a large number of plot files may not be
properly combined into a video using ffmpeg or avconv. A method that
always works is to play the PNG files as an animation in a browser using
JavaScript code in an HTML file. The SciTools package has a function
movie (or a stand-alone command scitools movie) for creating such
an HTML player. The plt.movie call in the viz function shows how
the function is used. The file movie.html can be loaded into a browser
and features a user interface where the speed of the animation can be
controlled. Note that the movie in this case consists of the movie.html
file and all the frame files tmp_*.png.

Skipping frames for animation speed. Sometimes the time step is small
and T is large, leading to an inconveniently large number of plot files
and a slow animation on the screen. The solution to such a problem is
to decide on a total number of frames in the animation, num_frames,
and plot the solution only for every skip_frame frames. For example,
setting skip_frame=5 leads to plots of every 5 frames. The default value
skip_frame=1 plots every frame. The total number of time levels (i.e.,
maximum possible number of frames) is the length of t, t.size (or
len(t)), so if we want num_frames frames in the animation, we need to
plot every t.size/num_frames frames:

skip_frame = int(t.size/float(num_frames))
if n % skip_frame == 0 or n == t.size-1:

st.plot(x, u, ’r-’, ...)

The initial condition (n=0) is included by n % skip_frame == 0, as
well as every skip_frame-th frame. As n % skip_frame == 0 will very
seldom be true for the very final frame, we must also check if n ==
t.size-1 to get the final frame included.

A simple choice of numbers may illustrate the formulas: say we have
801 frames in total (t.size) and we allow only 60 frames to be plotted.
As n then runs from 801 to 0, we need to plot every 801/60 frame, which
with integer division yields 13 as skip_frame. Using the mod function,
n % skip_frame, this operation is zero every time n can be divided
by 13 without a remainder. That is, the if test is true when n equals
0, 13, 26, 39, ..., 780, 801. The associated code is included in the plot_u
function, inside the viz function, in the file wave1D_u0.py.

http://tinyurl.com/nu656p2/wave/wave1D/wave1D_u0.py
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2.3.6 Running a case

The first demo of our 1D wave equation solver concerns vibrations of a
string that is initially deformed to a triangular shape, like when picking
a guitar string:

I(x) =
{
ax/x0, x < x0,
a(L− x)/(L− x0), otherwise (2.33)

We choose L = 75 cm, x0 = 0.8L, a = 5 mm, and a time frequency
ν = 440 Hz. The relation between the wave speed c and ν is c = νλ, where
λ is the wavelength, taken as 2L because the longest wave on the string
forms half a wavelength. There is no external force, so f = 0 (meaning
we can neglect gravity), and the string is at rest initially, implying V = 0.

Regarding numerical parameters, we need to specify a ∆t. Sometimes
it is more natural to think of a spatial resolution instead of a time step. A
natural semi-coarse spatial resolution in the present problem is Nx = 50.
We can then choose the associated ∆t (as required by the viz and solver
functions) as the stability limit: ∆t = L/(Nxc). This is the ∆t to be
specified, but notice that if C < 1, the actual ∆x computed in solver
gets larger than L/Nx: ∆x = c∆t/C = L/(NxC). (The reason is that
we fix ∆t and adjust ∆x, so if C gets smaller, the code implements this
effect in terms of a larger ∆x.)

A function for setting the physical and numerical parameters and
calling viz in this application goes as follows:

def guitar(C):
"""Triangular wave (pulled guitar string)."""
L = 0.75
x0 = 0.8*L
a = 0.005
freq = 440
wavelength = 2*L
c = freq*wavelength
omega = 2*pi*freq
num_periods = 1
T = 2*pi/omega*num_periods
# Choose dt the same as the stability limit for Nx=50
dt = L/50./c

def I(x):
return a*x/x0 if x < x0 else a/(L-x0)*(L-x)

umin = -1.2*a; umax = -umin
cpu = viz(I, 0, 0, c, L, dt, C, T, umin, umax,

animate=True, tool=’scitools’)
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The associated program has the name wave1D_u0.py. Run the program
and watch the movie of the vibrating string. The string should ideally
consist of straight segments, but these are somewhat wavy due to nu-
merical approximation. Run the case with the wave1D_u0.py code and
C = 1 to see the exact solution.

2.3.7 Working with a scaled PDE model

Depending on the model, it may be a substantial job to establish consis-
tent and relevant physical parameter values for a case. The guitar string
example illustrates the point. However, by scaling the mathematical
problem we can often reduce the need to estimate physical parameters
dramatically. The scaling technique consists of introducing new indepen-
dent and dependent variables, with the aim that the absolute values of
these lie in [0, 1]. We introduce the dimensionless variables (details are
found in Section 3.1.1 in [11]

x̄ = x

L
, t̄ = c

L
t, ū = u

a
.

Here, L is a typical length scale, e.g., the length of the domain, and a
is a typical size of u, e.g., determined from the initial condition: a =
maxx |I(x)|.

We get by the chain rule that

∂u

∂t
= ∂

∂t̄
(aū) dt̄

dt
= ac

L

∂ū

∂t̄
.

Similarly,

∂u

∂x
= a

L

∂ū

∂x̄
.

Inserting the dimensionless variables in the PDE gives, in case f = 0,

a2c2

L2
∂2ū

∂t̄2
= a2c2

L2
∂2ū

∂x̄2 .

Dropping the bars, we arrive at the scaled PDE

∂2u

∂t2
= ∂2u

∂x2 , x ∈ (0, 1), t ∈ (0, cT/L), (2.34)

which has no parameter c2 anymore. The initial conditions are scaled as

http://tinyurl.com/nu656p2/wave/wave1D/wave1D_u0.py
http://tinyurl.com/pu5uyfn/pub/pub/wave/html/mov-wave/guitar_C0.8/movie.html
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aū(x̄, 0) = I(Lx̄)

and

a

L/c

∂ū

∂t̄
(x̄, 0) = V (Lx̄),

resulting in

ū(x̄, 0) = I(Lx̄)
maxx |I(x)| ,

∂ū

∂t̄
(x̄, 0) = L

ac
V (Lx̄) .

In the common case V = 0 we see that there are no physical parameters
to be estimated in the PDE model!

If we have a program implemented for the physical wave equation with
dimensions, we can obtain the dimensionless, scaled version by setting
c = 1. The initial condition of a guitar string, given in (2.33), gets its
scaled form by choosing a = 1, L = 1, and x0 ∈ [0, 1]. This means that
we only need to decide on the x0 value as a fraction of unity, because
the scaled problem corresponds to setting all other parameters to unity.
In the code we can just set a=c=L=1, x0=0.8, and there is no need to
calculate with wavelengths and frequencies to estimate c!

The only non-trivial parameter to estimate in the scaled problem is
the final end time of the simulation, or more precisely, how it relates to
periods in periodic solutions in time, since we often want to express the
end time as a certain number of periods. The period in the dimensionless
problem is 2, so the end time can be set to the desired number of periods
times 2.

Why the dimensionless period is 2 can be explained by the following
reasoning. Suppose that u behaves as cos(ωt) in time in the original
problem with dimensions. The corresponding period is then P = 2π/ω,
but we need to estimate ω. A typical solution of the wave equation is
u(x, t) = A cos(kx) cos(ωt), where A is an amplitude and k is related
to the wave length λ in space: λ = 2π/k. Both λ and A will be given
by the initial condition I(x). Inserting this u(x, t) in the PDE yields
−ω2 = −c2k2, i.e., ω = kc. The period is therefore P = 2π/(kc). If the
boundary conditions are u(0, t) = u(L, t), we need to have kL = nπ
for integer n. The period becomes P = 2L/nc. The longest period is
P = 2L/c. The dimensionless period P̃ is obtained by dividing P by
the time scale L/c, which results in P̃ = 2. Shorter waves in the initial
condition will have a dimensionless shorter period P̃ = 2/n (n > 1).
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2.4 Vectorization

The computational algorithm for solving the wave equation visits one
mesh point at a time and evaluates a formula for the new value un+1

i

at that point. Technically, this is implemented by a loop over array
elements in a program. Such loops may run slowly in Python (and similar
interpreted languages such as R and MATLAB). One technique for
speeding up loops is to perform operations on entire arrays instead of
working with one element at a time. This is referred to as vectorization,
vector computing, or array computing. Operations on whole arrays are
possible if the computations involving each element is independent of each
other and therefore can, at least in principle, be performed simultaneously.
That is, vectorization not only speeds up the code on serial computers,
but also makes it easy to exploit parallel computing. Actually, there are
Python tools like Numba that can automatically turn vectorized code
into parallel code.

2.4.1 Operations on slices of arrays

Efficient computing with numpy arrays demands that we avoid loops and
compute with entire arrays at once (or at least large portions of them).
Consider this calculation of differences di = ui+1 − ui:

n = u.size
for i in range(0, n-1):

d[i] = u[i+1] - u[i]

All the differences here are independent of each other. The computa-
tion of d can therefore alternatively be done by subtracting the array
(u0, un, . . . , un−1) from the array where the elements are shifted one index
upwards: (un, unm1, . . . , un), see Figure 2.3. The former subset of the
array can be expressed by u[0:n-1], u[0:-1], or just u[:-1], meaning
from index 0 up to, but not including, the last element (-1). The latter
subset is obtained by u[1:n] or u[1:], meaning from index 1 and the
rest of the array. The computation of d can now be done without an
explicit Python loop:

d = u[1:] - u[:-1]

or with explicit limits if desired:

d = u[1:n] - u[0:n-1]

http://numba.pydata.org
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Indices with a colon, going from an index to (but not including) another
index are called slices. With numpy arrays, the computations are still
done by loops, but in efficient, compiled, highly optimized C or Fortran
code. Such loops are sometimes referred to as vectorized loops. Such
loops can also easily be distributed among many processors on parallel
computers. We say that the scalar code above, working on an element
(a scalar) at a time, has been replaced by an equivalent vectorized code.
The process of vectorizing code is called vectorization.
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Fig. 2.3 Illustration of subtracting two slices of two arrays.

Test your understanding

Newcomers to vectorization are encouraged to choose a small array
u, say with five elements, and simulate with pen and paper both the
loop version and the vectorized version above.

Finite difference schemes basically contain differences between array
elements with shifted indices. As an example, consider the updating
formula

for i in range(1, n-1):
u2[i] = u[i-1] - 2*u[i] + u[i+1]

The vectorization consists of replacing the loop by arithmetics on slices
of arrays of length n-2:

u2 = u[:-2] - 2*u[1:-1] + u[2:]
u2 = u[0:n-2] - 2*u[1:n-1] + u[2:n] # alternative

Note that the length of u2 becomes n-2. If u2 is already an array of length
n and we want to use the formula to update all the “inner” elements of
u2, as we will when solving a 1D wave equation, we can write
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u2[1:-1] = u[:-2] - 2*u[1:-1] + u[2:]
u2[1:n-1] = u[0:n-2] - 2*u[1:n-1] + u[2:n] # alternative

The first expression’s right-hand side is realized by the following steps,
involving temporary arrays with intermediate results, since each array
operation can only involve one or two arrays. The numpy package performs
(behind the scenes) the first line above in four steps:

temp1 = 2*u[1:-1]
temp2 = u[:-2] - temp1
temp3 = temp2 + u[2:]
u2[1:-1] = temp3

We need three temporary arrays, but a user does not need to worry about
such temporary arrays.

Common mistakes with array slices

Array expressions with slices demand that the slices have the same
shape. It easy to make a mistake in, e.g.,

u2[1:n-1] = u[0:n-2] - 2*u[1:n-1] + u[2:n]

and write

u2[1:n-1] = u[0:n-2] - 2*u[1:n-1] + u[1:n]

Now u[1:n] has wrong length (n-1) compared to the other ar-
ray slices, causing a ValueError and the message could not
broadcast input array from shape 103 into shape 104 (if n
is 105). When such errors occur one must closely examine all the
slices. Usually, it is easier to get upper limits of slices right when
they use -1 or -2 or empty limit rather than expressions involving
the length.

Another common mistake is to forget the slice in the array on
the left-hand side,

u2 = u[0:n-2] - 2*u[1:n-1] + u[1:n]

This is really crucial: now u2 becomes a new array of length n-2,
which is the wrong length as we have no entries for the boundary
values. We meant to insert the right-hand side array into the original
u2 array for the entries that correspond to the internal points in
the mesh (1:n-1 or 1:-1).



140 2 Wave equations

Vectorization may also work nicely with functions. To illustrate, we
may extend the previous example as follows:

def f(x):
return x**2 + 1

for i in range(1, n-1):
u2[i] = u[i-1] - 2*u[i] + u[i+1] + f(x[i])

Assuming u2, u, and x all have length n, the vectorized version becomes

u2[1:-1] = u[:-2] - 2*u[1:-1] + u[2:] + f(x[1:-1])

Obviously, f must be able to take an array as argument for f(x[1:-1])
to make sense.

2.4.2 Finite difference schemes expressed as slices
We now have the necessary tools to vectorize the wave equation algo-
rithm as described mathematically in Section 2.1.5 and through code in
Section 2.3.2. There are three loops: one for the initial condition, one for
the first time step, and finally the loop that is repeated for all subsequent
time levels. Since only the latter is repeated a potentially large number
of times, we limit our vectorization efforts to this loop:

for i in range(1, Nx):
u[i] = 2*u_n[i] - u_nm1[i] + \

C2*(u_n[i-1] - 2*u_n[i] + u_n[i+1])

The vectorized version becomes

u[1:-1] = - u_nm1[1:-1] + 2*u_n[1:-1] + \
C2*(u_n[:-2] - 2*u_n[1:-1] + u_n[2:])

or

u[1:Nx] = 2*u_n[1:Nx]- u_nm1[1:Nx] + \
C2*(u_n[0:Nx-1] - 2*u_n[1:Nx] + u_n[2:Nx+1])

The program wave1D_u0v.py contains a new version of the function
solver where both the scalar and the vectorized loops are included (the
argument version is set to scalar or vectorized, respectively).

2.4.3 Verification
We may reuse the quadratic solution ue(x, t) = x(L − x)(1 + 1

2 t) for
verifying also the vectorized code. A test function can now verify both the

http://tinyurl.com/nu656p2/wave/wave1D/wave1D_u0v.py
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scalar and the vectorized version. Moreover, we may use a user_action
function that compares the computed and exact solution at each time
level and performs a test:

def test_quadratic():
"""
Check the scalar and vectorized versions for
a quadratic u(x,t)=x(L-x)(1+t/2) that is exactly reproduced.
"""
# The following function must work for x as array or scalar
u_exact = lambda x, t: x*(L - x)*(1 + 0.5*t)
I = lambda x: u_exact(x, 0)
V = lambda x: 0.5*u_exact(x, 0)
# f is a scalar (zeros_like(x) works for scalar x too)
f = lambda x, t: np.zeros_like(x) + 2*c**2*(1 + 0.5*t)

L = 2.5
c = 1.5
C = 0.75
Nx = 3 # Very coarse mesh for this exact test
dt = C*(L/Nx)/c
T = 18

def assert_no_error(u, x, t, n):
u_e = u_exact(x, t[n])
tol = 1E-13
diff = np.abs(u - u_e).max()
assert diff < tol

solver(I, V, f, c, L, dt, C, T,
user_action=assert_no_error, version=’scalar’)

solver(I, V, f, c, L, dt, C, T,
user_action=assert_no_error, version=’vectorized’)

Lambda functions
The code segment above demonstrates how to achieve very compact
code, without degraded readability, by use of lambda functions for
the various input parameters that require a Python function. In
essence,

f = lambda x, t: L*(x-t)**2

is equivalent to

def f(x, t):
return L(x-t)**2
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Note that lambda functions can just contain a single expression and
no statements.

One advantage with lambda functions is that they can be used
directly in calls:

solver(I=lambda x: sin(pi*x/L), V=0, f=0, ...)

2.4.4 Efficiency measurements

The wave1D_u0v.py contains our new solver function with both scalar
and vectorized code. For comparing the efficiency of scalar versus vector-
ized code, we need a viz function as discussed in Section 2.3.5. All of this
viz function can be reused, except the call to solver_function. This
call lacks the parameter version, which we want to set to vectorized
and scalar for our efficiency measurements.

One solution is to copy the viz code from wave1D_u0 into
wave1D_u0v.py and add a version argument to the solver_function
call. Taking into account how much animation code we then duplicate,
this is not a good idea. Alternatively, introducing the version argu-
ment in wave1D_u0.viz, so that this function can be imported into
wave1D_u0v.py, is not a good solution either, since version has no
meaning in that file. We need better ideas!
Solution 1. Calling viz in wave1D_u0 with solver_function as
our new solver in wave1D_u0v works fine, since this solver has
version=’vectorized’ as default value. The problem arises when
we want to test version=’scalar’. The simplest solution is then
to use wave1D_u0.solver instead. We make a new viz function in
wave1D_u0v.py that has a version argument and that just calls
wave1D_u0.viz:

def viz(
I, V, f, c, L, dt, C, T, # PDE parameters
umin, umax, # Interval for u in plots
animate=True, # Simulation with animation?
tool=’matplotlib’, # ’matplotlib’ or ’scitools’
solver_function=solver, # Function with numerical algorithm
version=’vectorized’, # ’scalar’ or ’vectorized’
):
import wave1D_u0
if version == ’vectorized’:

# Reuse viz from wave1D_u0, but with the present
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# modules’ new vectorized solver (which has
# version=’vectorized’ as default argument;
# wave1D_u0.viz does not feature this argument)
cpu = wave1D_u0.viz(

I, V, f, c, L, dt, C, T, umin, umax,
animate, tool, solver_function=solver)

elif version == ’scalar’:
# Call wave1D_u0.viz with a solver with
# scalar code and use wave1D_u0.solver.
cpu = wave1D_u0.viz(

I, V, f, c, L, dt, C, T, umin, umax,
animate, tool,
solver_function=wave1D_u0.solver)

Solution 2. There is a more advanced and fancier solution featuring
a very useful trick: we can make a new function that will always call
wave1D_u0v.solver with version=’scalar’. The functools.partial
function from standard Python takes a function func as argument and a
series of positional and keyword arguments and returns a new function
that will call func with the supplied arguments, while the user can
control all the other arguments in func. Consider a trivial example,

def f(a, b, c=2):
return a + b + c

We want to ensure that f is always called with c=3, i.e., f has only two
“free” arguments a and b. This functionality is obtained by

import functools
f2 = functools.partial(f, c=3)

print f2(1, 2) # results in 1+2+3=6

Now f2 calls f with whatever the user supplies as a and b, but c is
always 3.

Back to our viz code, we can do

import functools
# Call wave1D_u0.solver with version fixed to scalar
scalar_solver = functools.partial(wave1D_u0.solver, version=’scalar’)
cpu = wave1D_u0.viz(

I, V, f, c, L, dt, C, T, umin, umax,
animate, tool, solver_function=scalar_solver)

The new scalar_solver takes the same arguments as wave1D_u0.scalar
and calls wave1D_u0v.scalar, but always supplies the extra argu-
ment version=’scalar’. When sending this solver_function to
wave1D_u0.viz, the latter will call wave1D_u0v.solver with all the I,
V, f, etc., arguments we supply, plus version=’scalar’.
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Efficiency experiments. We now have a viz function that can call
our solver function both in scalar and vectorized mode. The function
run_efficiency_experiments in wave1D_u0v.py performs a set of ex-
periments and reports the CPU time spent in the scalar and vectorized
solver for the previous string vibration example with spatial mesh res-
olutions Nx = 50, 100, 200, 400, 800. Running this function reveals that
the vectorized code runs substantially faster: the vectorized code runs
approximately Nx/10 times as fast as the scalar code!

2.4.5 Remark on the updating of arrays

At the end of each time step we need to update the u_nm1 and u_n arrays
such that they have the right content for the next time step:

u_nm1[:] = u_n
u_n[:] = u

The order here is important: updating u_n first, makes u_nm1 equal to u,
which is wrong!

The assignment u_n[:] = u copies the content of the u array into
the elements of the u_n array. Such copying takes time, but that time
is negligible compared to the time needed for computing u from the
finite difference formula, even when the formula has a vectorized im-
plementation. However, efficiency of program code is a key topic when
solving PDEs numerically (particularly when there are two or three space
dimensions), so it must be mentioned that there exists a much more
efficient way of making the arrays u_nm1 and u_n ready for the next time
step. The idea is based on switching references and explained as follows.

A Python variable is actually a reference to some object (C program-
mers may think of pointers). Instead of copying data, we can let u_nm1
refer to the u_n object and u_n refer to the u object. This is a very
efficient operation (like switching pointers in C). A naive implementation
like

u_nm1 = u_n
u_n = u

will fail, however, because now u_nm1 refers to the u_n object, but then
the name u_n refers to u, so that this u object has two references, u_n
and u, while our third array, originally referred to by u_nm1, has no more
references and is lost. This means that the variables u, u_n, and u_nm1
refer to two arrays and not three. Consequently, the computations at the
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next time level will be messed up since updating the elements in u will
imply updating the elements in u_n too so the solution at the previous
time step, which is crucial in our formulas, is destroyed.

While u_nm1 = u_n is fine, u_n = u is problematic, so the solution
to this problem is to ensure that u points to the u_nm1 array. This is
mathematically wrong, but new correct values will be filled into u at the
next time step and make it right.

The correct switch of references is

tmp = u_nm1
u_nm1 = u_n
u_n = u
u = tmp

We can get rid of the temporary reference tmp by writing

u_nm1, u_n, u = u_n, u, u_nm1

This switching of references for updating our arrays will be used in later
implementations.

Caution:
The update u_nm1, u_n, u = u_n, u, u_nm1 leaves wrong con-
tent in u at the final time step. This means that if we return u, as
we do in the example codes here, we actually return u_nm1, which
is obviously wrong. It is therefore important to adjust the content
of u to u = u_n before returning u. (Note that the user_action
function reduces the need to return the solution from the solver.)

2.5 Exercises

Exercise 2.1: Simulate a standing wave
The purpose of this exercise is to simulate standing waves on [0, L] and
illustrate the error in the simulation. Standing waves arise from an initial
condition

u(x, 0) = A sin
(
π

L
mx

)
,

where m is an integer and A is a freely chosen amplitude. The corre-
sponding exact solution can be computed and reads
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ue(x, t) = A sin
(
π

L
mx

)
cos

(
π

L
mct

)
.

a) Explain that for a function sin kx cosωt the wave length in space is
λ = 2π/k and the period in time is P = 2π/ω. Use these expressions to
find the wave length in space and period in time of ue above.

b) Import the solver function from wave1D_u0.py into a new file where
the viz function is reimplemented such that it plots either the numerical
and the exact solution, or the error.

c) Make animations where you illustrate how the error eni = ue(xi, tn)−
uni develops and increases in time. Also make animations of u and ue
simultaneously.

Hint 1. Quite long time simulations are needed in order to display
significant discrepancies between the numerical and exact solution.

Hint 2. A possible set of parameters is L = 12, m = 9, c = 2, A = 1,
Nx = 80, C = 0.8. The error mesh function en can be simulated for 10
periods, while 20-30 periods are needed to show significant differences
between the curves for the numerical and exact solution.
Filename: wave_standing.

Remarks. The important parameters for numerical quality are C and
k∆x, where C = c∆t/∆x is the Courant number and k is defined above
(k∆x is proportional to how many mesh points we have per wave length
in space, see Section 2.10.4 for explanation).

Exercise 2.2: Add storage of solution in a user action function

Extend the plot_u function in the file wave1D_u0.py to also store the
solutions u in a list. To this end, declare all_u as an empty list in the
viz function, outside plot_u, and perform an append operation inside
the plot_u function. Note that a function, like plot_u, inside another
function, like viz, remembers all local variables in viz function, including
all_u, even when plot_u is called (as user_action) in the solver
function. Test both all_u.append(u) and all_u.append(u.copy()).
Why does one of these constructions fail to store the solution correctly?
Let the viz function return the all_u list converted to a two-dimensional
numpy array.
Filename: wave1D_u0_s_store.
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Exercise 2.3: Use a class for the user action function

Redo Exercise 2.2 using a class for the user action function. Let the all_u
list be an attribute in this class and implement the user action function
as a method (the special method __call__ is a natural choice). The
class versions avoid that the user action function depends on parameters
defined outside the function (such as all_u in Exercise 2.2).
Filename: wave1D_u0_s2c.

Exercise 2.4: Compare several Courant numbers in one movie

The goal of this exercise is to make movies where several curves, corre-
sponding to different Courant numbers, are visualized. Write a program
that resembles wave1D_u0_s2c.py in Exercise 2.3, but with a viz func-
tion that can take a list of C values as argument and create a movie
with solutions corresponding to the given C values. The plot_u function
must be changed to store the solution in an array (see Exercise 2.2 or 2.3
for details), solver must be computed for each value of the Courant
number, and finally one must run through each time step and plot all
the spatial solution curves in one figure and store it in a file.

The challenge in such a visualization is to ensure that the curves in
one plot correspond to the same time point. The easiest remedy is to
keep the time resolution constant and change the space resolution to
change the Courant number. Note that each spatial grid is needed for
the final plotting, so it is an option to store those grids too.
Filename: wave_numerics_comparison.

Exercise 2.5: Implementing the solver function as a generator

The callback function user_action(u, x, t, n) is called from the
solver function (in, e.g., wave1D_u0.py) at every time level and lets
the user work perform desired actions with the solution, like plotting it
on the screen. We have implemented the callback function in the typical
way it would have been done in C and Fortran. Specifically, the code
looks like

if user_action is not None:
if user_action(u, x, t, n):

break
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Many Python programmers, however, may claim that solver is an
iterative process, and that iterative processes with callbacks to the user
code is more elegantly implemented as generators. The rest of the text
has little meaning unless you are familiar with Python generators and
the yield statement.

Instead of calling user_action, the solver function issues a yield
statement, which is a kind of return statement:

yield u, x, t, n

The program control is directed back to the calling code:

for u, x, t, n in solver(...):
# Do something with u at t[n]

When the block is done, solver continues with the statement after
yield. Note that the functionality of terminating the solution process if
user_action returns a True value is not possible to implement in the
generator case.

Implement the solver function as a generator, and plot the solution
at each time step. Filename: wave1D_u0_generator.

Project 2.6: Calculus with 1D mesh functions

This project explores integration and differentiation of mesh functions,
both with scalar and vectorized implementations. We are given a mesh
function fi on a spatial one-dimensional mesh xi = i∆x, i = 0, . . . , Nx,
over the interval [a, b].

a) Define the discrete derivative of fi by using centered differences
at internal mesh points and one-sided differences at the end points.
Implement a scalar version of the computation in a Python function and
write an associated unit test for the linear case f(x) = 4x− 2.5 where
the discrete derivative should be exact.

b) Vectorize the implementation of the discrete derivative. Extend the
unit test to check the validity of the implementation.

c) To compute the discrete integral Fi of fi, we assume that the mesh
function fi varies linearly between the mesh points. Let f(x) be such a
linear interpolant of fi. We then have

Fi =
∫ xi

x0

f(x)dx .
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The exact integral of a piecewise linear function f(x) is given by the
Trapezoidal rule. Show that if Fi is already computed, we can find Fi+1
from

Fi+1 = Fi + 1
2(fi + fi+1)∆x .

Make a function for the scalar implementation of the discrete integral as
a mesh function. That is, the function should return Fi for i = 0, . . . , Nx.
For a unit test one can use the fact that the above defined discrete
integral of a linear function (say f(x) = 4x− 2.5) is exact.

d) Vectorize the implementation of the discrete integral. Extend the unit
test to check the validity of the implementation.

Hint. Interpret the recursive formula for Fi+1 as a sum. Make an array
with each element of the sum and use the "cumsum" (numpy.cumsum)
operation to compute the accumulative sum: numpy.cumsum([1,3,5])
is [1,4,9].

e) Create a class MeshCalculus that can integrate and differentiate
mesh functions. The class can just define some methods that call the
previously implemented Python functions. Here is an example on the
usage:

import numpy as np
calc = MeshCalculus(vectorized=True)
x = np.linspace(0, 1, 11) # mesh
f = np.exp(x) # mesh function
df = calc.differentiate(f, x) # discrete derivative
F = calc.integrate(f, x) # discrete anti-derivative

Filename: mesh_calculus_1D.

2.6 Generalization: reflecting boundaries

The boundary condition u = 0 in a wave equation reflects the wave, but
u changes sign at the boundary, while the condition ux = 0 reflects the
wave as a mirror and preserves the sign, see a web page or a movie file
for demonstration.

Our next task is to explain how to implement the boundary condition
ux = 0, which is more complicated to express numerically and also to
implement than a given value of u. We shall present two methods for
implementing ux = 0 in a finite difference scheme, one based on deriving

http://tinyurl.com/pu5uyfn/pub/pub/wave/html/mov-wave/demo_BC_gaussian/index.html
http://tinyurl.com/pu5uyfn/pub/pub/wave/html/mov-wave/demo_BC_gaussian/movie.flv
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a modified stencil at the boundary, and another one based on extending
the mesh with ghost cells and ghost points.

2.6.1 Neumann boundary condition
When a wave hits a boundary and is to be reflected back, one applies
the condition

∂u

∂n
≡ n · ∇u = 0 . (2.35)

The derivative ∂/∂n is in the outward normal direction from a general
boundary. For a 1D domain [0, L], we have that

∂

∂n

∣∣∣∣
x=L

= ∂

∂x

∣∣∣∣
x=L

,
∂

∂n

∣∣∣∣
x=0

= − ∂

∂x

∣∣∣∣
x=0

.

Boundary condition terminology

Boundary conditions that specify the value of ∂u/∂n (or shorter
un) are known as Neumann conditions, while Dirichlet conditions
refer to specifications of u. When the values are zero (∂u/∂n = 0
or u = 0) we speak about homogeneous Neumann or Dirichlet
conditions.

2.6.2 Discretization of derivatives at the boundary
How can we incorporate the condition (2.35) in the finite difference
scheme? Since we have used central differences in all the other approxi-
mations to derivatives in the scheme, it is tempting to implement (2.35)
at x = 0 and t = tn by the difference

[D2xu]n0 = un−1 − unn
2∆x = 0 . (2.36)

The problem is that un−1 is not a u value that is being computed since
the point is outside the mesh. However, if we combine (2.36) with the
scheme for i = 0,

un+1
i = −un−1

i + 2uni + C2 (uni+1 − 2uni + uni−1
)
, (2.37)

http://en.wikipedia.org/wiki/Neumann_boundary_condition
http://en.wikipedia.org/wiki/Dirichlet_conditions
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we can eliminate the fictitious value un−1. We see that un−1 = unn from
(2.36), which can be used in (2.37) to arrive at a modified scheme for the
boundary point un+1

0 :

un+1
i = −un−1

i + 2uni + 2C2 (uni+1 − uni
)
, i = 0 . (2.38)

Figure 2.4 visualizes this equation for computing u3
0 in terms of u2

0, u1
0,

and u2
1.
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Stencil at boundary point

Fig. 2.4 Modified stencil at a boundary with a Neumann condition.

Similarly, (2.35) applied at x = L is discretized by a central difference

unNx+1 − unNx−1
2∆x = 0 . (2.39)

Combined with the scheme for i = Nx we get a modified scheme for the
boundary value un+1

Nx
:

un+1
i = −un−1

i + 2uni + 2C2 (uni−1 − uni
)
, i = Nx . (2.40)

The modification of the scheme at the boundary is also required for the
special formula for the first time step. How the stencil moves through the
mesh and is modified at the boundary can be illustrated by an animation
in a web page or a movie file.

http://tinyurl.com/pu5uyfn/pub/pub/wave/html/mov-wave/N_stencil_gpl/index.html
http://tinyurl.com/pu5uyfn/pub/pub/wave/html/mov-wave/N_stencil_gpl/movie.ogg
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2.6.3 Implementation of Neumann conditions

We have seen in the preceding section that the special formulas for the
boundary points arise from replacing uni−1 by uni+1 when computing un+1

i

from the stencil formula for i = 0. Similarly, we replace uni+1 by uni−1
in the stencil formula for i = Nx. This observation can conveniently be
used in the coding: we just work with the general stencil formula, but
write the code such that it is easy to replace u[i-1] by u[i+1] and vice
versa. This is achieved by having the indices i+1 and i-1 as variables
ip1 (i plus 1) and im1 (i minus 1), respectively. At the boundary we
can easily define im1=i+1 while we use im1=i-1 in the internal parts
of the mesh. Here are the details of the implementation (note that the
updating formula for u[i] is the general stencil formula):

i = 0
ip1 = i+1
im1 = ip1 # i-1 -> i+1
u[i] = u_n[i] + C2*(u_n[im1] - 2*u_n[i] + u_n[ip1])

i = Nx
im1 = i-1
ip1 = im1 # i+1 -> i-1
u[i] = u_n[i] + C2*(u_n[im1] - 2*u_n[i] + u_n[ip1])

We can in fact create one loop over both the internal and boundary
points and use only one updating formula:

for i in range(0, Nx+1):
ip1 = i+1 if i < Nx else i-1
im1 = i-1 if i > 0 else i+1
u[i] = u_n[i] + C2*(u_n[im1] - 2*u_n[i] + u_n[ip1])

The program wave1D_n0.py contains a complete implementation of
the 1D wave equation with boundary conditions ux = 0 at x = 0 and
x = L.

It would be nice to modify the test_quadratic test case from the
wave1D_u0.py with Dirichlet conditions, described in Section 2.4.3. How-
ever, the Neumann conditions require the polynomial variation in the
x direction to be of third degree, which causes challenging problems
when designing a test where the numerical solution is known exactly.
Exercise 2.15 outlines ideas and code for this purpose. The only test in
wave1D_n0.py is to start with a plug wave at rest and see that the initial
condition is reached again perfectly after one period of motion, but such
a test requires C = 1 (so the numerical solution coincides with the exact
solution of the PDE, see Section 2.10.4).

http://tinyurl.com/nu656p2/wave/wave1D/wave1D_n0.py
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2.6.4 Index set notation

To improve our mathematical writing and our implementations, it is wise
to introduce a special notation for index sets. This means that we write
xi, followed by i ∈ Ix, instead of i = 0, . . . , Nx. Obviously, Ix must be
the index set Ix = {0, . . . , Nx}, but it is often advantageous to have a
symbol for this set rather than specifying all its elements (all the time,
as we have done up to now). This new notation saves writing and makes
specifications of algorithms and their implementation as computer code
simpler.

The first index in the set will be denoted I0
x and the last I−1

x . When
we need to skip the first element of the set, we use I+

x for the remaining
subset I+

x = {1, . . . , Nx}. Similarly, if the last element is to be dropped,
we write I−x = {0, . . . , Nx − 1} for the remaining indices. All the indices
corresponding to inner grid points are specified by Iix = {1, . . . , Nx − 1}.
For the time domain we find it natural to explicitly use 0 as the first
index, so we will usually write n = 0 and t0 rather than n = I0

t . We also
avoid notation like xI−1

x
and will instead use xi, i = I−1

x .
The Python code associated with index sets applies the following

conventions:

Notation Python
Ix Ix
I0
x Ix[0]
I−1
x Ix[-1]
I−x Ix[:-1]
I+
x Ix[1:]
Iix Ix[1:-1]

Why index sets are useful

An important feature of the index set notation is that it keeps our
formulas and code independent of how we count mesh points. For
example, the notation i ∈ Ix or i = I0

x remains the same whether
Ix is defined as above or as starting at 1, i.e., Ix = {1, . . . , Q}. Simi-
larly, we can in the code define Ix=range(Nx+1) or Ix=range(1,Q),
and expressions like Ix[0] and Ix[1:-1] remain correct. One ap-
plication where the index set notation is convenient is conversion of
code from a language where arrays has base index 0 (e.g., Python
and C) to languages where the base index is 1 (e.g., MATLAB
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and Fortran). Another important application is implementation of
Neumann conditions via ghost points (see next section).

For the current problem setting in the x, t plane, we work with the
index sets

Ix = {0, . . . , Nx}, It = {0, . . . , Nt}, (2.41)

defined in Python as

Ix = range(0, Nx+1)
It = range(0, Nt+1)

A finite difference scheme can with the index set notation be specified
as

un+1
i = uni −

1
2C

2 (uni+1 − 2uni + uni−1
)
, , i ∈ Iix, n = 0,

un+1
i = −un−1

i + 2uni + C2 (uni+1 − 2uni + uni−1
)
, i ∈ Iix, n ∈ Iit ,

un+1
i = 0, i = I0

x, n ∈ I−t ,
un+1
i = 0, i = I−1

x , n ∈ I−t .

The corresponding implementation becomes

# Initial condition
for i in Ix[1:-1]:

u[i] = u_n[i] - 0.5*C2*(u_n[i-1] - 2*u_n[i] + u_n[i+1])

# Time loop
for n in It[1:-1]:

# Compute internal points
for i in Ix[1:-1]:

u[i] = - u_nm1[i] + 2*u_n[i] + \
C2*(u_n[i-1] - 2*u_n[i] + u_n[i+1])

# Compute boundary conditions
i = Ix[0]; u[i] = 0
i = Ix[-1]; u[i] = 0

Notice
The program wave1D_dn.py applies the index set notation and
solves the 1D wave equation utt = c2uxx + f(x, t) with quite general
boundary and initial conditions:

http://tinyurl.com/nu656p2/wave/wave1D/wave1D_dn.py
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• x = 0: u = U0(t) or ux = 0
• x = L: u = UL(t) or ux = 0
• t = 0: u = I(x)
• t = 0: ut = V (x)

The program combines Dirichlet and Neumann conditions, scalar
and vectorized implementation of schemes, and the index set nota-
tion into one piece of code. A lot of test examples are also included
in the program:

• A rectangular plug-shaped initial condition. (For C = 1 the
solution will be a rectangle that jumps one cell per time step,
making the case well suited for verification.)

• A Gaussian function as initial condition.
• A triangular profile as initial condition, which resembles the

typical initial shape of a guitar string.
• A sinusoidal variation of u at x = 0 and either u = 0 or ux = 0

at x = L.
• An exact analytical solution u(x, t) = cos(mπt/L) sin(1

2mπx/L),
which can be used for convergence rate tests.

2.6.5 Verifying the implementation of Neumann conditions

How can we test that the Neumann conditions are correctly implemented?
The solver function in the wave1D_dn.py program described in the box
above accepts Dirichlet or Neumann conditions at x = 0 and x = L. It
is tempting to apply a quadratic solution as described in Sections 2.2.1
and 2.3.3, but it turns out that this solution is no longer an exact solution
of the discrete equations if a Neumann condition is implemented on the
boundary. A linear solution does not help since we only have homogeneous
Neumann conditions in wave1D_dn.py, and we are consequently left with
testing just a constant solution: u = const.

def test_constant():
"""
Check the scalar and vectorized versions for
a constant u(x,t). We simulate in [0, L] and apply
Neumann and Dirichlet conditions at both ends.
"""
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u_const = 0.45
u_exact = lambda x, t: u_const
I = lambda x: u_exact(x, 0)
V = lambda x: 0
f = lambda x, t: 0

def assert_no_error(u, x, t, n):
u_e = u_exact(x, t[n])
diff = np.abs(u - u_e).max()
msg = ’diff=%E, t_%d=%g’ % (diff, n, t[n])
tol = 1E-13
assert diff < tol, msg

for U_0 in (None, lambda t: u_const):
for U_L in (None, lambda t: u_const):

L = 2.5
c = 1.5
C = 0.75
Nx = 3 # Very coarse mesh for this exact test
dt = C*(L/Nx)/c
T = 18 # long time integration

solver(I, V, f, c, U_0, U_L, L, dt, C, T,
user_action=assert_no_error,
version=’scalar’)

solver(I, V, f, c, U_0, U_L, L, dt, C, T,
user_action=assert_no_error,
version=’vectorized’)

print U_0, U_L

The quadratic solution is very useful for testing, but it requires Dirichlet
conditions at both ends.

Another test may utilize the fact that the approximation error vanishes
when the Courant number is unity. We can, for example, start with a
plug profile as initial condition, let this wave split into two plug waves,
one in each direction, and check that the two plug waves come back and
form the initial condition again after “one period” of the solution process.
Neumann conditions can be applied at both ends. A proper test function
reads

def test_plug():
"""Check that an initial plug is correct back after one period."""
L = 1.0
c = 0.5
dt = (L/10)/c # Nx=10
I = lambda x: 0 if abs(x-L/2.0) > 0.1 else 1

u_s, x, t, cpu = solver(
I=I,
V=None, f=None, c=0.5, U_0=None, U_L=None, L=L,
dt=dt, C=1, T=4, user_action=None, version=’scalar’)
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u_v, x, t, cpu = solver(
I=I,
V=None, f=None, c=0.5, U_0=None, U_L=None, L=L,
dt=dt, C=1, T=4, user_action=None, version=’vectorized’)

tol = 1E-13
diff = abs(u_s - u_v).max()
assert diff < tol
u_0 = np.array([I(x_) for x_ in x])
diff = np.abs(u_s - u_0).max()
assert diff < tol

Other tests must rely on an unknown approximation error, so effectively
we are left with tests on the convergence rate.

2.6.6 Alternative implementation via ghost cells
Idea. Instead of modifying the scheme at the boundary, we can introduce
extra points outside the domain such that the fictitious values un−1
and unNx+1 are defined in the mesh. Adding the intervals [−∆x, 0] and
[L,L + ∆x], known as ghost cells, to the mesh gives us all the needed
mesh points, corresponding to i = −1, 0, . . . , Nx, Nx+1. The extra points
with i = −1 and i = Nx + 1 are known as ghost points, and values at
these points, un−1 and unNx+1, are called ghost values.

The important idea is to ensure that we always have

un−1 = un1 and unNx+1 = unNx−1,

because then the application of the standard scheme at a boundary
point i = 0 or i = Nx will be correct and guarantee that the solution is
compatible with the boundary condition ux = 0.

Some readers may find it strange to just extend the domain with
ghost cells as a general technique, because in some problems there is a
completely different medium with different physics and equations right
outside of a boundary. Nevertheless, one should view the ghost cell
technique as a purely mathematical technique, which is valid in the limit
∆xrightarrow0 and helps us to implement derivatives.
Implementation. The u array now needs extra elements corresponding
to the ghost points. Two new point values are needed:

u = zeros(Nx+3)

The arrays u_n and u_nm1 must be defined accordingly.
Unfortunately, a major indexing problem arises with ghost cells. The

reason is that Python indices must start at 0 and u[-1] will always mean
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the last element in u. This fact gives, apparently, a mismatch between
the mathematical indices i = −1, 0, . . . , Nx + 1 and the Python indices
running over u: 0,..,Nx+2. One remedy is to change the mathematical
indexing of i in the scheme and write

un+1
i = · · · , i = 1, . . . , Nx + 1,

instead of i = 0, . . . , Nx as we have previously used. The ghost points
now correspond to i = 0 and i = Nx + 1. A better solution is to use the
ideas of Section 2.6.4: we hide the specific index value in an index set and
operate with inner and boundary points using the index set notation.

To this end, we define u with proper length and Ix to be the corre-
sponding indices for the real physical mesh points (1, 2, . . . , Nx + 1):

u = zeros(Nx+3)
Ix = range(1, u.shape[0]-1)

That is, the boundary points have indices Ix[0] and Ix[-1] (as before).
We first update the solution at all physical mesh points (i.e., interior
points in the mesh):

for i in Ix:
u[i] = - u_nm1[i] + 2*u_n[i] + \

C2*(u_n[i-1] - 2*u_n[i] + u_n[i+1])

The indexing becomes a bit more complicated when we call functions
like V(x) and f(x, t), as we must remember that the appropriate x
coordinate is given as x[i-Ix[0]]:

for i in Ix:
u[i] = u_n[i] + dt*V(x[i-Ix[0]]) + \

0.5*C2*(u_n[i-1] - 2*u_n[i] + u_n[i+1]) + \
0.5*dt2*f(x[i-Ix[0]], t[0])

It remains to update the solution at ghost points, i.e, u[0] and u[-1]
(or u[Nx+2]). For a boundary condition ux = 0, the ghost value must
equal the value at the associated inner mesh point. Computer code makes
this statement precise:

i = Ix[0] # x=0 boundary
u[i-1] = u[i+1]
i = Ix[-1] # x=L boundary
u[i+1] = u[i-1]

The physical solution to be plotted is now in u[1:-1], or equivalently
u[Ix[0]:Ix[-1]+1], so this slice is the quantity to be returned from
a solver function. A complete implementation appears in the program
wave1D_n0_ghost.py.

http://tinyurl.com/nu656p2/wave/wave1D/wave1D_n0_ghost.py
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Warning

We have to be careful with how the spatial and temporal mesh
points are stored. Say we let x be the physical mesh points,

x = linspace(0, L, Nx+1)

"Standard coding" of the initial condition,

for i in Ix:
u_n[i] = I(x[i])

becomes wrong, since u_n and x have different lengths and the
index i corresponds to two different mesh points. In fact, x[i]
corresponds to u[1+i]. A correct implementation is

for i in Ix:
u_n[i] = I(x[i-Ix[0]])

Similarly, a source term usually coded as f(x[i], t[n]) is incorrect
if x is defined to be the physical points, so x[i] must be replaced
by x[i-Ix[0]].

An alternative remedy is to let x also cover the ghost points such
that u[i] is the value at x[i].

The ghost cell is only added to the boundary where we have a Neu-
mann condition. Suppose we have a Dirichlet condition at x = L and
a homogeneous Neumann condition at x = 0. One ghost cell [−∆x, 0]
is added to the mesh, so the index set for the physical points becomes
{1, . . . , Nx + 1}. A relevant implementation is

u = zeros(Nx+2)
Ix = range(1, u.shape[0])
...
for i in Ix[:-1]:

u[i] = - u_nm1[i] + 2*u_n[i] + \
C2*(u_n[i-1] - 2*u_n[i] + u_n[i+1]) + \
dt2*f(x[i-Ix[0]], t[n])

i = Ix[-1]
u[i] = U_0 # set Dirichlet value
i = Ix[0]
u[i-1] = u[i+1] # update ghost value

The physical solution to be plotted is now in u[1:] or (as always)
u[Ix[0]:Ix[-1]+1].
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2.7 Generalization: variable wave velocity

Our next generalization of the 1D wave equation (2.1) or (2.17) is to
allow for a variable wave velocity c: c = c(x), usually motivated by wave
motion in a domain composed of different physical media. When the
media differ in physical properties like density or porosity, the wave
velocity c is affected and will depend on the position in space. Figure 2.5
shows a wave propagating in one medium [0, 0.7] ∪ [0.9, 1] with wave
velocity c1 (left) before it enters a second medium (0.7, 0.9) with wave
velocity c2 (right). When the wave passes the boundary where c jumps
from c1 to c2, a part of the wave is reflected back into the first medium
(the reflected wave), while one part is transmitted through the second
medium (the transmitted wave).

Fig. 2.5 Left: wave entering another medium; right: transmitted and reflected wave.

2.7.1 The model PDE with a variable coefficient

Instead of working with the squared quantity c2(x), we shall for notational
convenience introduce q(x) = c2(x). A 1D wave equation with variable
wave velocity often takes the form

∂2u

∂t2
= ∂

∂x

(
q(x)∂u

∂x

)
+ f(x, t) . (2.42)

This is the most frequent form of a wave equation with variable wave
velocity, but other forms also appear, see Section 2.14.1 and equation
(2.125).

As usual, we sample (2.42) at a mesh point,
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∂2

∂t2
u(xi, tn) = ∂

∂x

(
q(xi)

∂

∂x
u(xi, tn)

)
+ f(xi, tn),

where the only new term to discretize is

∂

∂x

(
q(xi)

∂

∂x
u(xi, tn)

)
=
[
∂

∂x

(
q(x)∂u

∂x

)]n
i

.

2.7.2 Discretizing the variable coefficient

The principal idea is to first discretize the outer derivative. Define

φ = q(x)∂u
∂x
,

and use a centered derivative around x = xi for the derivative of φ:[
∂φ

∂x

]n
i

≈
φi+ 1

2
− φi− 1

2

∆x
= [Dxφ]ni .

Then discretize

φi+ 1
2

= qi+ 1
2

[
∂u

∂x

]n
i+ 1

2

≈ qi+ 1
2

uni+1 − uni
∆x

= [qDxu]ni+ 1
2
.

Similarly,

φi− 1
2

= qi− 1
2

[
∂u

∂x

]n
i− 1

2

≈ qi− 1
2

uni − uni−1
∆x

= [qDxu]ni− 1
2
.

These intermediate results are now combined to[
∂

∂x

(
q(x)∂u

∂x

)]n
i

≈ 1
∆x2

(
qi+ 1

2

(
uni+1 − uni

)
− qi− 1

2

(
uni − uni−1

))
.

(2.43)
With operator notation we can write the discretization as[

∂

∂x

(
q(x)∂u

∂x

)]n
i

≈ [Dx(qxDxu)]ni . (2.44)

Do not use the chain rule on the spatial derivative term!
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Many are tempted to use the chain rule on the term ∂
∂x

(
q(x)∂u∂x

)
,

but this is not a good idea when discretizing such a term.
The term with a variable coefficient expresses the net flux qux

into a small volume (i.e., interval in 1D):

∂

∂x

(
q(x)∂u

∂x

)
≈ 1
∆x

(q(x+∆x)ux(x+∆x)− q(x)ux(x)) .

Our discretization reflects this principle directly: qux at the right
end of the cell minus qux at the left end, because this follows from
the formula (2.43) or [Dx(qDxu)]ni .

When using the chain rule, we get two terms quxx + qxux. The
typical discretization is

DxqDxu+D2xqD2xu]ni , (2.45)

Writing this out shows that it is different from [Dx(qDxu)]ni and lacks
the physical interpretation of net flux into a cell. With a smooth and
slowly varying q(x) the differences between the two discretizations
are not substantial. However, when q exhibits (potentially large)
jumps, [Dx(qDxu)]ni with harmonic averaging of q yields a better
solution than arithmetic averaging or (2.45). In the literature, the
discretization [Dx(qDxu)]ni totally dominates and very few mention
the possibility of (2.45).

2.7.3 Computing the coefficient between mesh points

If q is a known function of x, we can easily evaluate qi+ 1
2
simply as

q(xi+ 1
2
) with xi+ 1

2
= xi + 1

2∆x. However, in many cases c, and hence
q, is only known as a discrete function, often at the mesh points xi.
Evaluating q between two mesh points xi and xi+1 must then be done
by interpolation techniques, of which three are of particular interest in
this context:
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qi+ 1
2
≈ 1

2 (qi + qi+1) = [qx]i (arithmetic mean) (2.46)

qi+ 1
2
≈ 2

( 1
qi

+ 1
qi+1

)−1
(harmonic mean) (2.47)

qi+ 1
2
≈ (qiqi+1)1/2 (geometric mean) (2.48)

The arithmetic mean in (2.46) is by far the most commonly used averaging
technique and is well suited for smooth q(x) functions. The harmonic
mean is often preferred when q(x) exhibits large jumps (which is typical
for geological media). The geometric mean is less used, but popular in
discretizations to linearize quadratic nonlinearities (see Section 1.10.2
for an example).

With the operator notation from (2.46) we can specify the discretiza-
tion of the complete variable-coefficient wave equation in a compact
way:

[DtDtu = Dxq
xDxu+ f ]ni . (2.49)

Strictly speaking, [Dxq
xDxu]ni = [Dx(qxDxu)]ni .

From the compact difference notation we immediately see what kind
of differences that each term is approximated with. The notation qx also
specifies that the variable coefficient is approximated by an arithmetic
mean, the definition being [qx]i+ 1

2
= (qi + qi+1)/2.

Before implementing, it remains to solve (2.49) with respect to un+1
i :

un+1
i = −un−1

i + 2uni +(
∆t

∆x

)2 (1
2(qi + qi+1)(uni+1 − uni )− 1

2(qi + qi−1)(uni − uni−1)
)

+

∆t2fni . (2.50)

2.7.4 How a variable coefficient affects the stability

The stability criterion derived in Section 2.10.3 reads ∆t ≤ ∆x/c. If
c = c(x), the criterion will depend on the spatial location. We must
therefore choose a ∆t that is small enough such that no mesh cell has
∆x/c(x) > ∆t. That is, we must use the largest c value in the criterion:

∆t ≤ β
∆x

maxx∈[0,L] c(x) . (2.51)



164 2 Wave equations

The parameter β is included as a safety factor: in some problems with a
significantly varying c it turns out that one must choose β < 1 to have
stable solutions (β = 0.9 may act as an all-round value).

A different strategy to handle the stability criterion with variable wave
velocity is to use a spatially varying ∆t. While the idea is mathemati-
cally attractive at first sight, the implementation quickly becomes very
complicated, so we stick to a constant ∆t and a worst case value of c(x)
(with a safety factor β).

2.7.5 Neumann condition and a variable coefficient

Consider a Neumann condition ∂u/∂x = 0 at x = L = Nx∆x, discretized
as

[D2xu]ni = uni+1 − uni−1
2∆x = 0 ⇒ uni+1 = uni−1,

for i = Nx. Using the scheme (2.50) at the end point i = Nx with
uni+1 = uni−1 results in

un+1
i = −un−1

i + 2uni +(
∆t

∆x

)2 (
qi+ 1

2
(uni−1 − uni )− qi− 1

2
(uni − uni−1)

)
+∆t2fni (2.52)

= −un−1
i + 2uni +

(
∆t

∆x

)2
(qi+ 1

2
+ qi− 1

2
)(uni−1 − uni ) +∆t2fni

(2.53)

≈ −un−1
i + 2uni +

(
∆t

∆x

)2
2qi(uni−1 − uni ) +∆t2fni . (2.54)

Here we used the approximation
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qi+ 1
2

+ qi− 1
2

= qi +
(
dq

dx

)
i

∆x+
(
d2q

dx2

)
i

∆x2 + · · ·+

qi −
(
dq

dx

)
i

∆x+
(
d2q

dx2

)
i

∆x2 + · · ·

= 2qi + 2
(
d2q

dx2

)
i

∆x2 +O(∆x4)

≈ 2qi . (2.55)

An alternative derivation may apply the arithmetic mean of qn− 1
2
and

qn+ 1
2
in (2.53), leading to the term

(qi + 1
2(qi+1 + qi−1))(uni−1 − uni ) .

Since 1
2(qi+1+qi−1) = qi+O(∆x2), we can approximate with 2qi(uni−1−uni )

for i = Nx and get the same term as we did above.
A common technique when implementing ∂u/∂x = 0 boundary con-

ditions, is to assume dq/dx = 0 as well. This implies qi+1 = qi−1 and
qi+1/2 = qi−1/2 for i = Nx. The implications for the scheme are

un+1
i = −un−1

i + 2uni +(
∆t

∆x

)2 (
qi+ 1

2
(uni−1 − uni )− qi− 1

2
(uni − uni−1)

)
+

∆t2fni (2.56)

= −un−1
i + 2uni +

(
∆t

∆x

)2
2qi− 1

2
(uni−1 − uni ) +∆t2fni . (2.57)

2.7.6 Implementation of variable coefficients

The implementation of the scheme with a variable wave velocity q(x) =
c2(x) may assume that q is available as an array q[i] at the spatial mesh
points. The following loop is a straightforward implementation of the
scheme (2.50):

for i in range(1, Nx):
u[i] = - u_nm1[i] + 2*u_n[i] + \

C2*(0.5*(q[i] + q[i+1])*(u_n[i+1] - u_n[i]) - \
0.5*(q[i] + q[i-1])*(u_n[i] - u_n[i-1])) + \

dt2*f(x[i], t[n])
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The coefficient C2 is now defined as (dt/dx)**2, i.e., not as the squared
Courant number, since the wave velocity is variable and appears inside
the parenthesis.

With Neumann conditions ux = 0 at the boundary, we need to combine
this scheme with the discrete version of the boundary condition, as shown
in Section 2.7.5. Nevertheless, it would be convenient to reuse the formula
for the interior points and just modify the indices ip1=i+1 and im1=i-1
as we did in Section 2.6.3. Assuming dq/dx = 0 at the boundaries, we
can implement the scheme at the boundary with the following code.

i = 0
ip1 = i+1
im1 = ip1
u[i] = - u_nm1[i] + 2*u_n[i] + \

C2*(0.5*(q[i] + q[ip1])*(u_n[ip1] - u_n[i]) - \
0.5*(q[i] + q[im1])*(u_n[i] - u_n[im1])) + \

dt2*f(x[i], t[n])

With ghost cells we can just reuse the formula for the interior points
also at the boundary, provided that the ghost values of both u and q are
correctly updated to ensure ux = 0 and qx = 0.

A vectorized version of the scheme with a variable coefficient at internal
mesh points becomes

u[1:-1] = - u_nm1[1:-1] + 2*u_n[1:-1] + \
C2*(0.5*(q[1:-1] + q[2:])*(u_n[2:] - u_n[1:-1]) -

0.5*(q[1:-1] + q[:-2])*(u_n[1:-1] - u_n[:-2])) + \
dt2*f(x[1:-1], t[n])

2.7.7 A more general PDE model with variable coefficients
Sometimes a wave PDE has a variable coefficient in front of the time-
derivative term:

%(x)∂
2u

∂t2
= ∂

∂x

(
q(x)∂u

∂x

)
+ f(x, t) . (2.58)

One example appears when modeling elastic waves in a rod with varying
density, cf. (2.14.1) with %(x).

A natural scheme for (2.58) is

[%DtDtu = Dxq
xDxu+ f ]ni . (2.59)

We realize that the % coefficient poses no particular difficulty, since %
enters the formula just as a simple factor in front of a derivative. There
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is hence no need for any averaging of %. Often, % will be moved to the
right-hand side, also without any difficulty:

[DtDtu = %−1Dxq
xDxu+ f ]ni . (2.60)

2.7.8 Generalization: damping

Waves die out by two mechanisms. In 2D and 3D the energy of the wave
spreads out in space, and energy conservation then requires the amplitude
to decrease. This effect is not present in 1D. Damping is another cause
of amplitude reduction. For example, the vibrations of a string die out
because of damping due to air resistance and non-elastic effects in the
string.

The simplest way of including damping is to add a first-order derivative
to the equation (in the same way as friction forces enter a vibrating
mechanical system):

∂2u

∂t2
+ b

∂u

∂t
= c2∂

2u

∂x2 + f(x, t), (2.61)

where b ≥ 0 is a prescribed damping coefficient.
A typical discretization of (2.61) in terms of centered differences reads

[DtDtu+ bD2tu = c2DxDxu+ f ]ni . (2.62)

Writing out the equation and solving for the unknown un+1
i gives the

scheme

un+1
i = (1+1

2b∆t)
−1((1

2b∆t−1)un−1
i +2uni +C2 (uni+1 − 2uni + uni−1

)
+∆t2fni ),
(2.63)

for i ∈ Iix and n ≥ 1. New equations must be derived for u1
i , and for

boundary points in case of Neumann conditions.
The damping is very small in many wave phenomena and thus only

evident for very long time simulations. This makes the standard wave
equation without damping relevant for a lot of applications.
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2.8 Building a general 1D wave equation solver

The program wave1D_dn_vc.py is a fairly general code for 1D wave
propagation problems that targets the following initial-boundary value
problem

utt = (c2(x)ux)x + f(x, t), x ∈ (0, L), t ∈ (0, T ] (2.64)
u(x, 0) = I(x), x ∈ [0, L] (2.65)
ut(x, 0) = V (t), x ∈ [0, L] (2.66)
u(0, t) = U0(t) or ux(0, t) = 0, t ∈ (0, T ] (2.67)
u(L, t) = UL(t) or ux(L, t) = 0, t ∈ (0, T ] (2.68)

The only new feature here is the time-dependent Dirichlet conditions.
These are trivial to implement:

i = Ix[0] # x=0
u[i] = U_0(t[n+1])

i = Ix[-1] # x=L
u[i] = U_L(t[n+1])

The solver function is a natural extension of the simplest solver
function in the initial wave1D_u0.py program, extended with Neumann
boundary conditions (ux = 0), time-varying Dirichlet conditions, as well
as a variable wave velocity. The different code segments needed to make
these extensions have been shown and commented upon in the preceding
text. We refer to the solver function in the wave1D_dn_vc.py file for all
the details. Note in that solver function, however, that the technique
of “hashing” is used to check whether a certain simulation has been run
before, or not. This technique is further explained in Section C.2.3.

The vectorization is only applied inside the time loop, not for the
initial condition or the first time steps, since this initial work is negligible
for long time simulations in 1D problems.

The following sections explain various more advanced programming
techniques applied in the general 1D wave equation solver.

2.8.1 User action function as a class

A useful feature in the wave1D_dn_vc.py program is the specification of
the user_action function as a class. This part of the program may need

http://tinyurl.com/nu656p2/wave/wave1D/wave1D_dn_vc.py
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some motivation and explanation. Although the plot_u_st function (and
the PlotMatplotlib class) in the wave1D_u0.viz function remembers
the local variables in the viz function, it is a cleaner solution to store
the needed variables together with the function, which is exactly what a
class offers.

The code. A class for flexible plotting, cleaning up files, making movie
files, like the function wave1D_u0.viz did, can be coded as follows:

class PlotAndStoreSolution:
"""
Class for the user_action function in solver.
Visualizes the solution only.
"""
def __init__(

self,
casename=’tmp’, # Prefix in filenames
umin=-1, umax=1, # Fixed range of y axis
pause_between_frames=None, # Movie speed
backend=’matplotlib’, # or ’gnuplot’ or None
screen_movie=True, # Show movie on screen?
title=’’, # Extra message in title
skip_frame=1, # Skip every skip_frame frame
filename=None): # Name of file with solutions
self.casename = casename
self.yaxis = [umin, umax]
self.pause = pause_between_frames
self.backend = backend
if backend is None:

# Use native matplotlib
import matplotlib.pyplot as plt

elif backend in (’matplotlib’, ’gnuplot’):
module = ’scitools.easyviz.’ + backend + ’_’
exec(’import %s as plt’ % module)

self.plt = plt
self.screen_movie = screen_movie
self.title = title
self.skip_frame = skip_frame
self.filename = filename
if filename is not None:

# Store time points when u is written to file
self.t = []
filenames = glob.glob(’.’ + self.filename + ’*.dat.npz’)
for filename in filenames:

os.remove(filename)

# Clean up old movie frames
for filename in glob.glob(’frame_*.png’):

os.remove(filename)

def __call__(self, u, x, t, n):
"""
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Callback function user_action, call by solver:
Store solution, plot on screen and save to file.
"""
# Save solution u to a file using numpy.savez
if self.filename is not None:

name = ’u%04d’ % n # array name
kwargs = {name: u}
fname = ’.’ + self.filename + ’_’ + name + ’.dat’
np.savez(fname, **kwargs)
self.t.append(t[n]) # store corresponding time value
if n == 0: # save x once

np.savez(’.’ + self.filename + ’_x.dat’, x=x)

# Animate
if n % self.skip_frame != 0:

return
title = ’t=%.3f’ % t[n]
if self.title:

title = self.title + ’ ’ + title
if self.backend is None:

# native matplotlib animation
if n == 0:

self.plt.ion()
self.lines = self.plt.plot(x, u, ’r-’)
self.plt.axis([x[0], x[-1],

self.yaxis[0], self.yaxis[1]])
self.plt.xlabel(’x’)
self.plt.ylabel(’u’)
self.plt.title(title)
self.plt.legend([’t=%.3f’ % t[n]])

else:
# Update new solution
self.lines[0].set_ydata(u)
self.plt.legend([’t=%.3f’ % t[n]])
self.plt.draw()

else:
# scitools.easyviz animation
self.plt.plot(x, u, ’r-’,

xlabel=’x’, ylabel=’u’,
axis=[x[0], x[-1],

self.yaxis[0], self.yaxis[1]],
title=title,
show=self.screen_movie)

# pause
if t[n] == 0:

time.sleep(2) # let initial condition stay 2 s
else:

if self.pause is None:
pause = 0.2 if u.size < 100 else 0

time.sleep(pause)

self.plt.savefig(’frame_%04d.png’ % (n))
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Dissection. Understanding this class requires quite some familiarity
with Python in general and class programming in particular. The
class supports plotting with Matplotlib (backend=None) or SciTools
(backend=matplotlib or backend=gnuplot) for maximum flexibility.

The constructor shows how we can flexibly import the
plotting engine as (typically) scitools.easyviz.gnuplot_ or
scitools.easyviz.matplotlib_ (note the trailing underscore - it
is required). With the screen_movie parameter we can suppress dis-
playing each movie frame on the screen. Alternatively, for slow movies
associated with fine meshes, one can set skip_frame=10, causing every
10 frames to be shown.

The __call__ method makes PlotAndStoreSolution instances be-
have like functions, so we can just pass an instance, say p, as
the user_action argument in the solver function, and any call to
user_action will be a call to p.__call__. The __call__ method plots
the solution on the screen, saves the plot to file, and stores the solution
in a file for later retrieval.

More details on storing the solution in files appear in Section C.2.

2.8.2 Pulse propagation in two media

The function pulse in wave1D_dn_vc.py demonstrates wave motion in
heterogeneous media where c varies. One can specify an interval where the
wave velocity is decreased by a factor slowness_factor (or increased by
making this factor less than one). Figure 2.5 shows a typical simulation
scenario.

Four types of initial conditions are available:

1. a rectangular pulse (plug),
2. a Gaussian function (gaussian),
3. a “cosine hat” consisting of one period of the cosine function

(cosinehat),
4. half a period of a “cosine hat” (half-cosinehat)

These peak-shaped initial conditions can be placed in the middle
(loc=’center’) or at the left end (loc=’left’) of the domain. With
the pulse in the middle, it splits in two parts, each with half the initial
amplitude, traveling in opposite directions. With the pulse at the left
end, centered at x = 0, and using the symmetry condition ∂u/∂x = 0,
only a right-going pulse is generated. There is also a left-going pulse, but
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it travels from x = 0 in negative x direction and is not visible in the
domain [0, L].

The pulse function is a flexible tool for playing around with various
wave shapes and jumps in the wave velocity (i.e., discontinuous media).
The code is shown to demonstrate how easy it is to reach this flexibility
with the building blocks we have already developed:

def pulse(
C=1, # Maximum Courant number
Nx=200, # spatial resolution
animate=True,
version=’vectorized’,
T=2, # end time
loc=’left’, # location of initial condition
pulse_tp=’gaussian’, # pulse/init.cond. type
slowness_factor=2, # inverse of wave vel. in right medium
medium=[0.7, 0.9], # interval for right medium
skip_frame=1, # skip frames in animations
sigma=0.05 # width measure of the pulse
):
"""
Various peaked-shaped initial conditions on [0,1].
Wave velocity is decreased by the slowness_factor inside
medium. The loc parameter can be ’center’ or ’left’,
depending on where the initial pulse is to be located.
The sigma parameter governs the width of the pulse.
"""
# Use scaled parameters: L=1 for domain length, c_0=1
# for wave velocity outside the domain.
L = 1.0
c_0 = 1.0
if loc == ’center’:

xc = L/2
elif loc == ’left’:

xc = 0

if pulse_tp in (’gaussian’,’Gaussian’):
def I(x):

return np.exp(-0.5*((x-xc)/sigma)**2)
elif pulse_tp == ’plug’:

def I(x):
return 0 if abs(x-xc) > sigma else 1

elif pulse_tp == ’cosinehat’:
def I(x):

# One period of a cosine
w = 2
a = w*sigma
return 0.5*(1 + np.cos(np.pi*(x-xc)/a)) \

if xc - a <= x <= xc + a else 0

elif pulse_tp == ’half-cosinehat’:
def I(x):
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# Half a period of a cosine
w = 4
a = w*sigma
return np.cos(np.pi*(x-xc)/a) \

if xc - 0.5*a <= x <= xc + 0.5*a else 0
else:

raise ValueError(’Wrong pulse_tp="%s"’ % pulse_tp)

def c(x):
return c_0/slowness_factor \

if medium[0] <= x <= medium[1] else c_0

umin=-0.5; umax=1.5*I(xc)
casename = ’%s_Nx%s_sf%s’ % \

(pulse_tp, Nx, slowness_factor)
action = PlotMediumAndSolution(

medium, casename=casename, umin=umin, umax=umax,
skip_frame=skip_frame, screen_movie=animate,
backend=None, filename=’tmpdata’)

# Choose the stability limit with given Nx, worst case c
# (lower C will then use this dt, but smaller Nx)
dt = (L/Nx)/c_0
cpu, hashed_input = solver(

I=I, V=None, f=None, c=c,
U_0=None, U_L=None,
L=L, dt=dt, C=C, T=T,
user_action=action,
version=version,
stability_safety_factor=1)

if cpu > 0: # did we generate new data?
action.close_file(hashed_input)
action.make_movie_file()

print ’cpu (-1 means no new data generated):’, cpu

def convergence_rates(
u_exact,
I, V, f, c, U_0, U_L, L,
dt0, num_meshes,
C, T, version=’scalar’,
stability_safety_factor=1.0):
"""
Half the time step and estimate convergence rates for
for num_meshes simulations.
"""
class ComputeError:

def __init__(self, norm_type):
self.error = 0

def __call__(self, u, x, t, n):
"""Store norm of the error in self.E."""
error = np.abs(u - u_exact(x, t[n])).max()
self.error = max(self.error, error)
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E = []
h = [] # dt, solver adjusts dx such that C=dt*c/dx
dt = dt0
for i in range(num_meshes):

error_calculator = ComputeError(’Linf’)
solver(I, V, f, c, U_0, U_L, L, dt, C, T,

user_action=error_calculator,
version=’scalar’,
stability_safety_factor=1.0)

E.append(error_calculator.error)
h.append(dt)
dt /= 2 # halve the time step for next simulation

print ’E:’, E
print ’h:’, h
r = [np.log(E[i]/E[i-1])/np.log(h[i]/h[i-1])

for i in range(1,num_meshes)]
return r

def test_convrate_sincos():
n = m = 2
L = 1.0
u_exact = lambda x, t: np.cos(m*np.pi/L*t)*np.sin(m*np.pi/L*x)

r = convergence_rates(
u_exact=u_exact,
I=lambda x: u_exact(x, 0),
V=lambda x: 0,
f=0,
c=1,
U_0=0,
U_L=0,
L=L,
dt0=0.1,
num_meshes=6,
C=0.9,
T=1,
version=’scalar’,
stability_safety_factor=1.0)

print ’rates sin(x)*cos(t) solution:’, \
[round(r_,2) for r_ in r]

assert abs(r[-1] - 2) < 0.002

The PlotMediumAndSolution class used here is a subclass of
PlotAndStoreSolution where the medium with reduced c value,
as specified by the medium interval, is visualized in the plots.

Comment on the choices of discretization parameters
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The argument Nx in the pulse function does not correspond to
the actual spatial resolution of C < 1, since the solver function
takes a fixed ∆t and C, and adjusts ∆x accordingly. As seen in the
pulse function, the specified ∆t is chosen according to the limit
C = 1, so if C < 1, ∆t remains the same, but the solver function
operates with a larger ∆x and smaller Nx than was specified in the
call to pulse. The practical reason is that we always want to keep
∆t fixed such that plot frames and movies are synchronized in time
regardless of the value of C (i.e., ∆x is varied when the Courant
number varies).

The reader is encouraged to play around with the pulse function:

>>> import wave1D_dn_vc as w
>>> w.pulse(Nx=50, loc=’left’, pulse_tp=’cosinehat’, slowness_factor=2)

To easily kill the graphics by Ctrl-C and restart a new simulation it
might be easier to run the above two statements from the command line
with

Terminal

Terminal> python -c ’import wave1D_dn_vc as w; w.pulse(...)’

2.9 Exercises

Exercise 2.7: Find the analytical solution to a damped wave
equation

Consider the wave equation with damping (2.61). The goal is to find an
exact solution to a wave problem with damping and zero source term. A
starting point is the standing wave solution from Exercise 2.1. It becomes
necessary to include a damping term e−βt and also have both a sine and
cosine component in time:

ue(x, t) = e−βt sin kx (A cosωt+B sinωt) .

Find k from the boundary conditions u(0, t) = u(L, t) = 0. Then use
the PDE to find constraints on β, ω, A, and B. Set up a complete
initial-boundary value problem and its solution.
Filename: damped_waves.
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Problem 2.8: Explore symmetry boundary conditions

Consider the simple "plug" wave where Ω = [−L,L] and

I(x) =
{

1, x ∈ [−δ, δ],
0, otherwise

for some number 0 < δ < L. The other initial condition is ut(x, 0) = 0
and there is no source term f . The boundary conditions can be set to
u = 0. The solution to this problem is symmetric around x = 0. This
means that we can simulate the wave process in only the half of the
domain [0, L].

a) Argue why the symmetry boundary condition is ux = 0 at x = 0.

Hint. Symmetry of a function about x = x0 means that f(x0 + h) =
f(x0 − h).

b) Perform simulations of the complete wave problem on [−L,L]. There-
after, utilize the symmetry of the solution and run a simulation in half of
the domain [0, L], using a boundary condition at x = 0. Compare plots
from the two solutions and confirm that they are the same.

c) Prove the symmetry property of the solution by setting up the
complete initial-boundary value problem and showing that if u(x, t) is a
solution, then also u(−x, t) is a solution.

d) If the code works correctly, the solution u(x, t) = x(L − x)(1 + t
2)

should be reproduced exactly. Write a test function test_quadratic
that checks whether this is the case. Simulate for x in [0, L2 ] with a
symmetry condition at the end x = L

2 .
Filename: wave1D_symmetric.

Exercise 2.9: Send pulse waves through a layered medium

Use the pulse function in wave1D_dn_vc.py to investigate sending a
pulse, located with its peak at x = 0, through two media with different
wave velocities. The (scaled) velocity in the left medium is 1 while it is
1
sf

in the right medium. Report what happens with a Gaussian pulse,
a “cosine hat” pulse, half a “cosine hat” pulse, and a plug pulse for
resolutions Nx = 40, 80, 160, and sf = 2, 4. Simulate until T = 2.
Filename: pulse1D.
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Exercise 2.10: Explain why numerical noise occurs

The experiments performed in Exercise 2.9 shows considerable numerical
noise in the form of non-physical waves, especially for sf = 4 and
the plug pulse or the half a “cosinehat” pulse. The noise is much less
visible for a Gaussian pulse. Run the case with the plug and half a
“cosinehat” pulses for sf = 1, C = 0.9, 0.25, and Nx = 40, 80, 160. Use
the numerical dispersion relation to explain the observations. Filename:
pulse1D_analysis.

Exercise 2.11: Investigate harmonic averaging in a 1D model

Harmonic means are often used if the wave velocity is non-smooth
or discontinuous. Will harmonic averaging of the wave velocity give
less numerical noise for the case sf = 4 in Exercise 2.9? Filename:
pulse1D_harmonic.

Problem 2.12: Implement open boundary conditions

To enable a wave to leave the computational domain and travel undis-
turbed through the boundary x = L, one can in a one-dimensional
problem impose the following condition, called a radiation condition or
open boundary condition:

∂u

∂t
+ c

∂u

∂x
= 0 . (2.69)

The parameter c is the wave velocity.
Show that (2.69) accepts a solution u = gR(x− ct) (right-going wave),

but not u = gL(x + ct) (left-going wave). This means that (2.69) will
allow any right-going wave gR(x − ct) to pass through the boundary
undisturbed.

A corresponding open boundary condition for a left-going wave through
x = 0 is

∂u

∂t
− c∂u

∂x
= 0 . (2.70)

a) A natural idea for discretizing the condition (2.69) at the spatial end
point i = Nx is to apply centered differences in time and space:
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[D2tu+ cD2xu = 0]ni , i = Nx . (2.71)

Eliminate the fictitious value unNx+1 by using the discrete equation at the
same point.

The equation for the first step, u1
i , is in principle also affected, but we

can then use the condition uNx = 0 since the wave has not yet reached
the right boundary.
b) A much more convenient implementation of the open boundary
condition at x = L can be based on an explicit discretization

[D+
t u+ cD−x u = 0]ni , i = Nx . (2.72)

From this equation, one can solve for un+1
Nx

and apply the formula as a
Dirichlet condition at the boundary point. However, the finite difference
approximations involved are of first order.

Implement this scheme for a wave equation utt = c2uxx in a domain
[0, L], where you have ux = 0 at x = 0, the condition (2.69) at x = L,
and an initial disturbance in the middle of the domain, e.g., a plug profile
like

u(x, 0) =
{

1, L/2− ` ≤ x ≤ L/2 + `,
0, otherwise

Observe that the initial wave is split in two, the left-going wave is reflected
at x = 0, and both waves travel out of x = L, leaving the solution as
u = 0 in [0, L]. Use a unit Courant number such that the numerical
solution is exact. Make a movie to illustrate what happens.

Because this simplified implementation of the open boundary condition
works, there is no need to pursue the more complicated discretization in
a).
Hint. Modify the solver function in wave1D_dn.py.
c) Add the possibility to have either ux = 0 or an open boundary
condition at the left boundary. The latter condition is discretized as

[D+
t u− cD+

x u = 0]ni , i = 0, (2.73)

leading to an explicit update of the boundary value un+1
0 .

The implementation can be tested with a Gaussian function as initial
condition:

g(x;m, s) = 1√
2πs

e−
(x−m)2

2s2 .

http://tinyurl.com/nu656p2/wave/wave1D/wave1D_dn.py
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Run two tests:

1. Disturbance in the middle of the domain, I(x) = g(x;L/2, s), and
open boundary condition at the left end.

2. Disturbance at the left end, I(x) = g(x; 0, s), and ux = 0 as symmetry
boundary condition at this end.

Make test functions for both cases, testing that the solution is zero after
the waves have left the domain.

d) In 2D and 3D it is difficult to compute the correct wave velocity
normal to the boundary, which is needed in generalizations of the open
boundary conditions in higher dimensions. Test the effect of having a
slightly wrong wave velocity in (2.72). Make movies to illustrate what
happens.
Filename: wave1D_open_BC.

Remarks. The condition (2.69) works perfectly in 1D when c is known.
In 2D and 3D, however, the condition reads ut + cxux + cyuy = 0, where
cx and cy are the wave speeds in the x and y directions. Estimating these
components (i.e., the direction of the wave) is often challenging. Other
methods are normally used in 2D and 3D to let waves move out of a
computational domain.

Exercise 2.13: Implement periodic boundary conditions

It is frequently of interest to follow wave motion over large distances
and long times. A straightforward approach is to work with a very large
domain, but that might lead to a lot of computations in areas of the
domain where the waves cannot be noticed. A more efficient approach is
to let a right-going wave out of the domain and at the same time let it
enter the domain on the left. This is called a periodic boundary condition.

The boundary condition at the right end x = L is an open boundary
condition (see Exercise 2.12) to let a right-going wave out of the domain.
At the left end, x = 0, we apply, in the beginning of the simulation,
either a symmetry boundary condition (see Exercise 2.8) ux = 0, or an
open boundary condition.

This initial wave will split in two and either be reflected or transported
out of the domain at x = 0. The purpose of the exercise is to follow the
right-going wave. We can do that with a periodic boundary condition.
This means that when the right-going wave hits the boundary x = L, the
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open boundary condition lets the wave out of the domain, but at the same
time we use a boundary condition on the left end x = 0 that feeds the
outgoing wave into the domain again. This periodic condition is simply
u(0) = u(L). The switch from ux = 0 or an open boundary condition
at the left end to a periodic condition can happen when u(L, t) > ε,
where ε = 10−4 might be an appropriate value for determining when the
right-going wave hits the boundary x = L.

The open boundary conditions can conveniently be discretized as
explained in Exercise 2.12. Implement the described type of boundary
conditions and test them on two different initial shapes: a plug u(x, 0) = 1
for x ≤ 0.1, u(x, 0) = 0 for x > 0.1, and a Gaussian function in the
middle of the domain: u(x, 0) = exp (−1

2(x− 0.5)2/0.05). The domain
is the unit interval [0, 1]. Run these two shapes for Courant numbers 1
and 0.5. Assume constant wave velocity. Make movies of the four cases.
Reason why the solutions are correct. Filename: periodic.

Exercise 2.14: Compare discretizations of a Neumann
condition

We have a 1D wave equation with variable wave velocity: utt = (qux)x. A
Neumann condition ux at x = 0, L can be discretized as shown in (2.54)
and (2.57).

The aim of this exercise is to examine the rate of the numerical error
when using different ways of discretizing the Neumann condition.

a) As a test problem, q = 1+(x−L/2)4 can be used, with f(x, t) adapted
such that the solution has a simple form, say u(x, t) = cos(πx/L) cos(ωt)
for, e.g., ω = 1. Perform numerical experiments and find the convergence
rate of the error using the approximation (2.54).

b) Switch to q(x) = 1 + cos(πx/L), which is symmetric at x = 0, L,
and check the convergence rate of the scheme (2.57). Now, qi−1/2 is a
2nd-order approximation to qi, qi−1/2 = qi + 0.25q′′i∆x2 + · · · , because
q′i = 0 for i = Nx (a similar argument can be applied to the case i = 0).

c) A third discretization can be based on a simple and convenient, but less
accurate, one-sided difference: ui− ui−1 = 0 at i = Nx and ui+1− ui = 0
at i = 0. Derive the resulting scheme in detail and implement it. Run
experiments with q from a) or b) to establish the rate of convergence of
the scheme.
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d) A fourth technique is to view the scheme as

[DtDtu]ni = 1
∆x

(
[qDxu]ni+ 1

2
− [qDxu]ni− 1

2

)
+ [f ]ni ,

and place the boundary at xi+ 1
2
, i = Nx, instead of exactly at the physical

boundary. With this idea of approximating (moving) the boundary, we
can just set [qDxu]n

i+ 1
2

= 0. Derive the complete scheme using this
technique. The implementation of the boundary condition at L−∆x/2
is O(∆x2) accurate, but the interesting question is what impact the
movement of the boundary has on the convergence rate. Compute the
errors as usual over the entire mesh and use q from a) or b).
Filename: Neumann_discr.

Exercise 2.15: Verification by a cubic polynomial in space

The purpose of this exercise is to verify the implementation of the solver
function in the program wave1D_n0.py by using an exact numerical
solution for the wave equation utt = c2uxx + f with Neumann boundary
conditions ux(0, t) = ux(L, t) = 0.

A similar verification is used in the file wave1D_u0.py, which solves the
same PDE, but with Dirichlet boundary conditions u(0, t) = u(L, t) =
0. The idea of the verification test in function test_quadratic in
wave1D_u0.py is to produce a solution that is a lower-order polyno-
mial such that both the PDE problem, the boundary conditions, and
all the discrete equations are exactly fulfilled. Then the solver function
should reproduce this exact solution to machine precision. More precisely,
we seek u = X(x)T (t), with T (t) as a linear function and X(x) as a
parabola that fulfills the boundary conditions. Inserting this u in the
PDE determines f . It turns out that u also fulfills the discrete equations,
because the truncation error of the discretized PDE has derivatives in x
and t of order four and higher. These derivatives all vanish for a quadratic
X(x) and linear T (t).

It would be attractive to use a similar approach in the case of Neumann
conditions. We set u = X(x)T (t) and seek lower-order polynomials X
and T . To force ux to vanish at the boundary, we let Xx be a parabola.
Then X is a cubic polynomial. The fourth-order derivative of a cubic
polynomial vanishes, so u = X(x)T (t) will fulfill the discretized PDE
also in this case, if f is adjusted such that u fulfills the PDE.

http://tinyurl.com/nu656p2/wave/wave1D/wave1D_n0.py
http://tinyurl.com/nu656p2/wave/wave1D/wave1D_u0.py
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However, the discrete boundary condition is not exactly fulfilled by
this choice of u. The reason is that

[D2xu]ni = ux(xi, tn) + 1
6uxxx(xi, tn)∆x2 +O(∆x4) . (2.74)

At the boundary two boundary points, we must demand that the deriva-
tive Xx(x) = 0 such that ux = 0. However, uxxx is a constant and not
zero when X(x) is a cubic polynomial. Therefore, our u = X(x)T (t)
fulfills

[D2xu]ni = 1
6uxxx(xi, tn)∆x2,

and not

[D2xu]ni = 0, i = 0, Nx,

as it should. (Note that all the higher-order terms O(∆x4) also have
higher-order derivatives that vanish for a cubic polynomial.) So to sum-
marize, the fundamental problem is that u as a product of a cubic
polynomial and a linear or quadratic polynomial in time is not an exact
solution of the discrete boundary conditions.

To make progress, we assume that u = X(x)T (t), where T for simplic-
ity is taken as a prescribed linear function 1 + 1

2 t, and X(x) is taken as
an unknown cubic polynomial

∑3
j=0 ajx

j . There are two different ways
of determining the coefficients a0, . . . , a3 such that both the discretized
PDE and the discretized boundary conditions are fulfilled, under the
constraint that we can specify a function f(x, t) for the PDE to feed to
the solver function in wave1D_n0.py. Both approaches are explained
in the subexercises.
a) One can insert u in the discretized PDE and find the corresponding f .
Then one can insert u in the discretized boundary conditions. This yields
two equations for the four coefficients a0, . . . , a3. To find the coefficients,
one can set a0 = 0 and a1 = 1 for simplicity and then determine a2 and
a3. This approach will make a2 and a3 depend on ∆x and f will depend
on both ∆x and ∆t.

Use sympy to perform analytical computations. A starting point is to
define u as follows:

def test_cubic1():
import sympy as sm
x, t, c, L, dx, dt = sm.symbols(’x t c L dx dt’)
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i, n = sm.symbols(’i n’, integer=True)

# Assume discrete solution is a polynomial of degree 3 in x
T = lambda t: 1 + sm.Rational(1,2)*t # Temporal term
a = sm.symbols(’a_0 a_1 a_2 a_3’)
X = lambda x: sum(a[q]*x**q for q in range(4)) # Spatial term
u = lambda x, t: X(x)*T(t)

The symbolic expression for u is reached by calling u(x,t) with x and t
as sympy symbols.

Define DxDx(u, i, n), DtDt(u, i, n), and D2x(u, i, n) as
Python functions for returning the difference approximations [DxDxu]ni ,
[DtDtu]ni , and [D2xu]ni . The next step is to set up the residuals for the
equations [D2xu]n0 = 0 and [D2xu]nNx = 0, where Nx = L/∆x. Call the
residuals R_0 and R_L. Substitute a0 and a1 by 0 and 1, respectively, in
R_0, R_L, and a:

R_0 = R_0.subs(a[0], 0).subs(a[1], 1)
R_L = R_L.subs(a[0], 0).subs(a[1], 1)
a = list(a) # enable in-place assignment
a[0:2] = 0, 1

Determining a2 and a3 from the discretized boundary conditions is then
about solving two equations with respect to a2 and a3, i.e., a[2:]:

s = sm.solve([R_0, R_L], a[2:])
# s is dictionary with the unknowns a[2] and a[3] as keys
a[2:] = s[a[2]], s[a[3]]

Now, a contains computed values and u will automatically use these new
values since X accesses a.

Compute the source term f from the discretized PDE: fni = [DtDtu−
c2DxDxu]ni . Turn u, the time derivative ut (needed for the initial condition
V (x)), and f into Python functions. Set numerical values for L, Nx, C,
and c. Prescribe the time interval as ∆t = CL/(Nxc), which imply
∆x = c∆t/C = L/Nx. Define new functions I(x), V(x), and f(x,t)
as wrappers of the ones made above, where fixed values of L, c, ∆x,
and ∆t are inserted, such that I, V, and f can be passed on to the
solver function. Finally, call solver with a user_action function that
compares the numerical solution to this exact solution u of the discrete
PDE problem.

Hint. To turn a sympy expression e, depending on a series of sym-
bols, say x, t, dx, dt, L, and c, into a plain Python function
e_exact(x,t,L,dx,dt,c), one can write

e_exact = sm.lambdify([x,t,L,dx,dt,c], e, ’numpy’)
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The ’numpy’ argument is a good habit as the e_exact function will
then work with array arguments if it contains mathematical functions
(but here we only do plain arithmetics, which automatically work with
arrays).

b) An alternative way of determining a0, . . . , a3 is to reason as follows.
We first construct X(x) such that the boundary conditions are fulfilled:
X = x(L− x). However, to compensate for the fact that this choice of
X does not fulfill the discrete boundary condition, we seek u such that

ux = ∂

∂x
x(L− x)T (t)− 1

6uxxx∆x
2,

since this u will fit the discrete boundary condition. Assuming u =
T (t)

∑3
j=0 ajx

j , we can use the above equation to determine the coeffi-
cients a1, a2, a3. A value, e.g., 1 can be used for a0. The following sympy
code computes this u:

def test_cubic2():
import sympy as sm
x, t, c, L, dx = sm.symbols(’x t c L dx’)
T = lambda t: 1 + sm.Rational(1,2)*t # Temporal term
# Set u as a 3rd-degree polynomial in space
X = lambda x: sum(a[i]*x**i for i in range(4))
a = sm.symbols(’a_0 a_1 a_2 a_3’)
u = lambda x, t: X(x)*T(t)
# Force discrete boundary condition to be zero by adding
# a correction term the analytical suggestion x*(L-x)*T
# u_x = x*(L-x)*T(t) - 1/6*u_xxx*dx**2
R = sm.diff(u(x,t), x) - (

x*(L-x) - sm.Rational(1,6)*sm.diff(u(x,t), x, x, x)*dx**2)
# R is a polynomial: force all coefficients to vanish.
# Turn R to Poly to extract coefficients:
R = sm.poly(R, x)
coeff = R.all_coeffs()
s = sm.solve(coeff, a[1:]) # a[0] is not present in R
# s is dictionary with a[i] as keys
# Fix a[0] as 1
s[a[0]] = 1
X = lambda x: sm.simplify(sum(s[a[i]]*x**i for i in range(4)))
u = lambda x, t: X(x)*T(t)
print ’u:’, u(x,t)

The next step is to find the source term f_e by inserting u_e in the
PDE. Thereafter, turn u, f, and the time derivative of u into plain Python
functions as in a), and then wrap these functions in new functions I,
V, and f, with the right signature as required by the solver function.
Set parameters as in a) and check that the solution is exact to machine
precision at each time level using an appropriate user_action function.
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Filename: wave1D_n0_test_cubic.

2.10 Analysis of the difference equations

2.10.1 Properties of the solution of the wave equation

The wave equation

∂2u

∂t2
= c2∂

2u

∂x2

has solutions of the form

u(x, t) = gR(x− ct) + gL(x+ ct), (2.75)

for any functions gR and gL sufficiently smooth to be differentiated twice.
The result follows from inserting (2.75) in the wave equation. A function
of the form gR(x − ct) represents a signal moving to the right in time
with constant velocity c. This feature can be explained as follows. At
time t = 0 the signal looks like gR(x). Introducing a moving horizontal
coordinate ξ = x − ct, we see the function gR(ξ) is “at rest” in the ξ
coordinate system, and the shape is always the same. Say the gR(ξ)
function has a peak at ξ = 0. This peak is located at x = ct, which means
that it moves with the velocity dx/dt = c in the x coordinate system.
Similarly, gL(x+ ct) is a function, initially with shape gL(x), that moves
in the negative x direction with constant velocity c (introduce ξ = x+ ct,
look at the point ξ = 0, x = −ct, which has velocity dx/dt = −c).

With the particular initial conditions

u(x, 0) = I(x), ∂

∂t
u(x, 0) = 0,

we get, with u as in (2.75),

gR(x) + gL(x) = I(x), −cg′R(x) + cg′L(x) = 0 .

The former suggests gR = gL, and the former then leads to gR = gL = I/2.
Consequently,

u(x, t) = 1
2I(x− ct) + 1

2I(x+ ct) . (2.76)
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The interpretation of (2.76) is that the initial shape of u is split into two
parts, each with the same shape as I but half of the initial amplitude.
One part is traveling to the left and the other one to the right.

The solution has two important physical features: constant amplitude
of the left and right wave, and constant velocity of these two waves. It
turns out that the numerical solution will also preserve the constant
amplitude, but the velocity depends on the mesh parameters ∆t and ∆x.

The solution (2.76) will be influenced by boundary conditions when
the parts 1

2I(x − ct) and 1
2I(x + ct) hit the boundaries and get, e.g.,

reflected back into the domain. However, when I(x) is nonzero only in a
small part in the middle of the spatial domain [0, L], which means that
the boundaries are placed far away from the initial disturbance of u, the
solution (2.76) is very clearly observed in a simulation.

A useful representation of solutions of wave equations is a linear
combination of sine and/or cosine waves. Such a sum of waves is a
solution if the governing PDE is linear and each sine or cosine wave
fulfills the equation. To ease analytical calculations by hand we shall
work with complex exponential functions instead of real-valued sine or
cosine functions. The real part of complex expressions will typically be
taken as the physical relevant quantity (whenever a physical relevant
quantity is strictly needed). The idea now is to build I(x) of complex
wave components eikx:

I(x) ≈
∑
k∈K

bke
ikx . (2.77)

Here, k is the frequency of a component, K is some set of all the discrete
k values needed to approximate I(x) well, and bk are constants that must
be determined. We will very seldom need to compute the bk coefficients:
most of the insight we look for, and the understanding of the numerical
methods we want to establish, come from investigating how the PDE
and the scheme treat a single component eikx wave.

Letting the number of k values in K tend to infinity, makes the
sum (2.77) converge to I(x). This sum is known as a Fourier series
representation of I(x). Looking at (2.76), we see that the solution u(x, t),
when I(x) is represented as in (2.77), is also built of basic complex
exponential wave components of the form eik(x±ct) according to

u(x, t) = 1
2
∑
k∈K

bke
ik(x−ct) + 1

2
∑
k∈K

bke
ik(x+ct) . (2.78)
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It is common to introduce the frequency in time ω = kc and assume that
u(x, t) is a sum of basic wave components written as eikx−ωt. (Observe
that inserting such a wave component in the governing PDE reveals that
ω2 = k2c2, or ω = ±kc, reflecting the two solutions: one (+kc) traveling
to the right and the other (−kc) traveling to the left.)

2.10.2 More precise definition of Fourier representations

The above introduction to function representation by sine and cosine
waves was quick and intuitive, but will suffice as background knowledge
for the following material of single wave component analysis. However,
to understand all details of how different wave components sum up to
the analytical and numerical solutions, a more precise mathematical
treatment is helpful and therefore summarized below.

It is well known that periodic functions can be represented by Fourier
series. A generalization of the Fourier series idea to non-periodic functions
defined on the real line is the Fourier transform:

I(x) =
∫ ∞
−∞

A(k)eikxdk, (2.79)

A(k) =
∫ ∞
−∞

I(x)e−ikxdx . (2.80)

The function A(k) reflects the weight of each wave component eikx
in an infinite sum of such wave components. That is, A(k) reflects the
frequency content in the function I(x). Fourier transforms are particularly
fundamental for analyzing and understanding time-varying signals.

The solution of the linear 1D wave PDE can be expressed as

u(x, t) =
∫ ∞
−∞

A(k)ei(kx−ω(k)t)dx .

In a finite difference method, we represent u by a mesh function unq ,
where n counts temporal mesh points and q counts the spatial ones (the
usual counter for spatial points, i, is here already used as imaginary unit).
Similarly, I(x) is approximated by the mesh function Iq, q = 0, . . . , Nx.
On a mesh, it does not make sense to work with wave components eikx
for very large k, because the shortest possible sine or cosine wave that
can be represented uniquely on a mesh with spacing ∆x is the wave with
wavelength 2∆x. This wave has its peaks and throughs at every two
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mesh points. That is, the wave “jumps up and down” between the mesh
points.

The corresponding k value for the shortest possible wave in the mesh
is k = 2π/(2∆x) = π/∆x. This maximum frequency is known as the
Nyquist frequency. Within the range of relevant frequencies (0, π/∆x] one
defines the discrete Fourier transform, using Nx + 1 discrete frequencies:

Iq = 1
Nx + 1

Nx∑
k=0

Ake
i2πkj/(Nx+1), i = 0, . . . , Nx, (2.81)

Ak =
Nx∑
q=0

Iqe
−i2πkq/(Nx+1), k = 0, . . . , Nx + 1 . (2.82)

The Ak values represent the discrete Fourier transform of the Iq values,
which themselves are the inverse discrete Fourier transform of the Ak
values.

The discrete Fourier transform is efficiently computed by the Fast
Fourier transform algorithm. For a real function I(x), the relevant Python
code for computing and plotting the discrete Fourier transform appears
in the example below.

import numpy as np
from numpy import sin, pi

def I(x):
return sin(2*pi*x) + 0.5*sin(4*pi*x) + 0.1*sin(6*pi*x)

# Mesh
L = 10; Nx = 100
x = np.linspace(0, L, Nx+1)
dx = L/float(Nx)

# Discrete Fourier transform
A = np.fft.rfft(I(x))
A_amplitude = np.abs(A)

# Compute the corresponding frequencies
freqs = np.linspace(0, pi/dx, A_amplitude.size)

import matplotlib.pyplot as plt
plt.plot(freqs, A_amplitude)
plt.show()

http://en.wikipedia.org/wiki/Discrete_Fourier_transform
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2.10.3 Stability

The scheme

[DtDtu = c2DxDxu]nq (2.83)

for the wave equation utt = c2uxx allows basic wave components

unq = ei(kxq−ω̃tn)

as solution, but it turns out that the frequency in time, ω̃, is not equal
to the exact frequency ω = kc. The goal now is to find exactly what ω̃ is.
We ask two key questions:

• How accurate is ω̃ compared to ω?
• Does the amplitude of such a wave component preserve its (unit)

amplitude, as it should, or does it get amplified or damped in time
(because of a complex ω̃)?

The following analysis will answer these questions. We shall continue
using q as an identifier for a certain mesh point in the x direction.

Preliminary results. A key result needed in the investigations is the
finite difference approximation of a second-order derivative acting on a
complex wave component:

[DtDte
iωt]n = − 4

∆t2
sin2

(
ω∆t

2

)
eiωn∆t .

By just changing symbols (ω → k, t→ x, n→ q) it follows that

[DxDxe
ikx]q = − 4

∆x2 sin2
(
k∆x

2

)
eikq∆x .

Numerical wave propagation. Inserting a basic wave component unq =
ei(kxq−ω̃tn) in (2.83) results in the need to evaluate two expressions:

[DtDte
ikxe−iω̃t]nq = [DtDte

−iω̃t]neikq∆x

= − 4
∆t2

sin2
(
ω̃∆t

2

)
e−iω̃n∆teikq∆x (2.84)

[DxDxe
ikxe−iω̃t]nq = [DxDxe

ikx]qe−iω̃n∆t

= − 4
∆x2 sin2

(
k∆x

2

)
eikq∆xe−iω̃n∆t . (2.85)
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Then the complete scheme,

[DtDte
ikxe−iω̃t = c2DxDxe

ikxe−iω̃t]nq
leads to the following equation for the unknown numerical frequency ω̃
(after dividing by −eikxe−iω̃t):

4
∆t2

sin2
(
ω̃∆t

2

)
= c2 4

∆x2 sin2
(
k∆x

2

)
,

or

sin2
(
ω̃∆t

2

)
= C2 sin2

(
k∆x

2

)
, (2.86)

where

C = c∆t

∆x
(2.87)

is the Courant number. Taking the square root of (2.86) yields

sin
(
ω̃∆t

2

)
= C sin

(
k∆x

2

)
, (2.88)

Since the exact ω is real it is reasonable to look for a real solution ω̃ of
(2.88). The right-hand side of (2.88) must then be in [−1, 1] because the
sine function on the left-hand side has values in [−1, 1] for real ω̃. The
sine function on the right-hand side can attain the value 1 when

k∆x

2 = m
π

2 , m ∈ Z .

With m = 1 we have k∆x = π, which means that the wavelength
λ = 2π/k becomes 2∆x. This is the absolutely shortest wavelength that
can be represented on the mesh: the wave jumps up and down between
each mesh point. Larger values of |m| are irrelevant since these correspond
to k values whose waves are too short to be represented on a mesh with
spacing ∆x. For the shortest possible wave in the mesh, sin (k∆x/2) = 1,
and we must require

C ≤ 1 . (2.89)

Consider a right-hand side in (2.88) of magnitude larger than unity.
The solution ω̃ of (2.88) must then be a complex number ω̃ = ω̃r + iω̃i
because the sine function is larger than unity for a complex argument.
One can show that for any ωi there will also be a corresponding solution



2.10 Analysis of the difference equations 191

with −ωi. The component with ωi > 0 gives an amplification factor
eωit that grows exponentially in time. We cannot allow this and must
therefore require C ≤ 1 as a stability criterion.

Remark on the stability requirement

For smoother wave components with longer wave lengths per length
∆x, (2.89) can in theory be relaxed. However, small round-off errors
are always present in a numerical solution and these vary arbitrarily
from mesh point to mesh point and can be viewed as unavoidable
noise with wavelength 2∆x. As explained, C > 1 will for this very
small noise lead to exponential growth of the shortest possible wave
component in the mesh. This noise will therefore grow with time
and destroy the whole solution.

2.10.4 Numerical dispersion relation

Equation (2.88) can be solved with respect to ω̃:

ω̃ = 2
∆t

sin−1
(
C sin

(
k∆x

2

))
. (2.90)

The relation between the numerical frequency ω̃ and the other parameters
k, c,∆x, and∆t is called a numerical dispersion relation. Correspondingly,
ω = kc is the analytical dispersion relation. In general, dispersion refers
to the phenomenon where the wave velocity depends on the spatial
frequency (k, or the wave length λ = 2π/k) of the wave. Since the wave
velocity is ω/k = c, we realize that the analytical dispersion relation
reflects the fact that there is no dispersion. However, in a numerical
scheme we have dispersive waves where the wave velocity depends on k.

The special case C = 1 deserves attention since then the right-hand
side of (2.90) reduces to

2
∆t

k∆x

2 = 1
∆t

ω∆x

c
= ω

C
= ω .

That is, ω̃ = ω and the numerical solution is exact at all mesh points
regardless of ∆x and ∆t! This implies that the numerical solution method
is also an analytical solution method, at least for computing u at discrete
points (the numerical method says nothing about the variation of u
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between the mesh points, and employing the common linear interpolation
for extending the discrete solution gives a curve that in general deviates
from the exact one).

For a closer examination of the error in the numerical dispersion
relation when C < 1, we can study ω̃ − ω, ω̃/ω, or the similar error
measures in wave velocity: c̃− c and c̃/c, where c = ω/k and c̃ = ω̃/k. It
appears that the most convenient expression to work with is c̃/c, since it
can be written as a function of just two parameters:

c̃

c
= 1
Cp

sin−1 (C sin p) ,

with p = k∆x/2 as a non-dimensional measure of the spatial frequency.
In essence, p tells how many spatial mesh points we have per wave length
in space for the wave component with frequency k (recall that the wave
length is 2π/k). That is, p reflects how well the spatial variation of the
wave component is resolved in the mesh. Wave components with wave
length less than 2∆x (2π/k < 2∆x) are not visible in the mesh, so it
does not make sense to have p > π/2.

We may introduce the function r(C, p) = c̃/c for further investigation
of numerical errors in the wave velocity:

r(C, p) = 1
Cp

sin−1 (C sin p) , C ∈ (0, 1], p ∈ (0, π/2] . (2.91)

This function is very well suited for plotting since it combines several
parameters in the problem into a dependence on two dimensionless
numbers, C and p.

Defining

def r(C, p):
return 2/(C*p)*asin(C*sin(p))

we can plot r(C, p) as a function of p for various values of C, see Figure 2.6.
Note that the shortest waves have the most erroneous velocity, and that
short waves move more slowly than they should.

We can also easily make a Taylor series expansion in the discretization
parameter p:

>>> import sympy as sym
>>> C, p = sym.symbols(’C p’)
>>> # Compute the 7 first terms around p=0 with no O() term
>>> rs = r(C, p).series(p, 0, 7).removeO()
>>> rs
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Fig. 2.6 The fractional error in the wave velocity for different Courant numbers.

p**6*(5*C**6/112 - C**4/16 + 13*C**2/720 - 1/5040) +
p**4*(3*C**4/40 - C**2/12 + 1/120) +
p**2*(C**2/6 - 1/6) + 1

>>> # Pick out the leading order term, but drop the constant 1
>>> rs_error_leading_order = (rs - 1).extract_leading_order(p)
>>> rs_error_leading_order
p**2*(C**2/6 - 1/6)

>>> # Turn the series expansion into a Python function
>>> rs_pyfunc = lambdify([C, p], rs, modules=’numpy’)

>>> # Check: rs_pyfunc is exact (=1) for C=1
>>> rs_pyfunc(1, 0.1)
1.0

Note that without the .removeO() call the series gets an O(x**7) term
that makes it impossible to convert the series to a Python function (for,
e.g., plotting).

From the rs_error_leading_order expression above, we see that the
leading order term in the error of this series expansion is

1
6

(
k∆x

2

)2
(C2 − 1) = k2

24
(
c2∆t2 −∆x2

)
, (2.92)
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pointing to an error O(∆t2, ∆x2), which is compatible with the errors in
the difference approximations (DtDtu and DxDxu).

We can do more with a series expansion, e.g., factor it to see how the
factor C − 1 plays a significant role. To this end, we make a list of the
terms, factor each term, and then sum the terms:

>>> rs = r(C, p).series(p, 0, 4).removeO().as_ordered_terms()
>>> rs
[1, C**2*p**2/6 - p**2/6,
3*C**4*p**4/40 - C**2*p**4/12 + p**4/120,
5*C**6*p**6/112 - C**4*p**6/16 + 13*C**2*p**6/720 - p**6/5040]

>>> rs = [factor(t) for t in rs]
>>> rs
[1, p**2*(C - 1)*(C + 1)/6,
p**4*(C - 1)*(C + 1)*(3*C - 1)*(3*C + 1)/120,
p**6*(C - 1)*(C + 1)*(225*C**4 - 90*C**2 + 1)/5040]

>>> rs = sum(rs) # Python’s sum function sums the list
>>> rs
p**6*(C - 1)*(C + 1)*(225*C**4 - 90*C**2 + 1)/5040 +
p**4*(C - 1)*(C + 1)*(3*C - 1)*(3*C + 1)/120 +
p**2*(C - 1)*(C + 1)/6 + 1

We see from the last expression that C = 1 makes all the terms in rs
vanish. Since we already know that the numerical solution is exact for
C = 1, the remaining terms in the Taylor series expansion will also
contain factors of C − 1 and cancel for C = 1.

2.10.5 Extending the analysis to 2D and 3D

The typical analytical solution of a 2D wave equation

utt = c2(uxx + uyy),

is a wave traveling in the direction of k = kxi + kyj, where i and j
are unit vectors in the x and y directions, respectively (i must not be
confused with i =

√
−1). Such a wave can be expressed by

u(x, y, t) = g(kxx+ kyy − kct)

for some twice differentiable function g, or with ω = kc, k = |k|:

u(x, y, t) = g(kxx+ kyy − ωt) .

We can, in particular, build a solution by adding complex Fourier com-
ponents of the form
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e(i(kxx+kyy−ωt)) .

A discrete 2D wave equation can be written as

[DtDtu = c2(DxDxu+DyDyu)]nq,r . (2.93)

This equation admits a Fourier component

unq,r = e(i(kxq∆x+kyr∆y−ω̃n∆t)), (2.94)

as solution. Letting the operators DtDt, DxDx, and DyDy act on unq,r
from (2.94) transforms (2.93) to

4
∆t2

sin2
(
ω̃∆t

2

)
= c2 4

∆x2 sin2
(
kx∆x

2

)
+ c2 4

∆y2 sin2
(
ky∆y

2

)
.

(2.95)
or

sin2
(
ω̃∆t

2

)
= C2

x sin2 px + C2
y sin2 py, (2.96)

where we have eliminated the factor 4 and introduced the symbols

Cx = c∆t

∆x
, Cy = c∆t

∆y
, px = kx∆x

2 , py = ky∆y

2 .

For a real-valued ω̃ the right-hand side must be less than or equal to
unity in absolute value, requiring in general that

C2
x + C2

y ≤ 1 . (2.97)

This gives the stability criterion, more commonly expressed directly in
an inequality for the time step:

∆t ≤ 1
c

( 1
∆x2 + 1

∆y2

)−1/2
(2.98)

A similar, straightforward analysis for the 3D case leads to

∆t ≤ 1
c

( 1
∆x2 + 1

∆y2 + 1
∆z2

)−1/2
(2.99)

In the case of a variable coefficient c2 = c2(x), we must use the worst-case
value

c̄ =
√

max
x∈Ω

c2(x) (2.100)
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in the stability criteria. Often, especially in the variable wave velocity
case, it is wise to introduce a safety factor β ∈ (0, 1] too:

∆t ≤ β
1
c̄

( 1
∆x2 + 1

∆y2 + 1
∆z2

)−1/2
(2.101)

The exact numerical dispersion relations in 2D and 3D becomes, for
constant c,

ω̃ = 2
∆t

sin−1
((
C2
x sin2 px + C2

y sin2 py
) 1

2
)
, (2.102)

ω̃ = 2
∆t

sin−1
((
C2
x sin2 px + C2

y sin2 py + C2
z sin2 pz

) 1
2
)
. (2.103)

We can visualize the numerical dispersion error in 2D much like we
did in 1D. To this end, we need to reduce the number of parameters in ω̃.
The direction of the wave is parameterized by the polar angle θ, which
means that

kx = k sin θ, ky = k cos θ .

A simplification is to set ∆x = ∆y = h. Then Cx = Cy = c∆t/h, which
we call C. Also,

px = 1
2kh cos θ, py = 1

2kh sin θ .

The numerical frequency ω̃ is now a function of three parameters:

• C, reflecting the number of cells a wave is displaced during a time
step,

• p = 1
2kh, reflecting the number of cells per wave length in space,

• θ, expressing the direction of the wave.

We want to visualize the error in the numerical frequency. To avoid
having ∆t as a free parameter in ω̃, we work with c̃/c = ω̃/(kc). The
coefficient in front of the sin−1 factor is then

2
kc∆t

= 2
2kc∆th/h = 1

Ckh
= 2
Cp

,

and

c̃

c
= 2
Cp

sin−1
(
C
(
sin2(p cos θ) + sin2(p sin θ)

) 1
2
)
.
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We want to visualize this quantity as a function of p and θ for some
values of C ≤ 1. It is instructive to make color contour plots of 1− c̃/c
in polar coordinates with θ as the angular coordinate and p as the radial
coordinate.

The stability criterion (2.97) becomes C ≤ Cmax = 1/
√

2 in the
present 2D case with the C defined above. Let us plot 1− c̃/c in polar
coordinates for Cmax, 0.9Cmax, 0.5Cmax, 0.2Cmax. The program below does
the somewhat tricky work in Matplotlib, and the result appears in
Figure 2.7. From the figure we clearly see that the maximum C value
gives the best results, and that waves whose propagation direction makes
an angle of 45 degrees with an axis are the most accurate.

def dispersion_relation_2D(p, theta, C):
arg = C*sqrt(sin(p*cos(theta))**2 +

sin(p*sin(theta))**2)
c_frac = 2./(C*p)*arcsin(arg)

return c_frac

import numpy as np
from numpy import \

cos, sin, arcsin, sqrt, pi # for nicer math formulas

r = p = np.linspace(0.001, pi/2, 101)
theta = np.linspace(0, 2*pi, 51)
r, theta = np.meshgrid(r, theta)

# Make 2x2 filled contour plots for 4 values of C
import matplotlib.pyplot as plt
C_max = 1/sqrt(2)
C = [[C_max, 0.9*C_max], [0.5*C_max, 0.2*C_max]]
fix, axes = plt.subplots(2, 2, subplot_kw=dict(polar=True))
for row in range(2):

for column in range(2):
error = 1 - dispersion_relation_2D(

p, theta, C[row][column])
print error.min(), error.max()
# use vmin=error.min(), vmax=error.max()
cax = axes[row][column].contourf(

theta, r, error, 50, vmin=-1, vmax=-0.28)
axes[row][column].set_xticks([])
axes[row][column].set_yticks([])

# Add colorbar to the last plot
cbar = plt.colorbar(cax)
cbar.ax.set_ylabel(’error in wave velocity’)
plt.savefig(’disprel2D.png’); plt.savefig(’disprel2D.pdf’)
plt.show()
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Fig. 2.7 Error in numerical dispersion in 2D.

2.11 Finite difference methods for 2D and 3D wave
equations

A natural next step is to consider extensions of the methods for various
variants of the one-dimensional wave equation to two-dimensional (2D)
and three-dimensional (3D) versions of the wave equation.

2.11.1 Multi-dimensional wave equations
The general wave equation in d space dimensions, with constant wave
velocity c, can be written in the compact form

∂2u

∂t2
= c2∇2u for x ∈ Ω ⊂ Rd, t ∈ (0, T ], (2.104)

where

∇2u = ∂2u

∂x2 + ∂2u

∂y2 ,

in a 2D problem (d = 2) and
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∇2u = ∂2u

∂x2 + ∂2u

∂y2 + ∂2u

∂z2 ,

in three space dimensions (d = 3).
Many applications involve variable coefficients, and the general wave

equation in d dimensions is in this case written as

%
∂2u

∂t2
= ∇ · (q∇u) + f for x ∈ Ω ⊂ Rd, t ∈ (0, T ], (2.105)

which in, e.g., 2D becomes

%(x, y)∂
2u

∂t2
= ∂

∂x

(
q(x, y)∂u

∂x

)
+ ∂

∂y

(
q(x, y)∂u

∂y

)
+ f(x, y, t) . (2.106)

To save some writing and space we may use the index notation, where
subscript t, x, or y means differentiation with respect to that coordinate.
For example,

∂2u

∂t2
= utt,

∂

∂y

(
q(x, y)∂u

∂y

)
= (quy)y .

These comments extend straightforwardly to 3D, which means that the
3D versions of the two wave PDEs, with and without variable coefficients,
can be stated as

utt = c2(uxx + uyy + uzz) + f, (2.107)
%utt = (qux)x + (quz)z + (quz)z + f . (2.108)

At each point of the boundary ∂Ω (of Ω) we need one boundary
condition involving the unknown u. The boundary conditions are of three
principal types:

1. u is prescribed (u = 0 or a known time variation of u at the boundary
points, e.g., modeling an incoming wave),

2. ∂u/∂n = n · ∇u is prescribed (zero for reflecting boundaries),
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3. an open boundary condition (also called radiation condition) is speci-
fied to let waves travel undisturbed out of the domain, see Exercise 2.12
for details.

All the listed wave equations with second-order derivatives in time need
two initial conditions:

1. u = I,
2. ut = V .

2.11.2 Mesh

We introduce a mesh in time and in space. The mesh in time consists of
time points

t0 = 0 < t1 < · · · < tNt ,

normally, for wave equation problems, with a constant spacing ∆t =
tn+1 − tn, n ∈ I−t .

Finite difference methods are easy to implement on simple rectangle-
or box-shaped spatial domains. More complicated shapes of the spatial
domain require substantially more advanced techniques and implementa-
tional efforts (and a finite element method is usually a more convenient
approach). On a rectangle- or box-shaped domain, mesh points are
introduced separately in the various space directions:

x0 < x1 < · · · < xNx in the x direction,
y0 < y1 < · · · < yNy in the y direction,
z0 < z1 < · · · < zNz in the z direction .

We can write a general mesh point as (xi, yj , zk, tn), with i ∈ Ix, j ∈ Iy,
k ∈ Iz, and n ∈ It.

It is a very common choice to use constant mesh spacings: ∆x =
xi+1 − xi, i ∈ I−x , ∆y = yj+1 − yj , j ∈ I−y , and ∆z = zk+1 − zk, k ∈ I−z .
With equal mesh spacings one often introduces h = ∆x = ∆y = ∆z.

The unknown u at mesh point (xi, yj , zk, tn) is denoted by uni,j,k. In
2D problems we just skip the z coordinate (by assuming no variation in
that direction: ∂/∂z = 0) and write uni,j .
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2.11.3 Discretization

Two- and three-dimensional wave equations are easily discretized by as-
sembling building blocks for discretization of 1D wave equations, because
the multi-dimensional versions just contain terms of the same type as
those in 1D.

Discretizing the PDEs. Equation (2.107) can be discretized as

[DtDtu = c2(DxDxu+DyDyu+DzDzu) + f ]ni,j,k . (2.109)

A 2D version might be instructive to write out in detail:

[DtDtu = c2(DxDxu+DyDyu) + f ]ni,j,k,

which becomes

un+1
i,j − 2uni,j + un−1

i,j

∆t2
= c2u

n
i+1,j − 2uni,j + uni−1,j

∆x2 +c2u
n
i,j+1 − 2uni,j + uni,j−1

∆y2 +fni,j ,

Assuming, as usual, that all values at time levels n and n− 1 are known,
we can solve for the only unknown un+1

i,j . The result can be compactly
written as

un+1
i,j = 2uni,j + un−1

i,j + c2∆t2[DxDxu+DyDyu]ni,j . (2.110)

As in the 1D case, we need to develop a special formula for u1
i,j

where we combine the general scheme for un+1
i,j , when n = 0, with the

discretization of the initial condition:

[D2tu = V ]0i,j ⇒ u−1
i,j = u1

i,j − 2∆tVi,j .

The result becomes, in compact form,

u1
i,j = u0

i,j − 2∆Vi,j + 1
2c

2∆t2[DxDxu+DyDyu]0i,j . (2.111)

The PDE (2.108) with variable coefficients is discretized term by term
using the corresponding elements from the 1D case:

[%DtDtu = (Dxq
xDxu+Dyq

yDyu+Dzq
zDzu) + f ]ni,j,k . (2.112)
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When written out and solved for the unknown un+1
i,j,k , one gets the scheme

un+1
i,j,k = −un−1

i,j,k + 2uni,j,k+
1

%i,j,k

1
∆x2 (1

2(qi,j,k + qi+1,j,k)(uni+1,j,k − uni,j,k)−

1
2(qi−1,j,k + qi,j,k)(uni,j,k − uni−1,j,k))+

1
%i,j,k

1
∆x2 (1

2(qi,j,k + qi,j+1,k)(uni,j+1,k − uni,j,k)−

1
2(qi,j−1,k + qi,j,k)(uni,j,k − uni,j−1,k))+

1
%i,j,k

1
∆x2 (1

2(qi,j,k + qi,j,k+1)(uni,j,k+1 − uni,j,k)−

1
2(qi,j,k−1 + qi,j,k)(uni,j,k − uni,j,k−1))+

∆t2fni,j,k .

Also here we need to develop a special formula for u1
i,j,k by combining

the scheme for n = 0 with the discrete initial condition, which is just a
matter of inserting u−1

i,j,k = u1
i,j,k − 2∆tVi,j,k in the scheme and solving

for u1
i,j,k.

Handling boundary conditions where u is known. The schemes listed
above are valid for the internal points in the mesh. After updating
these, we need to visit all the mesh points at the boundaries and set the
prescribed u value.

Discretizing the Neumann condition. The condition ∂u/∂n = 0 was
implemented in 1D by discretizing it with a D2xu centered difference,
followed by eliminating the fictitious u point outside the mesh by using the
general scheme at the boundary point. Alternatively, one can introduce
ghost cells and update a ghost value for use in the Neumann condition.
Exactly the same ideas are reused in multiple dimensions.

Consider the condition ∂u/∂n = 0 at a boundary y = 0 of a rectangular
domain [0, Lx]×[0, Ly] in 2D. The normal direction is then in−y direction,
so

∂u

∂n
= −∂u

∂y
,

and we set
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[−D2yu = 0]ni,0 ⇒
uni,1 − uni,−1

2∆y = 0 .

From this it follows that uni,−1 = uni,1. The discretized PDE at the
boundary point (i, 0) reads

un+1
i,0 − 2uni,0 + un−1

i,0
∆t2

= c2u
n
i+1,0 − 2uni,0 + uni−1,0

∆x2 +c2u
n
i,1 − 2uni,0 + uni,−1

∆y2 +fni,j ,

We can then just insert uni,1 for uni,−1 in this equation and solve for the
boundary value un+1

i,0 , just as was done in 1D.
From these calculations, we see a pattern: the general scheme applies

at the boundary j = 0 too if we just replace j−1 by j+1. Such a pattern
is particularly useful for implementations. The details follow from the
explained 1D case in Section 2.6.3.

The alternative approach to eliminating fictitious values outside the
mesh is to have uni,−1 available as a ghost value. The mesh is extended
with one extra line (2D) or plane (3D) of ghost cells at a Neumann
boundary. In the present example it means that we need a line with ghost
cells below the y axis. The ghost values must be updated according to
un+1
i,−1 = un+1

i,1 .

2.12 Implementation

We shall now describe in detail various Python implementations for
solving a standard 2D, linear wave equation with constant wave velocity
and u = 0 on the boundary. The wave equation is to be solved in the space-
time domainΩ×(0, T ], whereΩ = (0, Lx)×(0, Ly) is a rectangular spatial
domain. More precisely, the complete initial-boundary value problem is
defined by

utt = c2(uxx + uyy) + f(x, y, t), (x, y) ∈ Ω, t ∈ (0, T ], (2.113)
u(x, y, 0) = I(x, y), (x, y) ∈ Ω, (2.114)
ut(x, y, 0) = V (x, y), (x, y) ∈ Ω, (2.115)
u = 0, (x, y) ∈ ∂Ω, t ∈ (0, T ], (2.116)

where ∂Ω is the boundary of Ω, in this case the four sides of the rectangle
Ω = [0, Lx]× [0, Ly]: x = 0, x = Lx, y = 0, and y = Ly.
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The PDE is discretized as

[DtDtu = c2(DxDxu+DyDyu) + f ]ni,j ,

which leads to an explicit updating formula to be implemented in a
program:

un+1
i,j = −un−1

i,j + 2uni,j+
C2
x(uni+1,j − 2uni,j + uni−1,j) + C2

y (uni,j+1 − 2uni,j + uni,j−1) +∆t2fni,j ,

(2.117)

for all interior mesh points i ∈ Iix and j ∈ Iiy, for n ∈ I+
t . The constants

Cx and Cy are defined as

Cx = c
∆t

∆x
, Cx = c

∆t

∆y
.

At the boundary, we simply set un+1
i,j = 0 for i = 0, j = 0, . . . , Ny;

i = Nx, j = 0, . . . , Ny; j = 0, i = 0, . . . , Nx; and j = Ny, i = 0, . . . , Nx.
For the first step, n = 0, (2.117) is combined with the discretization of
the initial condition ut = V , [D2tu = V ]0i,j to obtain a special formula
for u1

i,j at the interior mesh points:

u1
i,j = u0

i,j +∆tVi,j+
1
2C

2
x(u0

i+1,j − 2u0
i,j + u0

i−1,j) + 1
2C

2
y (u0

i,j+1 − 2u0
i,j + u0

i,j−1)+
1
2∆t

2fni,j , (2.118)

The algorithm is very similar to the one in 1D:

1. Set initial condition u0
i,j = I(xi, yj)

2. Compute u1
i,j from (2.117)

3. Set u1
i,j = 0 for the boundaries i = 0, Nx, j = 0, Ny

4. For n = 1, 2, . . . , Nt:
a. Find un+1

i,j from (2.117) for all internal mesh points, i ∈ Iix, j ∈ Iiy
b. Set un+1

i,j = 0 for the boundaries i = 0, Nx, j = 0, Ny
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2.12.1 Scalar computations

The solver function for a 2D case with constant wave velocity and bound-
ary condition u = 0 is analogous to the 1D case with similar parameter
values (see wave1D_u0.py), apart from a few necessary extensions. The
code is found in the program wave2D_u0.py.

Domain and mesh. The spatial domain is now [0, Lx]× [0, Ly], specified
by the arguments Lx and Ly. Similarly, the number of mesh points in
the x and y directions, Nx and Ny, become the arguments Nx and Ny.
In multi-dimensional problems it makes less sense to specify a Courant
number since the wave velocity is a vector and mesh spacings may differ
in the various spatial directions. We therefore give ∆t explicitly. The
signature of the solver function is then

def solver(I, V, f, c, Lx, Ly, Nx, Ny, dt, T,
user_action=None, version=’scalar’):

Key parameters used in the calculations are created as

x = linspace(0, Lx, Nx+1) # mesh points in x dir
y = linspace(0, Ly, Ny+1) # mesh points in y dir
dx = x[1] - x[0]
dy = y[1] - y[0]
Nt = int(round(T/float(dt)))
t = linspace(0, N*dt, N+1) # mesh points in time
Cx2 = (c*dt/dx)**2; Cy2 = (c*dt/dy)**2 # help variables
dt2 = dt**2

Solution arrays. We store un+1
i,j , uni,j , and un−1

i,j in three two-dimensional
arrays,

u = zeros((Nx+1,Ny+1)) # solution array
u_n = [zeros((Nx+1,Ny+1)), zeros((Nx+1,Ny+1))] # t-dt, t-2*dt

where un+1
i,j corresponds to u[i,j], uni,j to u_n[i,j], and un−1

i,j to
u_nm1[i,j].

Index sets. It is also convenient to introduce the index sets (cf. Sec-
tion 2.6.4)

Ix = range(0, u.shape[0])
Iy = range(0, u.shape[1])
It = range(0, t.shape[0])

Computing the solution. Inserting the initial condition I in u_n and
making a callback to the user in terms of the user_action function is a
straightforward generalization of the 1D code from Section 2.1.6:

http://tinyurl.com/nu656p2/wave/wave2D_u0/wave2D_u0.py
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for i in Ix:
for j in Iy:

u_n[i,j] = I(x[i], y[j])

if user_action is not None:
user_action(u_n, x, xv, y, yv, t, 0)

The user_action function has additional arguments compared to the 1D
case. The arguments xv and yv will be commented upon in Section 2.12.2.

The key finite difference formula (2.110) for updating the solution at
a time level is implemented in a separate function as

def advance_scalar(u, u_n, u_nm1, f, x, y, t, n, Cx2, Cy2, dt2,
V=None, step1=False):

Ix = range(0, u.shape[0]); Iy = range(0, u.shape[1])
if step1:

dt = sqrt(dt2) # save
Cx2 = 0.5*Cx2; Cy2 = 0.5*Cy2; dt2 = 0.5*dt2 # redefine
D1 = 1; D2 = 0

else:
D1 = 2; D2 = 1

for i in Ix[1:-1]:
for j in Iy[1:-1]:

u_xx = u_n[i-1,j] - 2*u_n[i,j] + u_n[i+1,j]
u_yy = u_n[i,j-1] - 2*u_n[i,j] + u_n[i,j+1]
u[i,j] = D1*u_n[i,j] - D2*u_nm1[i,j] + \

Cx2*u_xx + Cy2*u_yy + dt2*f(x[i], y[j], t[n])
if step1:

u[i,j] += dt*V(x[i], y[j])
# Boundary condition u=0
j = Iy[0]
for i in Ix: u[i,j] = 0
j = Iy[-1]
for i in Ix: u[i,j] = 0
i = Ix[0]
for j in Iy: u[i,j] = 0
i = Ix[-1]
for j in Iy: u[i,j] = 0
return u

The step1 variable has been introduced to allow the formula to be reused
for the first step, computing u1

i,j :

u = advance_scalar(u, u_n, f, x, y, t,
n, Cx2, Cy2, dt, V, step1=True)

Below, we will make many alternative implementations of the
advance_scalar function to speed up the code since most of the
CPU time in simulations is spent in this function.
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Remark: How to use the solution
The solver function in the wave2D_u0.py code updates arrays
for the next time step by switching references as described in Sec-
tion 2.4.5. Any use of u on the user’s side is assumed to take place
in the user action function. However, should the code be changed
such that u is returned and used as solution, have in mind that
you must return u_n after the time lime, otherwise a return u will
actually return u_nm1 (due to the switching of array indices in the
loop)!

2.12.2 Vectorized computations

The scalar code above turns out to be extremely slow for large 2D
meshes, and probably useless in 3D beyond debugging of small test cases.
Vectorization is therefore a must for multi-dimensional finite difference
computations in Python. For example, with a mesh consisting of 30× 30
cells, vectorization brings down the CPU time by a factor of 70 (!).
Equally important, vectorized code can also easily be parallelized to take
(usually) optimal advantage of parallel computer platforms.

In the vectorized case, we must be able to evaluate user-given functions
like I(x, y) and f(x, y, t) for the entire mesh in one operation (without
loops). These user-given functions are provided as Python functions
I(x,y) and f(x,y,t), respectively. Having the one-dimensional coordi-
nate arrays x and y is not sufficient when calling I and f in a vectorized
way. We must extend x and y to their vectorized versions xv and yv:

from numpy import newaxis
xv = x[:,newaxis]
yv = y[newaxis,:]
# or
xv = x.reshape((x.size, 1))
yv = y.reshape((1, y.size))

This is a standard required technique when evaluating functions over a
2D mesh, say sin(xv)*cos(xv), which then gives a result with shape
(Nx+1,Ny+1). Calling I(xv, yv) and f(xv, yv, t[n]) will now return
I and f values for the entire set of mesh points.

With the xv and yv arrays for vectorized computing, setting the initial
condition is just a matter of
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u_n[:,:] = I(xv, yv)

One could also have written u_n = I(xv, yv) and let u_n point to a
new object, but vectorized operations often make use of direct insertion
in the original array through u_n[:,:], because sometimes not all of the
array is to be filled by such a function evaluation. This is the case with
the computational scheme for un+1

i,j :

def advance_vectorized(u, u_n, u_nm1, f_a, Cx2, Cy2, dt2,
V=None, step1=False):

if step1:
dt = np.sqrt(dt2) # save
Cx2 = 0.5*Cx2; Cy2 = 0.5*Cy2; dt2 = 0.5*dt2 # redefine
D1 = 1; D2 = 0

else:
D1 = 2; D2 = 1

u_xx = u_n[:-2,1:-1] - 2*u_n[1:-1,1:-1] + u_n[2:,1:-1]
u_yy = u_n[1:-1,:-2] - 2*u_n[1:-1,1:-1] + u_n[1:-1,2:]
u[1:-1,1:-1] = D1*u_n[1:-1,1:-1] - D2*u_nm1[1:-1,1:-1] + \

Cx2*u_xx + Cy2*u_yy + dt2*f_a[1:-1,1:-1]
if step1:

u[1:-1,1:-1] += dt*V[1:-1, 1:-1]
# Boundary condition u=0
j = 0
u[:,j] = 0
j = u.shape[1]-1
u[:,j] = 0
i = 0
u[i,:] = 0
i = u.shape[0]-1
u[i,:] = 0
return u

Array slices in 2D are more complicated to understand than those
in 1D, but the logic from 1D applies to each dimension separately. For
example, when doing uni,j − uni−1,j for i ∈ I+

x , we just keep j constant
and make a slice in the first index: u_n[1:,j] - u_n[:-1,j], exactly
as in 1D. The 1: slice specifies all the indices i = 1, 2, . . . , Nx (up to the
last valid index), while :-1 specifies the relevant indices for the second
term: 0, 1, . . . , Nx − 1 (up to, but not including the last index).

In the above code segment, the situation is slightly more complicated,
because each displaced slice in one direction is accompanied by a 1:-1
slice in the other direction. The reason is that we only work with the
internal points for the index that is kept constant in a difference.

The boundary conditions along the four sides makes use of a slice
consisting of all indices along a boundary:

u[: ,0] = 0
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u[:,Ny] = 0
u[0 ,:] = 0
u[Nx,:] = 0

In the vectorized update of u (above), the function f is first computed
as an array over all mesh points:

f_a = f(xv, yv, t[n])

We could, alternatively, have used the call f(xv, yv, t[n])[1:-1,1:-1]
in the last term of the update statement, but other implementations in
compiled languages benefit from having f available in an array rather
than calling our Python function f(x,y,t) for every point.

Also in the advance_vectorized function we have introduced a
boolean step1 to reuse the formula for the first time step in the same
way as we did with advance_scalar. We refer to the solver function
in wave2D_u0.py for the details on how the overall algorithm is imple-
mented.

The callback function now has the arguments u, x, xv, y, yv, t,
n. The inclusion of xv and yv makes it easy to, e.g., compute an exact
2D solution in the callback function and compute errors, through an
expression like u - u_exact(xv, yv, t[n]).

2.12.3 Verification
Testing a quadratic solution. The 1D solution from Section 2.2.4 can
be generalized to multi-dimensions and provides a test case where the
exact solution also fulfills the discrete equations, such that we know (to
machine precision) what numbers the solver function should produce. In
2D we use the following generalization of (2.30):

ue(x, y, t) = x(Lx − x)y(Ly − y)(1 + 1
2 t) . (2.119)

This solution fulfills the PDE problem if I(x, y) = ue(x, y, 0), V =
1
2ue(x, y, 0), and f = 2c2(1 + 1

2 t)(y(Ly − y) + x(Lx − x)). To show that
ue also solves the discrete equations, we start with the general results
[DtDt1]n = 0, [DtDtt]n = 0, and [DtDtt

2] = 2, and use these to compute

[DxDxue]ni,j = [y(Ly − y)(1 + 1
2 t)DxDxx(Lx − x)]ni,j

= yj(Ly − yj)(1 + 1
2 tn)(−2) .
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A similar calculation must be carried out for the [DyDyue]ni,j and
[DtDtue]ni,j terms. One must also show that the quadratic solution fits
the special formula for u1

i,j . The details are left as Exercise 2.16. The
test_quadratic function in the wave2D_u0.py program implements this
verification as a proper test function for the pytest and nose frameworks.

2.12.4 Visualization

Eventually, we are ready with a real application with our code! Look
at the wave2D_u0.py and the gaussian function. It starts with a Gaus-
sian function to see how it propagates in a square with u = 0 on the
boundaries:

def gaussian(plot_method=2, version=’vectorized’, save_plot=True):
"""
Initial Gaussian bell in the middle of the domain.
plot_method=1 applies mesh function,
=2 means surf, =3 means Matplotlib, =4 means mayavi,
=0 means no plot.
"""
# Clean up plot files
for name in glob(’tmp_*.png’):

os.remove(name)

Lx = 10
Ly = 10
c = 1.0

from numpy import exp

def I(x, y):
"""Gaussian peak at (Lx/2, Ly/2)."""
return exp(-0.5*(x-Lx/2.0)**2 - 0.5*(y-Ly/2.0)**2)

def plot_u(u, x, xv, y, yv, t, n):
"""User action function for plotting."""

...

Nx = 40; Ny = 40; T = 20
dt, cpu = solver(I, None, None, c, Lx, Ly, Nx, Ny, -1, T,

user_action=plot_u, version=version)

Matplotlib. We want to animate a 3D surface in Matplotlib, but this is
a really slow process and not recommended, so we consider Matplotlib
not an option as long as on-screen animation is desired. One can use the
recipes for single shots of u, where it does produce high-quality 3D plots.

http://tinyurl.com/nu656p2/wave/wave2D_u0/wave2D_u0.py
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Gnuplot. Let us look at different ways for visualization. We import
SciTools as st and can access st.mesh and st.surf in Matplotlib or
Gnuplot, but this is not supported except for the Gnuplot package, where
it works really well (Figure 2.8). Then we choose plot_method=2 (or
less relevant plot_method=1) and force the backend for SciTools to be
Gnuplot (if you have the C package Gnuplot and the Gnuplot.py Python
interface module installed):

Terminal

Terminal> python wave2D_u0.py --SCITOOLS_easyviz_backend gnuplot

It gives a nice visualization with lifted surface and contours beneath.
Figure 2.8 shows four plots of u.

Fig. 2.8 Snapshots of the surface plotted by Gnuplot.

Video files can be made of the PNG frames:
Terminal

Terminal> ffmpeg -i tmp_%04d.png -r 25 -vcodec flv movie.flv
Terminal> ffmpeg -i tmp_%04d.png -r 25 -vcodec linx264 movie.mp4
Terminal> ffmpeg -i tmp_%04d.png -r 25 -vcodec libvpx movie.webm
Terminal> ffmpeg -i tmp_%04d.png -r 25 -vcodec libtheora movie.ogg
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It is wise to use a high frame rate – a low one will just skip many frames.
There may also be considerable quality differences between the different
formats.

Movie 1: https://raw.githubusercontent.com/hplgit/fdm-book/master/doc/
.src/book/mov-wave/gnuplot/wave2D_u0_gaussian/movie25.mp4

Mayavi. The best option for doing visualization of 2D and 3D scalar and
vector fields in Python programs is Mayavi, which is an interface to the
high-quality package VTK in C++. There is good online documentation
and also an introduction in Chapter 5 of [10].

To obtain Mayavi on Ubuntu platforms you can write
Terminal

pip install mayavi --upgrade

For Mac OS X and Windows, we recommend using Anaconda. To obtain
Mayavi for Anaconda you can write

Terminal

conda install mayavi

Mayavi has a MATLAB-like interface called mlab. We can do

import mayavi.mlab as plt
# or
from mayavi import mlab

and have plt (as usual) or mlab as a kind of MATLAB visualization
access inside our program (just more powerful and with higher visual
quality).

The official documentation of the mlab module is provided in two
places, one for the basic functionality and one for further functionality.
Basic figure handling is very similar to the one we know from Matplotlib.
Just as for Matplotlib, all plotting commands you do in mlab will go into
the same figure, until you manually change to a new figure.

Back to our application, the following code for the user action function
with plotting in Mayavi is relevant to add.

# Top of the file
try:

import mayavi.mlab as mlab
except:

# We don’t have mayavi
pass

https://raw.githubusercontent.com/hplgit/fdm-book/master/doc/.src/book/mov-wave/gnuplot/wave2D_u0_gaussian/movie25.mp4
https://raw.githubusercontent.com/hplgit/fdm-book/master/doc/.src/book/mov-wave/gnuplot/wave2D_u0_gaussian/movie25.mp4
http://docs.enthought.com/mayavi/mayavi/auto/mlab_helper_functions.html
http://docs.enthought.com/mayavi/mayavi/auto/mlab_other_functions.html
http://docs.enthought.com/mayavi/mayavi/auto/mlab_figure.html
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def solver(...):
...

def gaussian(...):
...
if plot_method == 3:

from mpl_toolkits.mplot3d import axes3d
import matplotlib.pyplot as plt
from matplotlib import cm
plt.ion()
fig = plt.figure()
u_surf = None

def plot_u(u, x, xv, y, yv, t, n):
"""User action function for plotting."""
if t[n] == 0:

time.sleep(2)
if plot_method == 1:

# Works well with Gnuplot backend, not with Matplotlib
st.mesh(x, y, u, title=’t=%g’ % t[n], zlim=[-1,1],

caxis=[-1,1])
elif plot_method == 2:

# Works well with Gnuplot backend, not with Matplotlib
st.surfc(xv, yv, u, title=’t=%g’ % t[n], zlim=[-1, 1],

colorbar=True, colormap=st.hot(), caxis=[-1,1],
shading=’flat’)

elif plot_method == 3:
print ’Experimental 3D matplotlib...not recommended’

elif plot_method == 4:
# Mayavi visualization

mlab.clf()
extent1 = (0, 20, 0, 20,-2, 2)
s = mlab.surf(x , y, u,

colormap=’Blues’,
warp_scale=5,extent=extent1)

mlab.axes(s, color=(.7, .7, .7), extent=extent1,
ranges=(0, 10, 0, 10, -1, 1),
xlabel=’’, ylabel=’’, zlabel=’’,
x_axis_visibility=False,
z_axis_visibility=False)

mlab.outline(s, color=(0.7, .7, .7), extent=extent1)
mlab.text(6, -2.5, ’’, z=-4, width=0.14)
mlab.colorbar(object=None, title=None,

orientation=’horizontal’,
nb_labels=None, nb_colors=None,
label_fmt=None)

mlab.title(’Gaussian t=%g’ % t[n])
mlab.view(142, -72, 50)
f = mlab.gcf()
camera = f.scene.camera
camera.yaw(0)

if plot_method > 0:
time.sleep(0) # pause between frames
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if save_plot:
filename = ’tmp_%04d.png’ % n

if plot_method == 4:
mlab.savefig(filename) # time consuming!

elif plot_method in (1,2):
st.savefig(filename) # time consuming!

This is a point to get started – visualization is as always a very time-
consuming and experimental discipline. With the PNG files we can use
ffmpeg to create videos.

Fig. 2.9 Plot with Mayavi.

Movie 2: https://raw.githubusercontent.com/hplgit/fdm-book/master/doc/
.src/book/mov-wave/mayavi/wave2D_u0_gaussian/movie.mp4

2.13 Exercises

Exercise 2.16: Check that a solution fulfills the discrete
model
Carry out all mathematical details to show that (2.119) is indeed a
solution of the discrete model for a 2D wave equation with u = 0 on the
boundary. One must check the boundary conditions, the initial conditions,
the general discrete equation at a time level and the special version of this
equation for the first time level. Filename: check_quadratic_solution.

https://raw.githubusercontent.com/hplgit/fdm-book/master/doc/.src/book/mov-wave/mayavi/wave2D_u0_gaussian/movie.mp4
https://raw.githubusercontent.com/hplgit/fdm-book/master/doc/.src/book/mov-wave/mayavi/wave2D_u0_gaussian/movie.mp4
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Project 2.17: Calculus with 2D mesh functions

The goal of this project is to redo Project 2.6 with 2D mesh functions
(fi,j).

Differentiation. The differentiation results in a discrete gradient func-
tion, which in the 2D case can be represented by a three-dimensional
array df[d,i,j] where d represents the direction of the derivative, and
i,j is a mesh point in 2D. Use centered differences for the derivative
at inner points and one-sided forward or backward differences at the
boundary points. Construct unit tests and write a corresponding test
function.

Integration. The integral of a 2D mesh function fi,j is defined as

Fi,j =
∫ yj

y0

∫ xi

x0

f(x, y)dxdy,

where f(x, y) is a function that takes on the values of the discrete mesh
function fi,j at the mesh points, but can also be evaluated in between
the mesh points. The particular variation between mesh points can be
taken as bilinear, but this is not important as we will use a product
Trapezoidal rule to approximate the integral over a cell in the mesh and
then we only need to evaluate f(x, y) at the mesh points.

Suppose Fi,j is computed. The calculation of Fi+1,j is then

Fi+1,j = Fi,j +
∫ xi+1

xi

∫ yj

y0

f(x, y)dydx

≈ ∆x
1
2

(∫ yj

y0

f(xi, y)dy +
∫ yj

y0

f(xi+1, y)dy
)

The integrals in the y direction can be approximated by a Trapezoidal
rule. A similar idea can be used to compute Fi,j+1. Thereafter, Fi+1,j+1
can be computed by adding the integral over the final corner cell to
Fi+1,j + Fi,j+1 − Fi,j . Carry out the details of these computations and
implement a function that can return Fi,j for all mesh indices i and j.
Use the fact that the Trapezoidal rule is exact for linear functions and
write a test function. Filename: mesh_calculus_2D.
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Exercise 2.18: Implement Neumann conditions in 2D

Modify the wave2D_u0.py program, which solves the 2D wave equation
utt = c2(uxx + uyy) with constant wave velocity c and u = 0 on the
boundary, to have Neumann boundary conditions: ∂u/∂n = 0. Include
both scalar code (for debugging and reference) and vectorized code (for
speed).

To test the code, use u = 1.2 as solution (I(x, y) = 1.2, V = f = 0, and
c arbitrary), which should be exactly reproduced with any mesh as long as
the stability criterion is satisfied. Another test is to use the plug-shaped
pulse in the pulse function from Section 2.8 and the wave1D_dn_vc.py
program. This pulse is exactly propagated in 1D if c∆t/∆x = 1. Check
that also the 2D program can propagate this pulse exactly in x direction
(c∆t/∆x = 1, ∆y arbitrary) and y direction (c∆t/∆y = 1, ∆x arbitrary).
Filename: wave2D_dn.

Exercise 2.19: Test the efficiency of compiled loops in 3D

Extend the wave2D_u0.py code and the Cython, Fortran, and C versions
to 3D. Set up an efficiency experiment to determine the relative efficiency
of pure scalar Python code, vectorized code, Cython-compiled loops,
Fortran-compiled loops, and C-compiled loops. Normalize the CPU time
for each mesh by the fastest version. Filename: wave3D_u0.

2.14 Applications of wave equations

This section presents a range of wave equation models for different physi-
cal phenomena. Although many wave motion problems in physics can be
modeled by the standard linear wave equation, or a similar formulation
with a system of first-order equations, there are some exceptions. Perhaps
the most important is water waves: these are modeled by the Laplace
equation with time-dependent boundary conditions at the water surface
(long water waves, however, can be approximated by a standard wave
equation, see Section 2.14.7). Quantum mechanical waves constitute
another example where the waves are governed by the Schrödinger equa-
tion, i.e., not by a standard wave equation. Many wave phenomena also
need to take nonlinear effects into account when the wave amplitude is
significant. Shock waves in the air is a primary example.

http://tinyurl.com/nu656p2/wave/wave2D_u0/wave2D_u0.py
http://tinyurl.com/nu656p2/wave/wave1D/wave1D_dn_vc.py
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The derivations in the following are very brief. Those with a firm
background in continuum mechanics will probably have enough knowledge
to fill in the details, while other readers will hopefully get some impression
of the physics and approximations involved when establishing wave
equation models.

2.14.1 Waves on a string

ui

ui−1

ui+1

xi xi+1xi−1

T
T

Fig. 2.10 Discrete string model with point masses connected by elastic strings.

Figure 2.10 shows a model we may use to derive the equation for
waves on a string. The string is modeled as a set of discrete point
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masses (at mesh points) with elastic strings in between. The string has a
large constant tension T . We let the mass at mesh point xi be mi. The
displacement of this mass point in the y direction is denoted by ui(t).

The motion of mass mi is governed by Newton’s second law of motion.
The position of the mass at time t is xii+ ui(t)j, where i and j are unit
vectors in the x and y direction, respectively. The acceleration is then
u′′i (t)j. Two forces are acting on the mass as indicated in Figure 2.10.
The force T− acting toward the point xi−1 can be decomposed as

T− = −T sinφi− T cosφj,

where φ is the angle between the force and the line x = xi. Let ∆ui = ui−
ui−1 and let ∆si =

√
∆u2

i + (xi − xi−1)2 be the distance from mass mi−1
to mass mi. It is seen that cosφ = ∆ui/∆si and sinφ = (xi − xi−1)/∆s
or ∆x/∆si if we introduce a constant mesh spacing ∆x = xi− xi−1. The
force can then be written

T− = −T ∆x
∆si

i− T ∆ui
∆si

j .

The force T+ acting toward xi+1 can be calculated in a similar way:

T+ = T
∆x

∆si+1
i+ T

∆ui+1

∆si+1
j .

Newton’s second law becomes

miu
′′
i (t)j = T+ + T−,

which gives the component equations

T
∆x

∆si
= T

∆x

∆si+1
, (2.120)

miu
′′
i (t) = T

∆ui+1

∆si+1
− T ∆ui

∆si
. (2.121)

A basic reasonable assumption for a string is small displacements ui
and small displacement gradients ∆ui/∆x. For small g = ∆ui/∆x we
have that

∆si =
√
∆u2

i +∆x2 = ∆x
√

1 + g2 +∆x(1 + 1
2g

2 +O(g4) ≈ ∆x .
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Equation (2.120) is then simply the identity T = T , while (2.121) can be
written as

miu
′′
i (t) = T

∆ui+1

∆x
− T ∆ui

∆x
,

which upon division by ∆x and introducing the density %i = mi/∆x
becomes

%iu
′′
i (t) = T

1
∆x2 (ui+1 − 2ui + ui−1) . (2.122)

We can now choose to approximate u′′i by a finite difference in time and
get the discretized wave equation,

%i
1
∆t2

(
un+1
i − 2uni − un−1

i

)
= T

1
∆x2 (ui+1 − 2ui + ui−1) . (2.123)

On the other hand, we may go to the continuum limit ∆x → 0 and
replace ui(t) by u(x, t), %i by %(x), and recognize that the right-hand
side of (2.122) approaches ∂2u/∂x2 as ∆x → 0. We end up with the
continuous model for waves on a string:

%
∂2u

∂t2
= T

∂2u

∂x2 . (2.124)

Note that the density % may change along the string, while the tension T
is a constant. With variable wave velocity c(x) =

√
T/%(x) we can write

the wave equation in the more standard form

∂2u

∂t2
= c2(x)∂

2u

∂x2 . (2.125)

Because of the way % enters the equations, the variable wave velocity
does not appear inside the derivatives as in many other versions of the
wave equation. However, most strings of interest have constant %.

The end points of a string are fixed so that the displacement u is zero.
The boundary conditions are therefore u = 0.

Damping. Air resistance and non-elastic effects in the string will con-
tribute to reduce the amplitudes of the waves so that the motion dies
out after some time. This damping effect can be modeled by a term but
on the left-hand side of the equation

%
∂2u

∂t2
+ b

∂u

∂t
= T

∂2u

∂x2 . (2.126)
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The parameter b ≥ 0 is small for most wave phenomena, but the damping
effect may become significant in long time simulations.
External forcing. It is easy to include an external force acting on the
string. Say we have a vertical force f̃ij acting on mass mi, modeling the
effect of gravity on a string. This force affects the vertical component of
Newton’s law and gives rise to an extra term f̃(x, t) on the right-hand
side of (2.124). In the model (2.125) we would add a term f(x, t) =
f̃(x, t)/%(x).
Modeling the tension via springs. We assumed, in the derivation above,
that the tension in the string, T , was constant. It is easy to check this
assumption by modeling the string segments between the masses as
standard springs, where the force (tension T ) is proportional to the
elongation of the spring segment. Let k be the spring constant, and set
Ti = k∆` for the tension in the spring segment between xi−1 and xi,
where ∆` is the elongation of this segment from the tension-free state.
A basic feature of a string is that it has high tension in the equilibrium
position u = 0. Let the string segment have an elongation ∆`0 in the
equilibrium position. After deformation of the string, the elongation is
∆` = ∆`0 +∆si: Ti = k(∆`0 +∆si) ≈ k(∆`0 +∆x). This shows that Ti
is independent of i. Moreover, the extra approximate elongation ∆x is
very small compared to ∆`0, so we may well set Ti = T = k∆`0. This
means that the tension is completely dominated by the initial tension
determined by the tuning of the string. The additional deformations of
the spring during the vibrations do not introduce significant changes in
the tension.

2.14.2 Elastic waves in a rod
Consider an elastic rod subject to a hammer impact at the end. This
experiment will give rise to an elastic deformation pulse that travels
through the rod. A mathematical model for longitudinal waves along an
elastic rod starts with the general equation for deformations and stresses
in an elastic medium,

%utt = ∇ · σ + %f , (2.127)

where % is the density, u the displacement field, σ the stress tensor, and
f body forces. The latter has normally no impact on elastic waves.

For stationary deformation of an elastic rod, aligned with the x axis,
one has that σxx = Eux, with all other stress components being zero.
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The parameter E is known as Young’s modulus. Moreover, we set u =
u(x, t)i and neglect the radial contraction and expansion (where Poisson’s
ratio is the important parameter). Assuming that this simple stress and
deformation field is a good approximation, (2.127) simplifies to

%
∂2u

∂t2
= ∂

∂x

(
E
∂u

∂x

)
. (2.128)

The associated boundary conditions are u or σxx = Eux known,
typically u = 0 for a fixed end and σxx = 0 for a free end.

2.14.3 Waves on a membrane

Think of a thin, elastic membrane with shape as a circle or rectangle. This
membrane can be brought into oscillatory motion and will develop elastic
waves. We can model this phenomenon somewhat similar to waves in a
rod: waves in a membrane are simply the two-dimensional counterpart.
We assume that the material is deformed in the z direction only and write
the elastic displacement field on the form u(x, y, t) = w(x, y, t)i. The z
coordinate is omitted since the membrane is thin and all properties are
taken as constant throughout the thickness. Inserting this displacement
field in Newton’s 2nd law of motion (2.127) results in

%
∂2w

∂t2
= ∂

∂x

(
µ
∂w

∂x

)
+ ∂

∂y

(
µ
∂w

∂y

)
. (2.129)

This is nothing but a wave equation in w(x, y, t), which needs the usual
initial conditions on w and wt as well as a boundary condition w = 0.
When computing the stress in the membrane, one needs to split σ into a
constant high-stress component due to the fact that all membranes are
normally pre-stressed, plus a component proportional to the displacement
and governed by the wave motion.

2.14.4 The acoustic model for seismic waves

Seismic waves are used to infer properties of subsurface geological struc-
tures. The physical model is a heterogeneous elastic medium where
sound is propagated by small elastic vibrations. The general mathemati-
cal model for deformations in an elastic medium is based on Newton’s
second law,
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%utt = ∇ · σ + %f , (2.130)

and a constitutive law relating σ to u, often Hooke’s generalized law,

σ = K∇ · uI +G(∇u+ (∇u)T − 2
3∇ · uI) . (2.131)

Here, u is the displacement field, σ is the stress tensor, I is the identity
tensor, % is the medium’s density, f are body forces (such as gravity),
K is the medium’s bulk modulus and G is the shear modulus. All these
quantities may vary in space, while u and σ will also show significant
variation in time during wave motion.

The acoustic approximation to elastic waves arises from a basic assump-
tion that the second term in Hooke’s law, representing the deformations
that give rise to shear stresses, can be neglected. This assumption can be
interpreted as approximating the geological medium by a fluid. Neglecting
also the body forces f , (2.130) becomes

%utt = ∇(K∇ · u) (2.132)

Introducing p as a pressure via

p = −K∇ · u, (2.133)

and dividing (2.132) by %, we get

utt = −1
%
∇p . (2.134)

Taking the divergence of this equation, using ∇·u = −p/K from (2.133),
gives the acoustic approximation to elastic waves:

ptt = K∇ ·
(1
%
∇p
)
. (2.135)

This is a standard, linear wave equation with variable coefficients. It is
common to add a source term s(x, y, z, t) to model the generation of
sound waves:

ptt = K∇ ·
(1
%
∇p
)

+ s . (2.136)

A common additional approximation of (2.136) is based on using the
chain rule on the right-hand side,
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K∇ ·
(1
%
∇p
)

= K

%
∇2p+K∇

(1
%

)
· ∇p ≈ K

%
∇2p,

under the assumption that the relative spatial gradient ∇%−1 = −%−2∇%
is small. This approximation results in the simplified equation

ptt = K

%
∇2p+ s . (2.137)

The acoustic approximations to seismic waves are used for sound waves
in the ground, and the Earth’s surface is then a boundary where p equals
the atmospheric pressure p0 such that the boundary condition becomes
p = p0.
Anisotropy. Quite often in geological materials, the effective wave veloc-
ity c =

√
K/% is different in different spatial directions because geological

layers are compacted, and often twisted, in such a way that the proper-
ties in the horizontal and vertical direction differ. With z as the vertical
coordinate, we can introduce a vertical wave velocity cz and a horizontal
wave velocity ch, and generalize (2.137) to

ptt = c2
zpzz + c2

h(pxx + pyy) + s . (2.138)

2.14.5 Sound waves in liquids and gases

Sound waves arise from pressure and density variations in fluids. The
starting point of modeling sound waves is the basic equations for a
compressible fluid where we omit viscous (frictional) forces, body forces
(gravity, for instance), and temperature effects:

%t +∇ · (%u) = 0, (2.139)
%ut + %u · ∇u = −∇p, (2.140)

% = %(p) . (2.141)

These equations are often referred to as the Euler equations for the motion
of a fluid. The parameters involved are the density %, the velocity u, and
the pressure p. Equation reflects (2.139) mass balance, (2.140) is Newton’s
second law for a fluid, with frictional and body forces omitted, and (2.141)
is a constitutive law relating density to pressure by thermodynamic
considerations. A typical model for (2.141) is the so-called isentropic
relation, valid for adiabatic processes where there is no heat transfer:

http://en.wikipedia.org/wiki/Isentropic_process
http://en.wikipedia.org/wiki/Isentropic_process
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% = %0

(
p

p0

)1/γ
. (2.142)

Here, p0 and %0 are reference values for p and % when the fluid is at
rest, and γ is the ratio of specific heat at constant pressure and constant
volume (γ = 5/3 for air).

The key approximation in a mathematical model for sound waves is to
assume that these waves are small perturbations to the density, pressure,
and velocity. We therefore write

p = p0 + p̂,

% = %0 + %̂,

u = û,

where we have decomposed the fields in a constant equilibrium value,
corresponding to u = 0, and a small perturbation marked with a hat
symbol. By inserting these decompositions in (2.139) and (2.140), ne-
glecting all product terms of small perturbations and/or their derivatives,
and dropping the hat symbols, one gets the following linearized PDE
system for the small perturbations in density, pressure, and velocity:

%t + %0∇ · u = 0, (2.143)
%0ut = −∇p . (2.144)

Now we can eliminate %t by differentiating the relation %(p),

%t = %0
1
γ

(
p

p0

)1/γ−1 1
p0
pt = %0

γp0

(
p

p0

)1/γ−1
pt .

The product term p1/γ−1pt can be linearized as p1/γ−1
0 pt, resulting in

%t ≈
%0

γp0
pt .

We then get

pt + γp0∇ · u = 0, (2.145)

ut = − 1
%0
∇p, . (2.146)
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Taking the divergence of (2.146) and differentiating (2.145) with respect
to time gives the possibility to easily eliminate ∇ · ut and arrive at a
standard, linear wave equation for p:

ptt = c2∇2p, (2.147)

where c =
√
γp0/%0 is the speed of sound in the fluid.

2.14.6 Spherical waves

Spherically symmetric three-dimensional waves propagate in the radial
direction r only so that u = u(r, t). The fully three-dimensional wave
equation

∂2u

∂t2
= ∇ · (c2∇u) + f

then reduces to the spherically symmetric wave equation

∂2u

∂t2
= 1
r2

∂

∂r

(
c2(r)r2∂u

∂r

)
+ f(r, t), r ∈ (0, R), t > 0 . (2.148)

One can easily show that the function v(r, t) = ru(r, t) fulfills a standard
wave equation in Cartesian coordinates if c is constant. To this end, insert
u = v/r in

1
r2

∂

∂r

(
c2(r)r2∂u

∂r

)
to obtain

r

(
dc2

dr

∂v

∂r
+ c2∂

2v

∂r2

)
− dc2

dr
v .

The two terms in the parenthesis can be combined to

r
∂

∂r

(
c2∂v

∂r

)
,

which is recognized as the variable-coefficient Laplace operator in one
Cartesian coordinate. The spherically symmetric wave equation in terms
of v(r, t) now becomes
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∂2v

∂t2
= ∂

∂r

(
c2(r)∂v

∂r

)
− 1
r

dc2

dr
v + rf(r, t), r ∈ (0, R), t > 0 . (2.149)

In the case of constant wave velocity c, this equation reduces to the wave
equation in a single Cartesian coordinate called r:

∂2v

∂t2
= c2∂

2v

∂r2 + rf(r, t), r ∈ (0, R), t > 0 . (2.150)

That is, any program for solving the one-dimensional wave equation in
a Cartesian coordinate system can be used to solve (2.150), provided
the source term is multiplied by the coordinate, and that we divide the
Cartesian mesh solution by r to get the spherically symmetric solution.
Moreover, if r = 0 is included in the domain, spherical symmetry demands
that ∂u/∂r = 0 at r = 0, which means that

∂u

∂r
= 1
r2

(
r
∂v

∂r
− v

)
= 0, r = 0 .

For this to hold in the limit r → 0, we must have v(0, t) = 0 at least as
a necessary condition. In most practical applications, we exclude r = 0
from the domain and assume that some boundary condition is assigned
at r = ε, for some ε > 0.

2.14.7 The linear shallow water equations

The next example considers water waves whose wavelengths are much
larger than the depth and whose wave amplitudes are small. This class
of waves may be generated by catastrophic geophysical events, such
as earthquakes at the sea bottom, landslides moving into water, or
underwater slides (or a combination, as earthquakes frequently release
avalanches of masses). For example, a subsea earthquake will normally
have an extension of many kilometers but lift the water only a few
meters. The wave length will have a size dictated by the earthquake
area, which is much lager than the water depth, and compared to this
wave length, an amplitude of a few meters is very small. The water is
essentially a thin film, and mathematically we can average the problem
in the vertical direction and approximate the 3D wave phenomenon by
2D PDEs. Instead of a moving water domain in three space dimensions,
we get a horizontal 2D domain with an unknown function for the surface
elevation and the water depth as a variable coefficient in the PDEs.
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Let η(x, y, t) be the elevation of the water surface, H(x, y) the water
depth corresponding to a flat surface (η = 0), u(x, y, t) and v(x, y, t) the
depth-averaged horizontal velocities of the water. Mass and momentum
balance of the water volume give rise to the PDEs involving these
quantities:

ηt = −(Hu)x − (Hv)x (2.151)
ut = −gηx, (2.152)
vt = −gηy, (2.153)

where g is the acceleration of gravity. Equation (2.151) corresponds to
mass balance while the other two are derived from momentum balance
(Newton’s second law).

The initial conditions associated with (2.151)-(2.153) are η, u, and v
prescribed at t = 0. A common condition is to have some water elevation
η = I(x, y) and assume that the surface is at rest: u = v = 0. A subsea
earthquake usually means a sufficiently rapid motion of the bottom and
the water volume to say that the bottom deformation is mirrored at the
water surface as an initial lift I(x, y) and that u = v = 0.

Boundary conditions may be η prescribed for incoming, known waves,
or zero normal velocity at reflecting boundaries (steep mountains, for
instance): unx + vny = 0, where (nx, ny) is the outward unit normal to
the boundary. More sophisticated boundary conditions are needed when
waves run up at the shore, and at open boundaries where we want the
waves to leave the computational domain undisturbed.

Equations (2.151), (2.152), and (2.153) can be transformed to a stan-
dard, linear wave equation. First, multiply (2.152) and (2.153) by H,
differentiate (2.152)) with respect to x and (2.153) with respect to y. Sec-
ond, differentiate (2.151) with respect to t and use that (Hu)xt = (Hut)x
and (Hv)yt = (Hvt)y when H is independent of t. Third, eliminate
(Hut)x and (Hvt)y with the aid of the other two differentiated equations.
These manipulations result in a standard, linear wave equation for η:

ηtt = (gHηx)x + (gHηy)y = ∇ · (gH∇η) . (2.154)

In the case we have an initial non-flat water surface at rest, the initial
conditions become η = I(x, y) and ηt = 0. The latter follows from (2.151)
if u = v = 0, or simply from the fact that the vertical velocity of the
surface is ηt, which is zero for a surface at rest.
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The system (2.151)-(2.153) can be extended to handle a time-varying
bottom topography, which is relevant for modeling long waves generated
by underwater slides. In such cases the water depth function H is also
a function of t, due to the moving slide, and one must add a time-
derivative term Ht to the left-hand side of (2.151). A moving bottom
is best described by introducing z = H0 as the still-water level, z =
B(x, y, t) as the time- and space-varying bottom topography, so that
H = H0 −B(x, y, t). In the elimination of u and v one may assume that
the dependence of H on t can be neglected in the terms (Hu)xt and
(Hv)yt. We then end up with a source term in (2.154), because of the
moving (accelerating) bottom:

ηtt = ∇ · (gH∇η) +Btt . (2.155)

The reduction of (2.155) to 1D, for long waves in a straight channel,
or for approximately plane waves in the ocean, is trivial by assuming no
change in y direction (∂/∂y = 0):

ηtt = (gHηx)x +Btt . (2.156)

Wind drag on the surface. Surface waves are influenced by the drag of
the wind, and if the wind velocity some meters above the surface is (U, V ),
the wind drag gives contributions CV

√
U2 + V 2U and CV

√
U2 + V 2V

to (2.152) and (2.153), respectively, on the right-hand sides.

Bottom drag. The waves will experience a drag from the bottom, often
roughly modeled by a term similar to the wind drag: CB

√
u2 + v2u on

the right-hand side of (2.152) and CB
√
u2 + v2v on the right-hand side

of (2.153). Note that in this case the PDEs (2.152) and (2.153) become
nonlinear and the elimination of u and v to arrive at a 2nd-order wave
equation for η is not possible anymore.

Effect of the Earth’s rotation. Long geophysical waves will often be
affected by the rotation of the Earth because of the Coriolis force. This
force gives rise to a term fv on the right-hand side of (2.152) and −fu
on the right-hand side of (2.153). Also in this case one cannot eliminate
u and v to work with a single equation for η. The Coriolis parameter is
f = 2Ω sinφ, where Ω is the angular velocity of the earth and φ is the
latitude.
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2.14.8 Waves in blood vessels

The flow of blood in our bodies is basically fluid flow in a network of
pipes. Unlike rigid pipes, the walls in the blood vessels are elastic and
will increase their diameter when the pressure rises. The elastic forces
will then push the wall back and accelerate the fluid. This interaction
between the flow of blood and the deformation of the vessel wall results
in waves traveling along our blood vessels.

A model for one-dimensional waves along blood vessels can be derived
from averaging the fluid flow over the cross section of the blood vessels. Let
x be a coordinate along the blood vessel and assume that all cross sections
are circular, though with different radii R(x, t). The main quantities to
compute is the cross section area A(x, t), the averaged pressure P (x, t),
and the total volume flux Q(x, t). The area of this cross section is

A(x, t) = 2π
∫ R(x,t)

0
rdr, (2.157)

Let vx(x, t) be the velocity of blood averaged over the cross section at
point x. The volume flux, being the total volume of blood passing a cross
section per time unit, becomes

Q(x, t) = A(x, t)vx(x, t) (2.158)

Mass balance and Newton’s second law lead to the PDEs

∂A

∂t
+ ∂Q

∂x
= 0, (2.159)

∂Q

∂t
+ γ + 2
γ + 1

∂

∂x

(
Q2

A

)
+ A

%

∂P

∂x
= −2π(γ + 2)µ

%

Q

A
, (2.160)

where γ is a parameter related to the velocity profile, % is the density of
blood, and µ is the dynamic viscosity of blood.

We have three unknowns A, Q, and P , and two equations (2.159) and
(2.160). A third equation is needed to relate the flow to the deformations
of the wall. A common form for this equation is

∂P

∂t
+ 1
C

∂Q

∂x
= 0, (2.161)

where C is the compliance of the wall, given by the constitutive relation
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C = ∂A

∂P
+ ∂A

∂t
, (2.162)

which requires a relationship between A and P . One common model is to
view the vessel wall, locally, as a thin elastic tube subject to an internal
pressure. This gives the relation

P = P0 + πhE

(1− ν2)A0
(
√
A−

√
A0),

where P0 and A0 are corresponding reference values when the wall is
not deformed, h is the thickness of the wall, and E and ν are Young’s
modulus and Poisson’s ratio of the elastic material in the wall. The
derivative becomes

C = ∂A

∂P
= 2(1− ν2)A0

πhE

√
A0 + 2

(
(1− ν2)A0

πhE

)2

(P − P0) . (2.163)

Another (nonlinear) deformation model of the wall, which has a better
fit with experiments, is

P = P0 exp (β(A/A0 − 1)),

where β is some parameter to be estimated. This law leads to

C = ∂A

∂P
= A0

βP
. (2.164)

Reduction to the standard wave equation. It is not uncommon to
neglect the viscous term on the right-hand side of (2.160) and also the
quadratic term with Q2 on the left-hand side. The reduced equations
(2.160) and (2.161) form a first-order linear wave equation system:

C
∂P

∂t
= −∂Q

∂x
, (2.165)

∂Q

∂t
= −A

%

∂P

∂x
. (2.166)

These can be combined into standard 1D wave PDE by differentiating
the first equation with respect to t and the second with respect to x,

∂

∂t

(
C
∂P

∂t

)
= ∂

∂x

(
A

%

∂P

∂x

)
,
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which can be approximated by

∂2Q

∂t2
= c2∂

2Q

∂x2 , c =
√

A

%C
, (2.167)

where the A and C in the expression for c are taken as constant reference
values.

2.14.9 Electromagnetic waves

Light and radio waves are governed by standard wave equations arising
from Maxwell’s general equations. When there are no charges and no
currents, as in a vacuum, Maxwell’s equations take the form

∇ ·EEE = 0,
∇ ·BBB = 0,

∇×EEE = −∂B
BB

∂t
,

∇×BBB = µ0ε0
∂EEE

∂t
,

where ε0 = 8.854187817620 ·10−12 (F/m) is the permittivity of free space,
also known as the electric constant, and µ0 = 1.2566370614 · 10−6 (H/m)
is the permeability of free space, also known as the magnetic constant.
Taking the curl of the two last equations and using the mathematical
identity

∇× (∇×EEE) = ∇(∇ ·EEE)−∇2EEE = −∇2EEE when ∇ ·EEE = 0,

gives the wave equation governing the electric and magnetic field:

∂2EEE

∂t2
= c2∇2EEE, (2.168)

∂2BBB

∂t2
= c2∇2BBB, (2.169)

with c = 1/√µ0ε0 as the velocity of light. Each component of EEE and BBB
fulfills a wave equation and can hence be solved independently.
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2.15 Exercises

Exercise 2.20: Simulate waves on a non-homogeneous string

Simulate waves on a string that consists of two materials with different
density. The tension in the string is constant, but the density has a jump
at the middle of the string. Experiment with different sizes of the jump
and produce animations that visualize the effect of the jump on the wave
motion.
Hint. According to Section 2.14.1, the density enters the mathematical
model as % in %utt = Tuxx, where T is the string tension. Modify, e.g., the
wave1D_u0v.py code to incorporate the tension and two density values.
Make a mesh function rho with density values at each spatial mesh point.
A value for the tension may be 150 N. Corresponding density values can
be computed from the wave velocity estimations in the guitar function
in the wave1D_u0v.py file.
Filename: wave1D_u0_sv_discont.

Exercise 2.21: Simulate damped waves on a string

Formulate a mathematical model for damped waves on a string. Use data
from Section 2.3.6, and tune the damping parameter so that the string is
very close to the rest state after 15 s. Make a movie of the wave motion.
Filename: wave1D_u0_sv_damping.

Exercise 2.22: Simulate elastic waves in a rod

A hammer hits the end of an elastic rod. The exercise is to simulate the
resulting wave motion using the model (2.128) from Section 2.14.2. Let
the rod have length L and let the boundary x = L be stress free so that
σxx = 0, implying that ∂u/∂x = 0. The left end x = 0 is subject to a
strong stress pulse (the hammer), modeled as

σxx(t) =
{
S, 0 < t ≤ ts,
0, t > ts

The corresponding condition on u becomes ux = S/E for t ≤ ts and
zero afterwards (recall that σxx = Eux). This is a non-homogeneous
Neumann condition, and you will need to approximate this condition and
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combine it with the scheme (the ideas and manipulations follow closely
the handling of a non-zero initial condition ut = V in wave PDEs or the
corresponding second-order ODEs for vibrations). Filename: wave_rod.

Exercise 2.23: Simulate spherical waves

Implement a model for spherically symmetric waves using the method
described in Section 2.14.6. The boundary condition at r = 0 must be
∂u/∂r = 0, while the condition at r = R can either be u = 0 or a
radiation condition as described in Problem 2.12. The u = 0 condition is
sufficient if R is so large that the amplitude of the spherical wave has
become insignificant. Make movie(s) of the case where the source term is
located around r = 0 and sends out pulses

f(r, t) =
{
Q exp (− r2

2∆r2 ) sinωt, sinωt ≥ 0
0, sinωt < 0

Here, Q and ω are constants to be chosen.

Hint. Use the program wave1D_u0v.py as a starting point. Let solver
compute the v function and then set u = v/r. However, u = v/r for
r = 0 requires special treatment. One possibility is to compute u[1:] =
v[1:]/r[1:] and then set u[0]=u[1]. The latter makes it evident that
∂u/∂r = 0 in a plot.
Filename: wave1D_spherical.

Problem 2.24: Earthquake-generated tsunami over a subsea
hill

A subsea earthquake leads to an immediate lift of the water surface,
see Figure 2.11. The lifted water surface splits into two tsunamis, one
traveling to the right and one to the left, as depicted in Figure 2.12.
Since tsunamis are normally very long waves, compared to the depth,
with a small amplitude, compared to the wave length, a standard wave
equation is relevant:

ηtt = (gH(x)ηx)x,

where η is the elevation of the water surface, g is the acceleration of
gravity, and H(x) is the still water depth.
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I(x)

x=0

H0

Fig. 2.11 Sketch of initial water surface due to a subsea earthquake.

x=0

H0

Fig. 2.12 An initial surface elevation is split into two waves.

To simulate the right-going tsunami, we can impose a symmetry
boundary at x = 0: ∂η/∂x = 0. We then simulate the wave motion
in [0, L]. Unless the ocean ends at x = L, the waves should travel
undisturbed through the boundary x = L. A radiation condition as
explained in Problem 2.12 can be used for this purpose. Alternatively,
one can just stop the simulations before the wave hits the boundary at
x = L. In that case it does not matter what kind of boundary condition
we use at x = L. Imposing η = 0 and stopping the simulations when
|ηni | > ε, i = Nx − 1, is a possibility (ε is a small parameter).

The shape of the initial surface can be taken as a Gaussian function,
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I(x; I0, Ia, Im, Is) = I0 + Ia exp
(
−
(
x− Im
Is

)2
)
, (2.170)

with Im = 0 reflecting the location of the peak of I(x) and Is being a
measure of the width of the function I(x) (Is is

√
2 times the standard

deviation of the familiar normal distribution curve).
Now we extend the problem with a hill at the sea bottom, see Fig-

ure 2.13. The wave speed c =
√
gH(x) =

√
g(H0 −B(x)) will then be

reduced in the shallow water above the hill.

I(x)

x=0

H0

B(x)

Ba

4mBsBm

Fig. 2.13 Sketch of an earthquake-generated tsunami passing over a subsea hill.

One possible form of the hill is a Gaussian function,

B(x;B0, Ba, Bm, Bs) = B0 +Ba exp
(
−
(
x−Bm
Bs

)2
)
, (2.171)

but many other shapes are also possible, e.g., a "cosine hat" where

B(x;B0, Ba, Bm, Bs) = B0 +Ba cos
(
π
x−Bm

2Bs

)
, (2.172)

when x ∈ [Bm −Bs, Bm +Bs] while B = B0 outside this interval.
Also an abrupt construction may be tried:

B(x;B0, Ba, Bm, Bs) = B0 +Ba, (2.173)

for x ∈ [Bm −Bs, Bm +Bs] while B = B0 outside this interval.
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The wave1D_dn_vc.py program can be used as starting point for the
implementation. Visualize both the bottom topography and the water
surface elevation in the same plot. Allow for a flexible choice of bottom
shape: (2.171), (2.172), (2.173), or B(x) = B0 (flat).

The purpose of this problem is to explore the quality of the numerical
solution ηni for different shapes of the bottom obstruction. The “cosine hat”
and the box-shaped hills have abrupt changes in the derivative of H(x)
and are more likely to generate numerical noise than the smooth Gaussian
shape of the hill. Investigate if this is true. Filename: tsunami1D_hill.

Problem 2.25: Earthquake-generated tsunami over a 3D hill

This problem extends Problem 2.24 to a three-dimensional wave phe-
nomenon, governed by the 2D PDE

ηtt = (gHηx)x + (gHηy)y = ∇ · (gH∇η) . (2.174)

We assume that the earthquake arises from a fault along the line x = 0
in the xy-plane so that the initial lift of the surface can be taken as I(x)
in Problem 2.24. That is, a plane wave is propagating to the right, but
will experience bending because of the bottom.

The bottom shape is now a function of x and y. An “elliptic” Gaussian
function in two dimensions, with its peak at (Bmx, Bmy), generalizes
(2.171):

B = B0 +Ba exp
(
−
(
x−Bmx
Bs

)2
−
(
y −Bmy
bBs

)2
)
, (2.175)

where b is a scaling parameter: b = 1 gives a circular Gaussian function
with circular contour lines, while b 6= 1 gives an elliptic shape with elliptic
contour lines. To indicate the input parameters in the model, we may
write

B = B(x;B0, Ba, Bmx, Bmy, Bs, b) .

The “cosine hat” (2.172) can also be generalized to

B = B0 +Ba cos
(
π
x−Bmx

2Bs

)
cos

(
π
y −Bmy

2Bs

)
, (2.176)

when 0 ≤
√
x2 + y2 ≤ Bs and B = B0 outside this circle.

http://tinyurl.com/nu656p2/wave/wave1D/wave1D_dn_vc.py
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A box-shaped obstacle means that

B(x;B0, Ba, Bm, Bs, b) = B0 +Ba (2.177)

for x and y inside a rectangle

Bmx −Bs ≤ x ≤ Bmx +Bs, Bmy − bBs ≤ y ≤ Bmy + bBs,

and B = B0 outside this rectangle. The b parameter controls the rectan-
gular shape of the cross section of the box.

Note that the initial condition and the listed bottom shapes are
symmetric around the line y = Bmy. We therefore expect the surface
elevation also to be symmetric with respect to this line. This means that
we can halve the computational domain by working with [0, Lx]×[0, Bmy].
Along the upper boundary, y = Bmy, we must impose the symmetry
condition ∂η/∂n = 0. Such a symmetry condition (−ηx = 0) is also
needed at the x = 0 boundary because the initial condition has a
symmetry here. At the lower boundary y = 0 we also set a Neumann
condition (which becomes −ηy = 0). The wave motion is to be simulated
until the wave hits the reflecting boundaries where ∂η/∂n = ηx = 0 (one
can also set η = 0 - the particular condition does not matter as long as
the simulation is stopped before the wave is influenced by the boundary
condition).

Visualize the surface elevation. Investigate how different hill shapes,
different sizes of the water gap above the hill, and different resolutions
∆x = ∆y = h and ∆t influence the numerical quality of the solution.
Filename: tsunami2D_hill.

Problem 2.26: Investigate Mayavi for visualization

Play with Mayavi code for visualizing 2D solutions of the wave equation
with variable wave velocity. See if there are effective ways to visualize
both the solution and the wave velocity scalar field at the same time.
Filename: tsunami2D_hill_mlab.

Problem 2.27: Investigate visualization packages

Create some fancy 3D visualization of the water waves and the sub-
sea hill in Problem 2.25. Try to make the hill transparent. Possi-
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ble visualization tools are Mayavi, Paraview, and OpenDX. Filename:
tsunami2D_hill_viz.

Problem 2.28: Implement loops in compiled languages

Extend the program from Problem 2.25 such that the loops over mesh
points, inside the time loop, are implemented in compiled languages.
Consider implementations in Cython, Fortran via f2py, C via Cython, C
via f2py, C/C++ via Instant, and C/C++ via scipy.weave. Perform ef-
ficiency experiments to investigate the relative performance of the various
implementations. It is often advantageous to normalize CPU times by the
fastest method on a given mesh. Filename: tsunami2D_hill_compiled.

Exercise 2.29: Simulate seismic waves in 2D

The goal of this exercise is to simulate seismic waves using the PDE
model (2.138) in a 2D xz domain with geological layers. Introduce m
horizontal layers of thickness hi, i = 0, . . . ,m− 1. Inside layer number i
we have a vertical wave velocity cz,i and a horizontal wave velocity ch,i.
Make a program for simulating such 2D waves. Test it on a case with 3
layers where

cz,0 = cz,1 = cz,2, ch,0 = ch,2, ch,1 � ch,0 .

Let s be a localized point source at the middle of the Earth’s surface (the
upper boundary) and investigate how the resulting wave travels through
the medium. The source can be a localized Gaussian peak that oscillates
in time for some time interval. Place the boundaries far enough from
the expanding wave so that the boundary conditions do not disturb the
wave. Then the type of boundary condition does not matter, except that
we physically need to have p = p0, where p0 is the atmospheric pressure,
at the upper boundary. Filename: seismic2D.

Project 2.30: Model 3D acoustic waves in a room

The equation for sound waves in air is derived in Section 2.14.5 and reads

ptt = c2∇2p,

http://code.enthought.com/projects/mayavi/
http://www.paraview.org/
http://www.opendx.org/
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where p(x, y, z, t) is the pressure and c is the speed of sound, taken as 340
m/s. However, sound is absorbed in the air due to relaxation of molecules
in the gas. A model for simple relaxation, valid for gases consisting only
of one type of molecules, is a term c2τs∇2pt in the PDE, where τs is the
relaxation time. If we generate sound from, e.g., a loudspeaker in the
room, this sound source must also be added to the governing equation.

The PDE with the mentioned type of damping and source then becomes

ptt = c2∇p + c2τs∇2pt + f, (2.178)

where f(x, y, z, t) is the source term.
The walls can absorb some sound. A possible model is to have a

“wall layer” (thicker than the physical wall) outside the room where c
is changed such that some of the wave energy is reflected and some is
absorbed in the wall. The absorption of energy can be taken care of by
adding a damping term bpt in the equation:

ptt+ bpt = c2∇p + c2τs∇2pt + f . (2.179)

Typically, b = 0 in the room and b > 0 in the wall. A discontinuity in b
or c will give rise to reflections. It can be wise to use a constant c in the
wall to control reflections because of the discontinuity between c in the
air and in the wall, while b is gradually increased as we go into the wall
to avoid reflections because of rapid changes in b. At the outer boundary
of the wall the condition p = 0 or ∂p/∂n = 0 can be imposed. The waves
should anyway be approximately dampened to p = 0 this far out in the
wall layer.

There are two strategies for discretizing the ∇2pt term: using a center
difference between times n+ 1 and n− 1 (if the equation is sampled at
level n), or use a one-sided difference based on levels n and n− 1. The
latter has the advantage of not leading to any equation system, while
the former is second-order accurate as the scheme for the simple wave
equation ptt = c2∇2p. To avoid an equation system, go for the one-sided
difference such that the overall scheme becomes explicit and only of first
order in time.

Develop a 3D solver for the specified PDE and introduce a wall layer.
Test the solver with the method of manufactured solutions. Make some
demonstrations where the wall reflects and absorbs the waves (reflection
because of discontinuity in b and absorption because of growing b).
Experiment with the impact of the τs parameter. Filename: acoustics.
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Project 2.31: Solve a 1D transport equation

We shall study the wave equation

ut + cux = 0, x ∈ (0, L], t ∈ (0, T ], (2.180)

with initial condition

u(x, 0) = I(x), x ∈ [0, L], (2.181)

and one periodic boundary condition

u(0, t) = u(L, t) . (2.182)

This boundary condition means that what goes out of the domain at
x = L comes in at x = 0. Roughly speaking, we need only one boundary
condition because of the spatial derivative is of first order only.

Physical interpretation. The parameter c can be constant or variable,
c = c(x). The equation (2.180) arises in transport problems where a quan-
tity u, which could be temperature or concentration of some contaminant,
is transported with the velocity c of a fluid. In addition to the transport
imposed by “travelling with the fluid”, u may also be transported by
diffusion (such as heat conduction or Fickian diffusion), but we have in
the model ut + cux assumed that diffusion effects are negligible, which
they often are.

a) Show that under the assumption of a = const,

u(x, t) = I(x− ct) (2.183)

fulfills the PDE as well as the initial and boundary condition (provided
I(0) = I(L)).

A widely used numerical scheme for (2.180) applies a forward difference
in time and a backward difference in space when c > 0:

[D+
t u+ cD−x u = 0]ni . (2.184)

For c < 0 we use a forward difference in space: [cD+
x u]ni .

b) Set up a computational algorithm and implement it in a function.
Assume a is constant and positive.

c) Test the implementation by using the remarkable property that the
numerical solution is exact at the mesh points if ∆t = c−1∆x.



2.15 Exercises 241

d) Make a movie comparing the numerical and exact solution for the
following two choices of initial conditions:

I(x) =
[
sin
(
π
x

L

)]2n
(2.185)

where n is an integer, typically n = 5, and

I(x) = exp
(
−(x− L/2)2

2σ2

)
. (2.186)

Choose ∆t = c−1∆x, 0.9c−1∆x, 0.5c−1∆x.

e) The performance of the suggested numerical scheme can be investi-
gated by analyzing the numerical dispersion relation. Analytically, we
have that the Fourier component

u(x, t) = ei(kx−ωt),

is a solution of the PDE if ω = kc. This is the analytical dispersion
relation. A complete solution of the PDE can be built by adding up such
Fourier components with different amplitudes, where the initial condition
I determines the amplitudes. The solution u is then represented by a
Fourier series.

A similar discrete Fourier component at (xp, tn) is

uqp = ei(kp∆x−ω̃n∆t),

where in general ω̃ is a function of k, ∆t, and ∆x, and differs from the
exact ω = kc.

Insert the discrete Fourier component in the numerical scheme and
derive an expression for ω̃, i.e., the discrete dispersion relation. Show in
particular that if ∆t/(c∆x) = 1, the discrete solution coincides with the
exact solution at the mesh points, regardless of the mesh resolution (!).
Show that if the stability condition

∆t

c∆x
≤ 1,

the discrete Fourier component cannot grow (i.e., ω̃ is real).

f) Write a test for your implementation where you try to use information
from the numerical dispersion relation.

We shall hereafter assume that c(x) > 0.
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g) Set up a computational algorithm for the variable coefficient case
and implement it in a function. Make a test that the function works for
constant a.

h) It can be shown that for an observer moving with velocity c(x), u
is constant. This can be used to derive an exact solution when a varies
with x. Show first that

u(x, t) = f(C(x)− t), (2.187)

where

C ′(x) = 1
c(x) ,

is a solution of (2.180) for any differentiable function f .

i) Use the initial condition to show that an exact solution is

u(x, t) = I(C−1(C(x)− t)),

with C−1 being the inverse function of C =
∫
c1dx. Since C(x) is an

integral
∫ x

0 (1/c)dx, C(x) is monotonically increasing and there exists
hence an inverse function C−1 with values in [0, L].

To compute (2.187) we need to integrate 1/c to obtain C and then
compute the inverse of C.

The inverse function computation can be easily done if we first think
discretely. Say we have some function y = g(x) and seek its inverse.
Plotting (xi, yi), where yi = g(xi) for some mesh points xi, displays g as
a function of x. The inverse function is simply x as a function of g, i.e.,
the curve with points (yi, xi). We can therefore quickly compute points
at the curve of the inverse function. One way of extending these points
to a continuous function is to assume a linear variation (known as linear
interpolation) between the points (which actually means to draw straight
lines between the points, exactly as done by a plotting program).

The function wrap2callable in scitools.std can take a set of points
and return a continuous function that corresponds to linear variation
between the points. The computation of the inverse of a function g on
[0, L] can then be done by

def inverse(g, domain, resolution=101):
x = linspace(domain[0], domain[L], resolution)
y = g(x)
from scitools.std import wrap2callable
g_inverse = wrap2callable((y, x))
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return g_inverse

To compute C(x) we need to integrate 1/c, which can be done by a
Trapezoidal rule. Suppose we have computed C(xi) and need to com-
pute C(xi+1). Using the Trapezoidal rule with m subintervals over the
integration domain [xi, xi+1] gives

C(xi+1) = C(xi)+
∫ xi+1

xi

dx

c
≈ h

1
2

1
c(xi)

+ 1
2

1
c(xi+1) +

m−1∑
j=1

1
c(xi + jh)

 ,
(2.188)

where h = (xi+1 − xi)/m is the length of the subintervals used for the
integral over [xi, xi+1]. We observe that (2.188) is a difference equation
which we can solve by repeatedly applying (2.188) for i = 0, 1, . . . , Nx−1
if a mesh x0, x, . . . , xNx is prescribed. Note that C(0) = 0.

j) Implement a function for computing C(xi) and one for com-
puting C−1(x) for any x. Use these two functions for comput-
ing the exact solution I(C−1(C(x) − t)). End up with a func-
tion u_exact_variable_c(x, n, c, I) that returns the value of
I(C−1(C(x)− tn)).

k) Make movies showing a comparison of the numerical and exact
solutions for the two initial conditions (2.185) and (2.31). Choose ∆t =
∆x/max0,L c(x) and the velocity of the medium as

1. c(x) = 1 + ε sin(kπx/L), ε < 1,
2. c(x) = 1 + I(x), where I is given by (2.185) or (2.31).

The PDE ut + cux = 0 expresses that the initial condition I(x) is
transported with velocity c(x).
Filename: advec1D.

Problem 2.32: General analytical solution of a 1D damped
wave equation

We consider an initial-boundary value problem for the damped wave
equation:
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utt + but = c2uxx, x ∈ (0, L), t ∈ (0, T ]
u(0, t) = 0,
u(L, t) = 0,
u(x, 0) = I(x),
ut(x, 0) = V (x) .

Here, b ≥ 0 and c are given constants. The aim is to derive a general
analytical solution of this problem. Familiarity with the method of
separation of variables for solving PDEs will be assumed.

a) Seek a solution on the form u(x, t) = X(x)T (t). Insert this solution
in the PDE and show that it leads to two differential equations for X
and T :

T ′′ + bT ′ + λT = 0, c2X ′′ + λX = 0,

with X(0) = X(L) = 0 as boundary conditions, and λ as a constant to
be determined.

b) Show that X(x) is on the form

Xn(x) = Cn sin kx, k = nπ

L
, n = 1, 2, . . .

where Cn is an arbitrary constant.

c) Under the assumption that (b/2)2 < k2, show that T (t) is on the form

Tn(t) = e−
1
2 bt(an cosωt+ bn sinωt), ω =

√
k2 − 1

4b
2, n = 1, 2, . . .

The complete solution is then

u(x, t) =
∞∑
n=1

sin kxe− 1
2 bt(An cosωt+Bn sinωt),

where the constants An and Bn must be computed from the initial
conditions.

d) Derive a formula for An from u(x, 0) = I(x) and developing I(x) as
a sine Fourier series on [0, L].

e) Derive a formula for Bn from ut(x, 0) = V (x) and developing V (x)
as a sine Fourier series on [0, L].
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f) Calculate An and Bn from vibrations of a string where V (x) = 0 and

I(x) =
{
ax/x0, x < x0,
a(L− x)/(L− x0), otherwise (2.189)

g) Implement a function u_series(x, t, tol=1E-10) for the series for
u(x, t), where tol is a tolerance for truncating the series. Simply sum
the terms until |an| and |bb| both are less than tol.

h) What will change in the derivation of the analytical solution if we
have ux(0, t) = ux(L, t) = 0 as boundary conditions? And how will you
solve the problem with u(0, t) = 0 and ux(L, t) = 0?
Filename: damped_wave1D.

Problem 2.33: General analytical solution of a 2D damped
wave equation

Carry out Problem 2.32 in the 2D case: utt + but = c2(uxx + uyy), where
(x, y) ∈ (0, Lx) × (0, Ly). Assume a solution on the form u(x, y, t) =
X(x)Y (y)T (t). Filename: damped_wave2D.
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The famous diffusion equation, also known as the heat equation, reads

∂u

∂t
= α

∂2u

∂x2 ,

where u(x, t) is the unknown function to be solved for, x is a coordinate
in space, and t is time. The coefficient α is the diffusion coefficient
and determines how fast u changes in time. A quick short form for the
diffusion equation is ut = αuxx.

Compared to the wave equation, utt = c2uxx, which looks very similar,
the diffusion equation features solutions that are very different from those
of the wave equation. Also, the diffusion equation makes quite different
demands to the numerical methods.

Typical diffusion problems may experience rapid change in the very
beginning, but then the evolution of u becomes slower and slower. The
solution is usually very smooth, and after some time, one cannot recognize
the initial shape of u. This is in sharp contrast to solutions of the wave
equation where the initial shape is preserved in homogeneous media –
the solution is then basically a moving initial condition. The standard
wave equation utt = c2uxx has solutions that propagates with speed c
forever, without changing shape, while the diffusion equation converges
to a stationary solution ū(x) as t → ∞. In this limit, ut = 0, and ū is
governed by ū′′(x) = 0. This stationary limit of the diffusion equation is
called the Laplace equation and arises in a very wide range of applications
throughout the sciences.

© 2016, Hans Petter Langtangen, Svein Linge. Released under CC Attribution 4.0 license
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It is possible to solve for u(x, t) using an explicit scheme, as we do
in Section 3.1, but the time step restrictions soon become much less
favorable than for an explicit scheme applied to the wave equation. And
of more importance, since the solution u of the diffusion equation is
very smooth and changes slowly, small time steps are not convenient
and not required by accuracy as the diffusion process converges to a
stationary state. Therefore, implicit schemes (as described in Section 3.2)
are popular, but these require solutions of systems of algebraic equations.
We shall use ready-made software for this purpose, but also program
some simple iterative methods. The exposition is, as usual in this book,
very basic and focuses on the basic ideas and how to implement. More
comprehensive mathematical treatments and classical analysis of the
methods are found in lots of textbooks. A favorite of ours in this respect
is the one by LeVeque [13]. The books by Strikwerda [17] and by Lapidus
and Pinder [12] are also highly recommended as additional material on
the topic.

3.1 An explicit method for the 1D diffusion equation

Explicit finite difference methods for the wave equation utt = c2uxx can
be used, with small modifications, for solving ut = αuxx as well. The
exposition below assumes that the reader is familiar with the basic ideas
of discretization and implementation of wave equations from Chapter 2.
Readers not familiar with the Forward Euler, Backward Euler, and Crank-
Nicolson (or centered or midpoint) discretization methods in time should
consult, e.g., Section 1.1 in [9].

3.1.1 The initial-boundary value problem for 1D diffusion

To obtain a unique solution of the diffusion equation, or equivalently, to
apply numerical methods, we need initial and boundary conditions. The
diffusion equation goes with one initial condition u(x, 0) = I(x), where
I is a prescribed function. One boundary condition is required at each
point on the boundary, which in 1D means that u must be known, ux
must be known, or some combination of them.

We shall start with the simplest boundary condition: u = 0. The
complete initial-boundary value diffusion problem in one space dimension
can then be specified as
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∂u

∂t
= α

∂2u

∂x2 + f, x ∈ (0, L), t ∈ (0, T ] (3.1)

u(x, 0) = I(x), x ∈ [0, L] (3.2)
u(0, t) = 0, t > 0, (3.3)
u(L, t) = 0, t > 0 . (3.4)

With only a first-order derivative in time, only one initial condition is
needed, while the second-order derivative in space leads to a demand
for two boundary conditions. We have added a source term f = f(x, t),
which is convenient when testing implementations.

Diffusion equations like (3.1) have a wide range of applications through-
out physical, biological, and financial sciences. One of the most common
applications is propagation of heat, where u(x, t) represents the temper-
ature of some substance at point x and time t. Other applications are
listed in Section 3.8.

3.1.2 Forward Euler scheme

The first step in the discretization procedure is to replace the domain
[0, L]× [0, T ] by a set of mesh points. Here we apply equally spaced mesh
points

xi = i∆x, i = 0, . . . , Nx,

and

tn = n∆t, n = 0, . . . , Nt .

Moreover, uni denotes the mesh function that approximates u(xi, tn) for
i = 0, . . . , Nx and n = 0, . . . , Nt. Requiring the PDE (3.1) to be fulfilled
at a mesh point (xi, tn) leads to the equation

∂

∂t
u(xi, tn) = α

∂2

∂x2u(xi, tn) + f(xi, tn), (3.5)

The next step is to replace the derivatives by finite difference approxima-
tions. The computationally simplest method arises from using a forward
difference in time and a central difference in space:

[D+
t u = αDxDxu+ f ]ni . (3.6)
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Written out,

un+1
i − uni
∆t

= α
uni+1 − 2uni + uni−1

∆x2 + fni . (3.7)

We have turned the PDE into algebraic equations, also often called
discrete equations. The key property of the equations is that they are
algebraic, which makes them easy to solve. As usual, we anticipate that
uni is already computed such that un+1

i is the only unknown in (3.7).
Solving with respect to this unknown is easy:

un+1
i = uni + F

(
uni+1 − 2uni + uni−1

)
+∆tfni , (3.8)

where we have introduced the mesh Fourier number :

F = α
∆t

∆x2 . (3.9)

F is the key parameter in the discrete diffusion equation

Note that F is a dimensionless number that lumps the key physical
parameter in the problem, α, and the discretization parameters ∆x
and ∆t into a single parameter. Properties of the numerical method
are critically dependent upon the value of F (see Section 3.3 for
details).

The computational algorithm then becomes

1. compute u0
i = I(xi) for i = 0, . . . , Nx

2. for n = 0, 1, . . . , Nt:
a. apply (3.8) for all the internal spatial points i = 1, . . . , Nx − 1
b. set the boundary values un+1

i = 0 for i = 0 and i = Nx

The algorithm is compactly and fully specified in Python:

import numpy as np
x = np.linspace(0, L, Nx+1) # mesh points in space
dx = x[1] - x[0]
t = np.linspace(0, T, Nt+1) # mesh points in time
dt = t[1] - t[0]
F = a*dt/dx**2
u = np.zeros(Nx+1) # unknown u at new time level
u_n = np.zeros(Nx+1) # u at the previous time level
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# Set initial condition u(x,0) = I(x)
for i in range(0, Nx+1):

u_n[i] = I(x[i])

for n in range(0, Nt):
# Compute u at inner mesh points
for i in range(1, Nx):

u[i] = u_n[i] + F*(u_n[i-1] - 2*u_n[i] + u_n[i+1]) + \
dt*f(x[i], t[n])

# Insert boundary conditions
u[0] = 0; u[Nx] = 0

# Update u_n before next step
u_n[:]= u

Note that we use a for α in the code, motivated by easy visual mapping
between the variable name and the mathematical symbol in formulas.

We need to state already now that the shown algorithm does not pro-
duce meaningful results unless F ≤ 1/2. Why is explained in Section 3.3.

3.1.3 Implementation

The file diffu1D_u0.py contains a complete function solver_FE_simple
for solving the 1D diffusion equation with u = 0 on the boundary as
specified in the algorithm above:

import numpy as np

def solver_FE_simple(I, a, f, L, dt, F, T):
"""
Simplest expression of the computational algorithm
using the Forward Euler method and explicit Python loops.
For this method F <= 0.5 for stability.
"""
import time; t0 = time.clock() # For measuring the CPU time

Nt = int(round(T/float(dt)))
t = np.linspace(0, Nt*dt, Nt+1) # Mesh points in time
dx = np.sqrt(a*dt/F)
Nx = int(round(L/dx))
x = np.linspace(0, L, Nx+1) # Mesh points in space
# Make sure dx and dt are compatible with x and t
dx = x[1] - x[0]
dt = t[1] - t[0]

u = np.zeros(Nx+1)
u_n = np.zeros(Nx+1)

# Set initial condition u(x,0) = I(x)

http://tinyurl.com/nu656p2/diffu/diffu1D_u0.py
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for i in range(0, Nx+1):
u_n[i] = I(x[i])

for n in range(0, Nt):
# Compute u at inner mesh points
for i in range(1, Nx):

u[i] = u_n[i] + F*(u_n[i-1] - 2*u_n[i] + u_n[i+1]) + \
dt*f(x[i], t[n])

# Insert boundary conditions
u[0] = 0; u[Nx] = 0

# Switch variables before next step
#u_n[:] = u # safe, but slow
u_n, u = u, u_n

t1 = time.clock()
return u_n, x, t, t1-t0 # u_n holds latest u

A faster version, based on vectorization of the finite difference scheme,
is available in the function solver_FE. The vectorized version replaces
the explicit loop

for i in range(1, Nx):
u[i] = u_n[i] + F*(u_n[i-1] - 2*u_n[i] + u_n[i+1]) \

+ dt*f(x[i], t[n])

by arithmetics on displaced slices of the u array:

u[1:Nx] = u_n[1:Nx] + F*(u_n[0:Nx-1] - 2*u_n[1:Nx] + u_n[2:Nx+1]) \
+ dt*f(x[1:Nx], t[n])

# or
u[1:-1] = u_n[1:-1] + F*(u_n[0:-2] - 2*u_n[1:-1] + u_n[2:]) \

+ dt*f(x[1:-1], t[n])

For example, the vectorized version runs 70 times faster than the scalar
version in a case with 100 time steps and a spatial mesh of 105 cells.

The solver_FE function also features a callback function such that
the user can process the solution at each time level. The callback function
looks like user_action(u, x, t, n), where u is the array containing
the solution at time level n, x holds all the spatial mesh points, while t
holds all the temporal mesh points. Apart from the vectorized loop over
the spatial mesh points, the callback function, and a bit more complicated
setting of the source f it is not specified (None), the solver_FE function
is identical to solver_FE_simple above:

def solver_FE(I, a, f, L, dt, F, T,
user_action=None, version=’scalar’):

"""
Vectorized implementation of solver_FE_simple.
"""
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import time; t0 = time.clock() # for measuring the CPU time

Nt = int(round(T/float(dt)))
t = np.linspace(0, Nt*dt, Nt+1) # Mesh points in time
dx = np.sqrt(a*dt/F)
Nx = int(round(L/dx))
x = np.linspace(0, L, Nx+1) # Mesh points in space
# Make sure dx and dt are compatible with x and t
dx = x[1] - x[0]
dt = t[1] - t[0]

u = np.zeros(Nx+1) # solution array
u_n = np.zeros(Nx+1) # solution at t-dt

# Set initial condition
for i in range(0,Nx+1):

u_n[i] = I(x[i])

if user_action is not None:
user_action(u_n, x, t, 0)

for n in range(0, Nt):
# Update all inner points
if version == ’scalar’:

for i in range(1, Nx):
u[i] = u_n[i] +\

F*(u_n[i-1] - 2*u_n[i] + u_n[i+1]) +\
dt*f(x[i], t[n])

elif version == ’vectorized’:
u[1:Nx] = u_n[1:Nx] + \

F*(u_n[0:Nx-1] - 2*u_n[1:Nx] + u_n[2:Nx+1]) +\
dt*f(x[1:Nx], t[n])

else:
raise ValueError(’version=%s’ % version)

# Insert boundary conditions
u[0] = 0; u[Nx] = 0
if user_action is not None:

user_action(u, x, t, n+1)

# Switch variables before next step
u_n, u = u, u_n

t1 = time.clock()
return t1-t0

3.1.4 Verification
Exact solution of discrete equations. Before thinking about running
the functions in the previous section, we need to construct a suitable test
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example for verification. It appears that a manufactured solution that is
linear in time and at most quadratic in space fulfills the Forward Euler
scheme exactly. With the restriction that u = 0 for x = 0, L, we can try
the solution

u(x, t) = 5tx(L− x) .

Inserted in the PDE, it requires a source term

f(x, t) = 10αt+ 5x(L− x) .

With the formulas from Appendix A.4 we can easily check that the
manufactured u fulfills the scheme:

[D+
t u = αDxDxu+ f ]ni = [5x(L− x)D+

t t = 5tαDxDx(xL− x2)+
10αt+ 5x(L− x)]ni

= [5x(L− x) = 5tα(−2) + 10αt+ 5x(L− x)]ni ,

which is a 0=0 expression. The computation of the source term, given
any u, is easily automated with sympy:

import sympy as sym
x, t, a, L = sym.symbols(’x t a L’)
u = x*(L-x)*5*t

def pde(u):
return sym.diff(u, t) - a*sym.diff(u, x, x)

f = sym.simplify(pde(u))

Now we can choose any expression for u and automatically get the
suitable source term f. However, the manufactured solution u will in
general not be exactly reproduced by the scheme: only constant and
linear functions are differentiated correctly by a forward difference, while
only constant, linear, and quadratic functions are differentiated exactly
by a [DxDxu]ni difference.

The numerical code will need to access the u and f above as
Python functions. The exact solution is wanted as a Python function
u_exact(x, t), while the source term is wanted as f(x, t). The pa-
rameters a and L in u and f above are symbols and must be replaced
by float objects in a Python function. This can be done by redefining
a and L as float objects and performing substitutions of symbols by
numbers in u and f. The appropriate code looks like this:
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a = 0.5
L = 1.5
u_exact = sym.lambdify(

[x, t], u.subs(’L’, L).subs(’a’, a), modules=’numpy’)
f = sym.lambdify(

[x, t], f.subs(’L’, L).subs(’a’, a), modules=’numpy’)
I = lambda x: u_exact(x, 0)

Here we also make a function I for the initial condition.
The idea now is that our manufactured solution should be exactly

reproduced by the code (to machine precision). For this purpose we make
a test function for comparing the exact and numerical solutions at the
end of the time interval:

def test_solver_FE():
# Define u_exact, f, I as explained above

dx = L/3 # 3 cells
F = 0.5
dt = F*dx**2

u, x, t, cpu = solver_FE_simple(
I=I, a=a, f=f, L=L, dt=dt, F=F, T=2)

u_e = u_exact(x, t[-1])
diff = abs(u_e - u).max()
tol = 1E-14
assert diff < tol, ’max diff solver_FE_simple: %g’ % diff

u, x, t, cpu = solver_FE(
I=I, a=a, f=f, L=L, dt=dt, F=F, T=2,
user_action=None, version=’scalar’)

u_e = u_exact(x, t[-1])
diff = abs(u_e - u).max()
tol = 1E-14
assert diff < tol, ’max diff solver_FE, scalar: %g’ % diff

u, x, t, cpu = solver_FE(
I=I, a=a, f=f, L=L, dt=dt, F=F, T=2,
user_action=None, version=’vectorized’)

u_e = u_exact(x, t[-1])
diff = abs(u_e - u).max()
tol = 1E-14
assert diff < tol, ’max diff solver_FE, vectorized: %g’ % diff

The critical value F = 0.5
We emphasize that the value F=0.5 is critical: the tests above will
fail if F has a larger value. This is because the Forward Euler scheme
is unstable for F > 1/2.
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The reader may wonder if F = 1/2 is safe or if F < 1/2 should be
required. Experiments show that F = 1/2 works fine for ut = αuxx,
so there is no accumulation of rounding errors in this case and hence
no need to introduce any safety factor to keep F away from the
limiting value 0.5.

Checking convergence rates. If our chosen exact solution does not
satisfy the discrete equations exactly, we are left with checking the con-
vergence rates, just as we did previously for the wave equation. However,
with the Euler scheme here, we have different accuracies in time and
space, since we use a second order approximation to the spatial derivative
and a first order approximation to the time derivative. Thus, we must
expect different convergence rates in time and space. For the numerical
error,

E = Ct∆t
r + Cx∆x

p,

we should get convergence rates r = 1 and p = 2 (Ct and Cx are
unknown constants). As previously, in Section 2.2.3, we simplify matters
by introducing a single discretization parameter h:

h = ∆t, ∆x = Khr/p,

where K is any constant. This allows us to factor out only one discretiza-
tion parameter h from the formula:

E = Cth+ Cx(Kr/p)p = C̃hr, C̃ = Ct + CsK
r .

The computed rate r should approach 1 with increasing resolution.
It is tempting, for simplicity, to choose K = 1, which gives ∆x =

hr/p, expected to be
√
∆t. However, we have to control the stability

requirement: F ≤ 1
2 , which means

α∆t

∆x2 ≤
1
2 ⇒ ∆x ≥

√
2αh1/2,

implying that K =
√

2α is our choice in experiments where we lie on the
stability limit F = 1/2.
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3.1.5 Numerical experiments
When a test function like the one above runs silently without errors,
we have some evidence for a correct implementation of the numerical
method. The next step is to do some experiments with more interesting
solutions.

We target a scaled diffusion problem where x/L is a new spatial
coordinate and αt/L2 is a new time coordinate. The source term f is
omitted, and u is scaled by maxx∈[0,L] |I(x)| (see Section 3.2 in [11] for
details). The governing PDE is then

∂u

∂t
= ∂2u

∂x2 ,

in the spatial domain [0, L], with boundary conditions u(0) = u(1) = 0.
Two initial conditions will be tested: a discontinuous plug,

I(x) =
{

0, |x− L/2| > 0.1
1, otherwise

and a smooth Gaussian function,

I(x) = e−
1

2σ2 (x−L/2)2
.

The functions plug and gaussian in diffu1D_u0.py run the two cases,
respectively:

def plug(scheme=’FE’, F=0.5, Nx=50):
L = 1.
a = 1.
T = 0.1
# Compute dt from Nx and F
dx = L/Nx; dt = F/a*dx**2

def I(x):
"""Plug profile as initial condition."""
if abs(x-L/2.0) > 0.1:

return 0
else:

return 1

cpu = viz(I, a, L, dt, F, T,
umin=-0.1, umax=1.1,
scheme=scheme, animate=True, framefiles=True)

print ’CPU time:’, cpu

def gaussian(scheme=’FE’, F=0.5, Nx=50, sigma=0.05):
L = 1.
a = 1.

http://tinyurl.com/nu656p2/diffu/diffu1D_u0.py
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T = 0.1
# Compute dt from Nx and F
dx = L/Nx; dt = F/a*dx**2

def I(x):
"""Gaussian profile as initial condition."""
return exp(-0.5*((x-L/2.0)**2)/sigma**2)

u, cpu = viz(I, a, L, dt, F, T,
umin=-0.1, umax=1.1,
scheme=scheme, animate=True, framefiles=True)

print ’CPU time:’, cpu

These functions make use of the function viz for running the solver and
visualizing the solution using a callback function with plotting:

def viz(I, a, L, dt, F, T, umin, umax,
scheme=’FE’, animate=True, framefiles=True):

def plot_u(u, x, t, n):
plt.plot(x, u, ’r-’, axis=[0, L, umin, umax],

title=’t=%f’ % t[n])
if framefiles:

plt.savefig(’tmp_frame%04d.png’ % n)
if t[n] == 0:

time.sleep(2)
elif not framefiles:

# It takes time to write files so pause is needed
# for screen only animation
time.sleep(0.2)

user_action = plot_u if animate else lambda u,x,t,n: None

cpu = eval(’solver_’+scheme)(I, a, L, dt, F, T,
user_action=user_action)

return cpu

Notice that this viz function stores all the solutions in a list solutions
in the callback function. Modern computers have hardly any problem
with storing a lot of such solutions for moderate values of Nx in 1D
problems, but for 2D and 3D problems, this technique cannot be used
and solutions must be stored in files.

Our experiments employ a time step ∆t = 0.0002 and simulate for
t ∈ [0, 0.1]. First we try the highest value of F : F = 0.5. This resolution
corresponds to Nx = 50. A possible terminal command is

Terminal

Terminal> python -c ’from diffu1D_u0 import gaussian
gaussian("solver_FE", F=0.5, dt=0.0002)’
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The u(x, t) curve as a function of x is shown in Figure 3.1 at four time
levels.

Movie 3: https://raw.githubusercontent.com/hplgit/fdm-book/master/doc/
.src/book/mov-diffu/diffu1D_u0_FE_plug/movie.ogg

We see that the curves have saw-tooth waves in the beginning of
the simulation. This non-physical noise is smoothed out with time, but
solutions of the diffusion equations are known to be smooth, and this
numerical solution is definitely not smooth. Lowering F helps: F ≤ 0.25
gives a smooth solution, see Figure 3.2 (and a movie).

Increasing F slightly beyond the limit 0.5, to F = 0.51, gives growing,
non-physical instabilities, as seen in Figure 3.3.
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Fig. 3.1 Forward Euler scheme for F = 0.5.

Instead of a discontinuous initial condition we now try the smooth
Gaussian function for I(x). A simulation for F = 0.5 is shown in Fig-
ure 3.4. Now the numerical solution is smooth for all times, and this is
true for any F ≤ 0.5.

Experiments with these two choices of I(x) reveal some important
observations:

https://raw.githubusercontent.com/hplgit/fdm-book/master/doc/.src/book/mov-diffu/diffu1D_u0_FE_plug/movie.ogg
https://raw.githubusercontent.com/hplgit/fdm-book/master/doc/.src/book/mov-diffu/diffu1D_u0_FE_plug/movie.ogg
http://tinyurl.com/hfdndao/mov-diffu/diffu1D_u0_FE_plug_F025/movie.ogg
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Fig. 3.2 Forward Euler scheme for F = 0.25.

• The Forward Euler scheme leads to growing solutions if F > 1
2 .

• I(x) as a discontinuous plug leads to a saw tooth-like noise for F = 1
2 ,

which is absent for F ≤ 1
4 .

• The smooth Gaussian initial function leads to a smooth solution for
all relevant F values (F ≤ 1

2).
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Fig. 3.3 Forward Euler scheme for F = 0.51.
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Fig. 3.4 Forward Euler scheme for F = 0.5.
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3.2 Implicit methods for the 1D diffusion equation

Simulations with the Forward Euler scheme shows that the time step
restriction, F ≤ 1

2 , which means ∆t ≤ ∆x2/(2α), may be relevant in the
beginning of the diffusion process, when the solution changes quite fast,
but as time increases, the process slows down, and a small ∆t may be
inconvenient. By using implicit schemes, which lead to coupled systems
of linear equations to be solved at each time level, any size of ∆t is
possible (but the accuracy decreases with increasing ∆t). The Backward
Euler scheme, derived and implemented below, is the simplest implicit
scheme for the diffusion equation.

3.2.1 Backward Euler scheme

We now apply a backward difference in time in (3.5), but the same central
difference in space:

[D−t u = DxDxu+ f ]ni , (3.10)

which written out reads

uni − un−1
i

∆t
= α

uni+1 − 2uni + uni−1
∆x2 + fni . (3.11)

Now we assume un−1
i is already computed, but all quantities at the

“new” time level n are unknown. This time it is not possible to solve
with respect to uni because this value couples to its neighbors in space,
uni−1 and uni+1, which are also unknown. Let us examine this fact for the
case when Nx = 3. Equation (3.11) written for i = 1, . . . , Nx− 1 = 1, 2
becomes

un1 − un−1
1

∆t
= α

un2 − 2un1 + un0
∆x2 + fn1 (3.12)

un2 − un−1
2

∆t
= α

un3 − 2un2 + un1
∆x2 + fn2 (3.13)

The boundary values un0 and un3 are known as zero. Collecting the un-
known new values un1 and un2 on the left-hand side and multiplying by
∆t gives
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(1 + 2F )un1 − Fun2 = un−1
1 +∆tfn1 , (3.14)

−Fun1 + (1 + 2F )un2 = un−1
2 +∆tfn2 . (3.15)

This is a coupled 2× 2 system of algebraic equations for the unknowns
un1 and un2 . The equivalent matrix form is(

1 + 2F −F
−F 1 + 2F

)(
un1
un2

)
=
(
un−1

1 +∆tfn1
un−1

2 +∆tfn2

)

Terminology: implicit vs. explicit methods

Discretization methods that lead to a coupled system of equations
for the unknown function at a new time level are said to be implicit
methods. The counterpart, explicit methods, refers to discretization
methods where there is a simple explicit formula for the values of
the unknown function at each of the spatial mesh points at the
new time level. From an implementational point of view, implicit
methods are more comprehensive to code since they require the
solution of coupled equations, i.e., a matrix system, at each time
level. With explicit methods we have a closed-form formula for the
value of the unknown at each mesh point.

Very often explicit schemes have a restriction on the size of the
time step that can be relaxed by using implicit schemes. In fact,
implicit schemes are frequently unconditionally stable, so the size
of the time step is governed by accuracy and not by stability. This
is the great advantage of implicit schemes.

In the general case, (3.11) gives rise to a coupled (Nx − 1)× (Nx − 1)
system of algebraic equations for all the unknown uni at the interior spatial
points i = 1, . . . , Nx − 1. Collecting the unknowns on the left-hand side,
(3.11) can be written

− Funi−1 + (1 + 2F )uni − Funi+1 = un−1
i−1 , (3.16)

for i = 1, . . . , Nx − 1. One can either view these equations as a system
for where the uni values at the internal mesh points, i = 1, . . . , Nx − 1,
are unknown, or we may append the boundary values un0 and unNx to the
system. In the latter case, all uni for i = 0, . . . , Nx are considered unknown,
and we must add the boundary equations to the Nx − 1 equations in
(3.16):
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un0 = 0, (3.17)
unNx = 0 . (3.18)

A coupled system of algebraic equations can be written on matrix
form, and this is important if we want to call up ready-made software for
solving the system. The equations (3.16) and (3.17)–(3.18) correspond
to the matrix equation

AU = b

where U = (un0 , . . . , unNx), and the matrix A has the following structure:

A =



A0,0 A0,1 0 · · · · · · · · · · · · · · · 0
A1,0 A1,1 A1,2

. . . ...
0 A2,1 A2,2 A2,3

. . . ...
... . . . . . . . . . 0

...
... . . . . . . . . . . . . . . . ...
... 0 Ai,i−1 Ai,i Ai,i+1

. . . ...
... . . . . . . . . . . . . 0
... . . . . . . . . . ANx−1,Nx
0 · · · · · · · · · · · · · · · 0 ANx,Nx−1 ANx,Nx


(3.19)

The nonzero elements are given by

Ai,i−1 = −F (3.20)
Ai,i = 1 + 2F (3.21)

Ai,i+1 = −F (3.22)

in the equations for internal points, i = 1, . . . , Nx − 1. The first and
last equation correspond to the boundary condition, where we know the
solution, and therefore we must have
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A0,0 = 1, (3.23)
A0,1 = 0, (3.24)

ANx,Nx−1 = 0, (3.25)
ANx,Nx = 1 . (3.26)

The right-hand side b is written as

b =



b0
b1
...
bi
...
bNx


(3.27)

with

b0 = 0, (3.28)
bi = un−1

i , i = 1, . . . , Nx − 1, (3.29)
bNx = 0 . (3.30)

We observe that the matrix A contains quantities that do not change
in time. Therefore, A can be formed once and for all before we enter
the recursive formulas for the time evolution. The right-hand side b,
however, must be updated at each time step. This leads to the following
computational algorithm, here sketched with Python code:

x = np.linspace(0, L, Nx+1) # mesh points in space
dx = x[1] - x[0]
t = np.linspace(0, T, N+1) # mesh points in time
u = np.zeros(Nx+1) # unknown u at new time level
u_n = np.zeros(Nx+1) # u at the previous time level

# Data structures for the linear system
A = np.zeros((Nx+1, Nx+1))
b = np.zeros(Nx+1)

for i in range(1, Nx):
A[i,i-1] = -F
A[i,i+1] = -F
A[i,i] = 1 + 2*F

A[0,0] = A[Nx,Nx] = 1

# Set initial condition u(x,0) = I(x)
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for i in range(0, Nx+1):
u_n[i] = I(x[i])

import scipy.linalg

for n in range(0, Nt):
# Compute b and solve linear system
for i in range(1, Nx):

b[i] = -u_n[i]
b[0] = b[Nx] = 0
u[:] = scipy.linalg.solve(A, b)

# Update u_n before next step
u_n[:] = u

Regarding verification, the same considerations apply as for the For-
ward Euler method (Section 3.1.4).

3.2.2 Sparse matrix implementation

We have seen from (3.19) that the matrix A is tridiagonal. The code
segment above used a full, dense matrix representation of A, which stores
a lot of values we know are zero beforehand, and worse, the solution
algorithm computes with all these zeros. With Nx+1 unknowns, the work
by the solution algorithm is 1

3(Nx + 1)3 and the storage requirements
(Nx + 1)2. By utilizing the fact that A is tridiagonal and employing
corresponding software tools that work with the three diagonals, the
work and storage demands can be proportional to Nx only. This leads to
a dramatic improvement: with Nx = 200, which is a realistic resolution,
the code runs about 40,000 times faster and reduces the storage to just
1.5%! It is no doubt that we should take advantage of the fact that A is
tridiagonal.

The key idea is to apply a data structure for a tridiagonal or sparse
matrix. The scipy.sparse package has relevant utilities. For example,
we can store only the nonzero diagonals of a matrix. The package also
has linear system solvers that operate on sparse matrix data structures.
The code below illustrates how we can store only the main diagonal and
the upper and lower diagonals.

# Representation of sparse matrix and right-hand side
main = np.zeros(Nx+1)
lower = np.zeros(Nx)
upper = np.zeros(Nx)
b = np.zeros(Nx+1)
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# Precompute sparse matrix
main[:] = 1 + 2*F
lower[:] = -F
upper[:] = -F
# Insert boundary conditions
main[0] = 1
main[Nx] = 1

A = scipy.sparse.diags(
diagonals=[main, lower, upper],
offsets=[0, -1, 1], shape=(Nx+1, Nx+1),
format=’csr’)

print A.todense() # Check that A is correct

# Set initial condition
for i in range(0,Nx+1):

u_n[i] = I(x[i])

for n in range(0, Nt):
b = u_n
b[0] = b[-1] = 0.0 # boundary conditions
u[:] = scipy.sparse.linalg.spsolve(A, b)
u_n[:] = u

The scipy.sparse.linalg.spsolve function utilizes the sparse storage
structure of A and performs, in this case, a very efficient Gaussian
elimination solve.

The program diffu1D_u0.py contains a function solver_BE, which
implements the Backward Euler scheme sketched above. As mentioned in
Section 3.1.2, the functions plug and gaussian runs the case with I(x)
as a discontinuous plug or a smooth Gaussian function. All experiments
point to two characteristic features of the Backward Euler scheme: 1) it
is always stable, and 2) it always gives a smooth, decaying solution.

3.2.3 Crank-Nicolson scheme
The idea in the Crank-Nicolson scheme is to apply centered differences
in space and time, combined with an average in time. We demand the
PDE to be fulfilled at the spatial mesh points, but midway between the
points in the time mesh:

∂

∂t
u(xi, tn+ 1

2
) = α

∂2

∂x2u(xi, tn+ 1
2
) + f(xi, tn+ 1

2
),

for i = 1, . . . , Nx − 1 and n = 0, . . . , Nt − 1.
With centered differences in space and time, we get

http://tinyurl.com/nu656p2/diffu/diffu1D_u0.py
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[Dtu = αDxDxu+ f ]n+ 1
2

i .

On the right-hand side we get an expression

1
∆x2

(
u
n+ 1

2
i−1 − 2un+ 1

2
i + u

n+ 1
2

i+1

)
+ f

n+ 1
2

i .

This expression is problematic since un+ 1
2

i is not one of the unknowns we
compute. A possibility is to replace un+ 1

2
i by an arithmetic average:

u
n+ 1

2
i ≈ 1

2
(
uni + un+1

i

)
.

In the compact notation, we can use the arithmetic average notation ut:

[Dtu = αDxDxu
t + f ]n+ 1

2
i .

We can also use an average for fn+ 1
2

i :

[Dtu = αDxDxu
t + f

t]n+ 1
2

i .

After writing out the differences and average, multiplying by ∆t, and
collecting all unknown terms on the left-hand side, we get

un+1
i − 1

2F (un+1
i−1 − 2un+1

i + un+1
i+1 ) = uni + 1

2F (uni−1 − 2uni + uni+1)
1
2f

n+1
i + 1

2f
n
i . (3.31)

Also here, as in the Backward Euler scheme, the new unknowns un+1
i−1 ,

un+1
i , and un+1

i+1 are coupled in a linear system AU = b, where A has the
same structure as in (3.19), but with slightly different entries:

Ai,i−1 = −1
2F (3.32)

Ai,i = 1 + F (3.33)

Ai,i+1 = −1
2F (3.34)

in the equations for internal points, i = 1, . . . , Nx − 1. The equations for
the boundary points correspond to
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A0,0 = 1, (3.35)
A0,1 = 0, (3.36)

ANx,Nx−1 = 0, (3.37)
ANx,Nx = 1 . (3.38)

The right-hand side b has entries

b0 = 0, (3.39)

bi = un−1
i + 1

2(fni + fn+1
i ), i = 1, . . . , Nx − 1, (3.40)

bNx = 0 . (3.41)

When verifying some implementation of the Crank-Nicolson scheme
by convergence rate testing, one should note that the scheme is second
order accurate in both space and time. The numerical error then reads

E = Ct∆t
r + Cx∆x

r,

where r = 2 (Ct and Cx are unknown constants, as before). When
introducing a single discretization parameter, we may now simply choose

h = ∆x = ∆t,

which gives
E = Cth

r + Cxh
r = (Ct + Cx)hr,

where r should approach 2 as resolution is increased in the convergence
rate computations.

3.2.4 The unifying θ rule

For the equation

∂u

∂t
= G(u),

where G(u) is some spatial differential operator, the θ-rule looks like

un+1
i − uni
∆t

= θG(un+1
i ) + (1− θ)G(uni ) .
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The important feature of this time discretization scheme is that we can
implement one formula and then generate a family of well-known and
widely used schemes:

• θ = 0 gives the Forward Euler scheme in time
• θ = 1 gives the Backward Euler scheme in time
• θ = 1

2 gives the Crank-Nicolson scheme in time

In the compact difference notation, we write the θ rule as

[Dtu = αDxDxu]n+θ .

We have that tn+θ = θtn+1 + (1− θ)tn.
Applied to the 1D diffusion problem, the θ-rule gives

un+1
i − uni
∆t

= α

(
θ
un+1
i+1 − 2un+1

i + un+1
i−1

∆x2 + (1− θ)u
n
i+1 − 2uni + uni−1

∆x2

)
+ θfn+1

i + (1− θ)fni .

This scheme also leads to a matrix system with entries

Ai,i−1 = −Fθ, Ai,i = 1 + 2Fθ ,Ai,i+1 = −Fθ,

while right-hand side entry bi is

bi = uni + F (1− θ)u
n
i+1 − 2uni + uni−1

∆x2 +∆tθfn+1
i +∆t(1− θ)fni .

The corresponding entries for the boundary points are as in the Backward
Euler and Crank-Nicolson schemes listed earlier.

Note that convergence rate testing with implementations of the theta
rule must adjust the error expression according to which of the underlying
schemes is actually being run. That is, if θ = 0 (i.e., Forward Euler) or
θ = 1 (i.e., Backward Euler), there should be first order convergence,
whereas with θ = 0.5 (i.e., Crank-Nicolson), one should get second order
convergence (as outlined in previous sections).

3.2.5 Experiments
We can repeat the experiments from Section 3.1.5 to see if the Backward
Euler or Crank-Nicolson schemes have problems with sawtooth-like noise
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when starting with a discontinuous initial condition. We can also verify
that we can have F > 1

2 , which allows larger time steps than in the
Forward Euler method.
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Fig. 3.5 Backward Euler scheme for F = 0.5.

The Backward Euler scheme always produces smooth solutions for any
F . Figure 3.5 shows one example. Note that the mathematical discontinu-
ity at t = 0 leads to a linear variation on a mesh, but the approximation
to a jump becomes better as Nx increases. In our simulation we specify ∆t
and F , and Nx is set to L/

√
α∆t/F . Since Nx ∼

√
F , the discontinuity

looks sharper in the Crank-Nicolson simulations with larger F .
The Crank-Nicolson method produces smooth solutions for small F ,

F ≤ 1
2 , but small noise gets more and more evident as F increases.

Figures 3.6 and 3.7 demonstrate the effect for F = 3 and F = 10,
respectively. Section 3.3 explains why such noise occur.
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Fig. 3.6 Crank-Nicolson scheme for F = 3.

3.2.6 The Laplace and Poisson equation

The Laplace equation, ∇2u = 0, and the Poisson equation, −∇2u = f ,
occur in numerous applications throughout science and engineering. In
1D these equations read u′′(x) = 0 and −u′′(x) = f(x), respectively. We
can solve 1D variants of the Laplace equations with the listed software,
because we can interpret uxx = 0 as the limiting solution of ut = αuxx
when u reaches a steady state limit where ut → 0. Similarly, Poisson’s
equation −uxx = f arises from solving ut = uxx + f and letting t→∞
so ut → 0.

Technically in a program, we can simulate t→∞ by just taking one
large time step: ∆t→∞. In the limit, the Backward Euler scheme gives

−
un+1
i+1 − 2un+1

i + un+1
i−1

∆x2 = fn+1
i ,

which is nothing but the discretization [−DxDxu = f ]n+1
i = 0 of −uxx =

f .
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Fig. 3.7 Crank-Nicolson scheme for F = 10.

The result above means that the Backward Euler scheme can solve the
limit equation directly and hence produce a solution of the 1D Laplace
equation. With the Forward Euler scheme we must do the time stepping
since ∆t > ∆x2/α is illegal and leads to instability. We may interpret
this time stepping as solving the equation system from −uxx = f by
iterating on a pseudo time variable.

3.3 Analysis of schemes for the diffusion equation

The numerical experiments in Sections 3.1.5 and 3.2.5 reveal that there
are some numerical problems with the Forward Euler and Crank-Nicolson
schemes: sawtooth-like noise is sometimes present in solutions that are,
from a mathematical point of view, expected to be smooth. This section
presents a mathematical analysis that explains the observed behavior
and arrives at criteria for obtaining numerical solutions that reproduce
the qualitative properties of the exact solutions. In short, we shall explain
what is observed in Figures 3.1-3.7.
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3.3.1 Properties of the solution

A particular characteristic of diffusive processes, governed by an equation
like

ut = αuxx, (3.42)

is that the initial shape u(x, 0) = I(x) spreads out in space with time,
along with a decaying amplitude. Three different examples will illustrate
the spreading of u in space and the decay in time.

Similarity solution. The diffusion equation (3.42) admits solutions that
depend on η = (x − c)/

√
4αt for a given value of c. One particular

solution is

u(x, t) = a erf(η) + b, (3.43)

where

erf(η) = 2√
π

∫ η

0
e−ζ

2
dζ, (3.44)

is the error function, and a and b are arbitrary constants. The error
function lies in (−1, 1), is odd around η = 0, and goes relatively quickly
to ±1:

lim
η→−∞

erf(η) = −1,

lim
η→∞

erf(η) = 1,

erf(η) = −erf(−η),
erf(0) = 0,
erf(2) = 0.99532227,
erf(3) = 0.99997791 .

As t→ 0, the error function approaches a step function centered at
x = c. For a diffusion problem posed on the unit interval [0, 1], we may
choose the step at x = 1/2 (meaning c = 1/2), a = −1/2, b = 1/2. Then

u(x, t) = 1
2

(
1− erf

(
x− 1

2√
4αt

))
= 1

2erfc
(
x− 1

2√
4αt

)
, (3.45)
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where we have introduced the complementary error function erfc(η) =
1− erf(η). The solution (3.45) implies the boundary conditions

u(0, t) = 1
2

(
1− erf

(−1/2√
4αt

))
, (3.46)

u(1, t) = 1
2

(
1− erf

( 1/2√
4αt

))
. (3.47)

For small enough t, u(0, t) ≈ 1 and u(1, t) ≈ 1, but as t→∞, u(x, t)→
1/2 on [0, 1].

Solution for a Gaussian pulse. The standard diffusion equation ut =
αuxx admits a Gaussian function as solution:

u(x, t) = 1√
4παt

exp
(
−(x− c)2

4αt

)
. (3.48)

At t = 0 this is a Dirac delta function, so for computational purposes
one must start to view the solution at some time t = tε > 0. Replacing t
by tε + t in (3.48) makes it easy to operate with a (new) t that starts at
t = 0 with an initial condition with a finite width. The important feature
of (3.48) is that the standard deviation σ of a sharp initial Gaussian
pulse increases in time according to σ =

√
2αt, making the pulse diffuse

and flatten out.

Solution for a sine component. Also, (3.42) admits a solution of the
form

u(x, t) = Qe−at sin (kx) . (3.49)

The parameters Q and k can be freely chosen, while inserting (3.49) in
(3.42) gives the constraint

a = −αk2 .

A very important feature is that the initial shape I(x) = Q sin kx
undergoes a damping exp (−αk2t), meaning that rapid oscillations in
space, corresponding to large k, are very much faster dampened than
slow oscillations in space, corresponding to small k. This feature leads
to a smoothing of the initial condition with time. (In fact, one can use
a few steps of the diffusion equation as a method for removing noise in
signal processing.) To judge how good a numerical method is, we may
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look at its ability to smoothen or dampen the solution in the same way
as the PDE does.

The following example illustrates the damping properties of (3.49).
We consider the specific problem

ut = uxx, x ∈ (0, 1), t ∈ (0, T ],
u(0, t) = u(1, t) = 0, t ∈ (0, T ],
u(x, 0) = sin(πx) + 0.1 sin(100πx) .

The initial condition has been chosen such that adding two solutions like
(3.49) constructs an analytical solution to the problem:

u(x, t) = e−π
2t sin(πx) + 0.1e−π2104t sin(100πx) . (3.50)

Figure 3.8 illustrates the rapid damping of rapid oscillations sin(100πx)
and the very much slower damping of the slowly varying sin(πx) term.
After about t = 0.5 · 10−4 the rapid oscillations do not have a visible
amplitude, while we have to wait until t ∼ 0.5 before the amplitude of
the long wave sin(πx) becomes very small.

3.3.2 Analysis of discrete equations

A counterpart to (3.49) is the complex representation of the same function:

u(x, t) = Qe−ateikx,

where i =
√
−1 is the imaginary unit. We can add such functions, often

referred to as wave components, to make a Fourier representation of a
general solution of the diffusion equation:

u(x, t) ≈
∑
k∈K

bke
−αk2teikx, (3.51)

where K is a set of an infinite number of k values needed to construct
the solution. In practice, however, the series is truncated and K is a
finite set of k values needed to build a good approximate solution. Note
that (3.50) is a special case of (3.51) where K = {π, 100π}, bπ = 1, and
b100π = 0.1.
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Fig. 3.8 Evolution of the solution of a diffusion problem: initial condition (upper left),
1/100 reduction of the small waves (upper right), 1/10 reduction of the long wave (lower
left), and 1/100 reduction of the long wave (lower right).

The amplitudes bk of the individual Fourier waves must be determined
from the initial condition. At t = 0 we have u ≈

∑
k bk exp (ikx) and find

K and bk such that

I(x) ≈
∑
k∈K

bke
ikx . (3.52)

(The relevant formulas for bk come from Fourier analysis, or equivalently,
a least-squares method for approximating I(x) in a function space with
basis exp (ikx).)

Much insight about the behavior of numerical methods can be obtained
by investigating how a wave component exp (−αk2t) exp (ikx) is treated
by the numerical scheme. It appears that such wave components are
also solutions of the schemes, but the damping factor exp (−αk2t) varies
among the schemes. To ease the forthcoming algebra, we write the
damping factor as An. The exact amplification factor corresponding to
A is Ae = exp (−αk2∆t).
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3.3.3 Analysis of the finite difference schemes

We have seen that a general solution of the diffusion equation can be
built as a linear combination of basic components

e−αk
2teikx .

A fundamental question is whether such components are also solutions of
the finite difference schemes. This is indeed the case, but the amplitude
exp (−αk2t) might be modified (which also happens when solving the
ODE counterpart u′ = −αu). We therefore look for numerical solutions
of the form

unq = Aneikq∆x = Aneikx, (3.53)

where the amplification factor A must be determined by inserting the
component into an actual scheme. Note that An means A raised to the
power of n, n being the index in the time mesh, while the superscript n
in unq just denotes u at time tn.

Stability. The exact amplification factor is Ae = exp (−α2k2∆t). We
should therefore require |A| < 1 to have a decaying numerical solution
as well. If −1 ≤ A < 0, An will change sign from time level to time level,
and we get stable, non-physical oscillations in the numerical solutions
that are not present in the exact solution.

Accuracy. To determine how accurately a finite difference scheme treats
one wave component (3.53), we see that the basic deviation from the
exact solution is reflected in how well An approximates Ane , or how well
A approximates Ae. We can plot Ae and the various expressions for
A, and we can make Taylor expansions of A/Ae to see the error more
analytically.

Truncation error. As an alternative to examining the accuracy of the
damping of a wave component, we can perform a general truncation error
analysis as explained in Appendix B. Such results are more general, but
less detailed than what we get from the wave component analysis. The
truncation error can almost always be computed and represents the error
in the numerical model when the exact solution is substituted into the
equations. In particular, the truncation error analysis tells the order of
the scheme, which is of fundamental importance when verifying codes
based on empirical estimation of convergence rates.
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3.3.4 Analysis of the Forward Euler scheme

The Forward Euler finite difference scheme for ut = αuxx can be written
as

[D+
t u = αDxDxu]nq .

Inserting a wave component (3.53) in the scheme demands calculating
the terms

eikq∆x[D+
t A]n = eikq∆xAn

A− 1
∆t

,

and

AnDxDx[eikx]q = An
(
−eikq∆x 4

∆x2 sin2
(
k∆x

2

))
.

Inserting these terms in the discrete equation and dividing by Aneikq∆x
leads to

A− 1
∆t

= −α 4
∆x2 sin2

(
k∆x

2

)
,

and consequently

A = 1− 4F sin2 p (3.54)

where

F = α∆t

∆x2 (3.55)

is the numerical Fourier number, and p = k∆x/2. The complete numerical
solution is then

unq =
(
1− 4F sin2 p

)n
eikq∆x . (3.56)

Stability. We easily see that A ≤ 1. However, the A can be less than −1,
which will lead to growth of a numerical wave component. The criterion
A ≥ −1 implies

4F sin2(p/2) ≤ 2 .

The worst case is when sin2(p/2) = 1, so a sufficient criterion for stability
is
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F ≤ 1
2 , (3.57)

or expressed as a condition on ∆t:

∆t ≤ ∆x2

2α . (3.58)

Note that halving the spatial mesh size, ∆x→ 1
2∆x, requires ∆t to be

reduced by a factor of 1/4. The method hence becomes very expensive
for fine spatial meshes.
Accuracy. Since A is expressed in terms of F and the parameter we now
call p = k∆x/2, we should also express Ae by F and p. The exponent in
Ae is −αk2∆t, which equals −Fk2∆x2 = −F4p2. Consequently,

Ae = exp (−αk2∆t) = exp (−4Fp2) .

All our A expressions as well as Ae are now functions of the two dimen-
sionless parameters F and p.

Computing the Taylor series expansion of A/Ae in terms of F can
easily be done with aid of sympy:

def A_exact(F, p):
return exp(-4*F*p**2)

def A_FE(F, p):
return 1 - 4*F*sin(p)**2

from sympy import *
F, p = symbols(’F p’)
A_err_FE = A_FE(F, p)/A_exact(F, p)
print A_err_FE.series(F, 0, 6)

The result is

A

Ae
= 1− 4F sin2 p+ 2Fp2 − 16F 2p2 sin2 p+ 8F 2p4 + · · ·

Recalling that F = α∆t/∆x2, p = k∆x/2, and that sin2 p ≤ 1, we realize
that the dominating terms in A/Ae are at most

1− 4α ∆t

∆x2 + α∆t− 4α2∆t2 + α2∆t2∆x2 + · · · .

Truncation error. We follow the theory explained in Appendix B. The
recipe is to set up the scheme in operator notation and use formulas from
Appendix B.2.4 to derive an expression for the residual. The details are
documented in Appendix B.6.1. We end up with a truncation error
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Rni = O(∆t) +O(∆x2) .

Although this is not the true error ue(xi, tn)− uni , it indicates that the
true error is of the form

E = Ct∆t+ Cx∆x
2

for two unknown constants Ct and Cx.

3.3.5 Analysis of the Backward Euler scheme

Discretizing ut = αuxx by a Backward Euler scheme,

[D−t u = αDxDxu]nq ,

and inserting a wave component (3.53), leads to calculations similar to
those arising from the Forward Euler scheme, but since

eikq∆x[D−t A]n = Aneikq∆x
1− A−1

∆t
,

we get

1− A−1

∆t
= −α 4

∆x2 sin2
(
k∆x

2

)
,

and then

A =
(
1 + 4F sin2 p

)−1
. (3.59)

The complete numerical solution can be written

unq =
(
1 + 4F sin2 p

)−n
eikq∆x . (3.60)

Stability. We see from (3.59) that 0 < A < 1, which means that all
numerical wave components are stable and non-oscillatory for any ∆t > 0.

Truncation error. The derivation of the truncation error for the Back-
ward Euler scheme is almost identical to that for the Forward Euler
scheme. We end up with

Rni = O(∆t) +O(∆x2) .
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3.3.6 Analysis of the Crank-Nicolson scheme

The Crank-Nicolson scheme can be written as

[Dtu = αDxDxu
x]n+ 1

2
q ,

or

[Dtu]n+ 1
2

q = 1
2α
(
[DxDxu]nq + [DxDxu]n+1

q

)
.

Inserting (3.53) in the time derivative approximation leads to

[DtA
neikq∆x]n+ 1

2 = An+ 1
2 eikq∆x

A
1
2 − A− 1

2

∆t
= Aneikq∆x

A− 1
∆t

.

Inserting (3.53) in the other terms and dividing by Aneikq∆x gives the
relation

A− 1
∆t

= −1
2α

4
∆x2 sin2

(
k∆x

2

)
(1 + A),

and after some more algebra,

A = 1− 2F sin2 p

1 + 2F sin2 p
. (3.61)

The exact numerical solution is hence

unq =
(

1− 2F sin2 p

1 + 2F sin2 p

)n
eikp∆x . (3.62)

Stability. The criteria A > −1 and A < 1 are fulfilled for any ∆t > 0.
Therefore, the solution cannot grow, but it will oscillate if 1−2F sinp < 0.
To avoid such non-physical oscillations, we must demand F ≤ 1

2 .

Truncation error. The truncation error is derived in Appendix B.6.1:

R
n+ 1

2
i = O(∆x2) +O(∆t2) .

3.3.7 Analysis of the Leapfrog scheme

An attractive feature of the Forward Euler scheme is the explicit time
stepping and no need for solving linear systems. However, the accuracy



284 3 Diffusion equations

in time is only O(∆t). We can get an explicit second-order scheme in
time by using the Leapfrog method:

[D2tu = αDxDxu+ f ]ni .

Written out,

un+1 = un−1 + 2α∆t
∆x2 (uni+1 − 2uni + uni−1) + f(xi, tn) .

We need some formula for the first step, u1
i , but for that we can use a

Forward Euler step.
Unfortunately, the Leapfrog scheme is always unstable for the diffusion

equation. To see this, we insert a wave component Aneikx and get

A− A−1

∆t
= −α 4

∆x2 sin2 p,

or

A2 + 4F sin2 pA− 1 = 0,

which has roots

A = −2F sin2 p±
√

4F 2 sin4 p+ 1 .

Both roots have |A| > 1 so the always amplitude grows, which is not
in accordance with physics of the problem. However, for a PDE with a
first-order derivative in space, instead of a second-order one, the Leapfrog
scheme performs very well. Details are provided in Section 4.1.3.

3.3.8 Summary of accuracy of amplification factors

We can plot the various amplification factors against p = k∆x/2 for
different choices of the F parameter. Figures 3.9, 3.10, and 3.11 show
how long and small waves are damped by the various schemes compared
to the exact damping. As long as all schemes are stable, the amplification
factor is positive, except for Crank-Nicolson when F > 0.5.

The effect of negative amplification factors is that An changes sign
from one time level to the next, thereby giving rise to oscillations in
time in an animation of the solution. We see from Figure 3.9 that for
F = 20, waves with p ≥ π/4 undergo a damping close to −1, which
means that the amplitude does not decay and that the wave component
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Fig. 3.9 Amplification factors for large time steps.
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Fig. 3.10 Amplification factors for time steps around the Forward Euler stability limit.
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Fig. 3.11 Amplification factors for small time steps.

jumps up and down (flips amplitude) in time. For F = 2 we have a
damping of a factor of 0.5 from one time level to the next, which is very
much smaller than the exact damping. Short waves will therefore fail to
be effectively dampened. These waves will manifest themselves as high
frequency oscillatory noise in the solution.

A value p = π/4 corresponds to four mesh points per wave length of
eikx, while p = π/2 implies only two points per wave length, which is
the smallest number of points we can have to represent the wave on the
mesh.
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To demonstrate the oscillatory behavior of the Crank-Nicolson scheme,
we choose an initial condition that leads to short waves with significant
amplitude. A discontinuous I(x) will in particular serve this purpose:
Figures 3.6 and 3.7 correspond to F = 3 and F = 10, respectively, and
we see how short waves pollute the overall solution.

3.3.9 Analysis of the 2D diffusion equation

We first consider the 2D diffusion equation

ut = α(uxx + uyy),

which has Fourier component solutions of the form

u(x, y, t) = Ae−αk
2tei(kxx+kyy),

and the schemes have discrete versions of this Fourier component:

unq,r = Aξnei(kxq∆x+kyr∆y) .

The Forward Euler scheme. For the Forward Euler discretization,

[D+
t u = α(DxDxu+DyDyu)]ni,j ,

we get

ξ − 1
∆t

= −α 4
∆x2 sin2

(
kx∆x

2

)
− α 4

∆y2 sin2
(
ky∆y

2

)
.

Introducing

px = kx∆x

2 , py = ky∆y

2 ,

we can write the equation for ξ more compactly as

ξ − 1
∆t

= −α 4
∆x2 sin2 px − α

4
∆y2 sin2 py,

and solve for ξ:

ξ = 1− 4Fx sin2 px − 4Fy sin2 py . (3.63)

The complete numerical solution for a wave component is
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unq,r = A(1− 4Fx sin2 px − 4Fy sin2 py)nei(kxp∆x+kyq∆y) . (3.64)

For stability we demand −1 ≤ ξ ≤ 1, and −1 ≤ ξ is the critical limit,
since clearly ξ ≤ 1, and the worst case happens when the sines are at
their maximum. The stability criterion becomes

Fx + Fy ≤
1
2 . (3.65)

For the special, yet common, case ∆x = ∆y = h, the stability criterion
can be written as

∆t ≤ h2

2dα,

where d is the number of space dimensions: d = 1, 2, 3.

The Backward Euler scheme. The Backward Euler method,

[D−t u = α(DxDxu+DyDyu)]ni,j ,

results in

1− ξ−1 = −4Fx sin2 px − 4Fy sin2 py,

and

ξ = (1 + 4Fx sin2 px + 4Fy sin2 py)−1,

which is always in (0, 1]. The solution for a wave component becomes

unq,r = A(1 + 4Fx sin2 px + 4Fy sin2 py)−nei(kxq∆x+kyr∆y) . (3.66)

The Crank-Nicolson scheme. With a Crank-Nicolson discretization,

[Dtu]n+ 1
2

i,j = 1
2[α(DxDxu+DyDyu)]n+1

i,j + 1
2[α(DxDxu+DyDyu)]ni,j ,

we have, after some algebra,

ξ = 1− 2(Fx sin2 px + Fx sin2 py)
1 + 2(Fx sin2 px + Fx sin2 py)

.

The fraction on the right-hand side is always less than 1, so stability in
the sense of non-growing wave components is guaranteed for all physical
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and numerical parameters. However, the fraction can become negative
and result in non-physical oscillations. This phenomenon happens when

Fx sin2 px + Fx sin2 py >
1
2 .

A criterion against non-physical oscillations is therefore

Fx + Fy ≤
1
2 ,

which is the same limit as the stability criterion for the Forward Euler
scheme.

The exact discrete solution is

unq,r = A

(
1− 2(Fx sin2 px + Fx sin2 py)
1 + 2(Fx sin2 px + Fx sin2 py)

)n
ei(kxq∆x+kyr∆y) . (3.67)

3.3.10 Explanation of numerical artifacts

The behavior of the solution generated by Forward Euler discretization
in time (and centered differences in space) is summarized at the end of
Section 3.1.5. Can we from the analysis above explain the behavior?

We may start by looking at Figure 3.3 where F = 0.51. The figure
shows that the solution is unstable and grows in time. The stability limit
for such growth is F = 0.5 and since the F in this simulation is slightly
larger, growth is unavoidable.

Figure 3.1 has unexpected features: we would expect the solution of
the diffusion equation to be smooth, but the graphs in Figure 3.1 contain
non-smooth noise. Turning to Figure 3.4, which has a quite similar initial
condition, we see that the curves are indeed smooth. The problem with
the results in Figure 3.1 is that the initial condition is discontinuous. To
represent it, we need a significant amplitude on the shortest waves in
the mesh. However, for F = 0.5, the shortest wave (p = π/2) gives the
amplitude in the numerical solution as (1−4F )n, which oscillates between
negative and positive values at subsequent time levels for F > 1

4 . Since
the shortest waves have visible amplitudes in the solution profile, the
oscillations becomes visible. The smooth initial condition in Figure 3.4,
on the other hand, leads to very small amplitudes of the shortest waves.
That these waves then oscillate in a non-physical way for F = 0.5 is
not a visible effect. The oscillations in time in the amplitude (1− 4F )n
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disappear for F ≤ 1
4 , and that is why also the discontinuous initial

condition always leads to smooth solutions in Figure 3.2, where F = 1
4 .

Turning the attention to the Backward Euler scheme and the experi-
ments in Figure 3.5, we see that even the discontinuous initial condition
gives smooth solutions for F = 0.5 (and in fact all other F values). From
the exact expression of the numerical amplitude, (1 + 4F sin2 p)−1, we
realize that this factor can never flip between positive and negative values,
and no instabilities can occur. The conclusion is that the Backward Euler
scheme always produces smooth solutions. Also, the Backward Euler
scheme guarantees that the solution cannot grow in time (unless we add
a source term to the PDE, but that is meant to represent a physically
relevant growth).

Finally, we have some small, strange artifacts when simulating the
development of the initial plug profile with the Crank-Nicolson scheme,
see Figure 3.7, where F = 3. The Crank-Nicolson scheme cannot give
growing amplitudes, but it may give oscillating amplitudes in time.
The critical factor is 1 − 2F sin2 p, which for the shortest waves (p =
π/2) indicates a stability limit F = 0.5. With the discontinuous initial
condition, we have enough amplitude on the shortest waves so their
wrong behavior is visible, and this is what we see as small instabilities in
Figure 3.7. The only remedy is to lower the F value.

3.4 Exercises

Exercise 3.1: Explore symmetry in a 1D problem

This exercise simulates the exact solution (3.48). Suppose for simplicity
that c = 0.

a) Formulate an initial-boundary value problem that has (3.48) as
solution in the domain [−L,L]. Use the exact solution (3.48) as Dirichlet
condition at the boundaries. Simulate the diffusion of the Gaussian peak.
Observe that the solution is symmetric around x = 0.

b) Show from (3.48) that ux(c, t) = 0. Since the solution is symmetric
around x = c = 0, we can solve the numerical problem in half of the
domain, using a symmetry boundary condition ux = 0 at x = 0. Set up
the initial-boundary value problem in this case. Simulate the diffusion
problem in [0, L] and compare with the solution in a).
Filename: diffu_symmetric_gaussian.
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Exercise 3.2: Investigate approximation errors from a ux = 0
boundary condition

We consider the problem solved in Exercise 3.1 part b). The boundary
condition ux(0, t) = 0 can be implemented in two ways: 1) by a standard
symmetric finite difference [D2xu]ni = 0, or 2) by a one-sided difference
[D+u = 0]ni = 0. Investigate the effect of these two conditions on the
convergence rate in space.

Hint. If you use a Forward Euler scheme, choose a discretization param-
eter h = ∆t = ∆x2 and assume the error goes like E ∼ hr. The error
in the scheme is O(∆t,∆x2) so one should expect that the estimated r
approaches 1. The question is if a one-sided difference approximation to
ux(0, t) = 0 destroys this convergence rate.
Filename: diffu_onesided_fd.

Exercise 3.3: Experiment with open boundary conditions in
1D

We address diffusion of a Gaussian function as in Exercise 3.1, in the
domain [0, L], but now we shall explore different types of boundary
conditions on x = L. In real-life problems we do not know the exact
solution on x = L and must use something simpler.

a) Imagine that we want to solve the problem numerically on [0, L], with
a symmetry boundary condition ux = 0 at x = 0, but we do not know
the exact solution and cannot of that reason assign a correct Dirichlet
condition at x = L. One idea is to simply set u(L, t) = 0 since this will
be an accurate approximation before the diffused pulse reaches x = L
and even thereafter it might be a satisfactory condition if the exact u
has a small value. Let ue be the exact solution and let u be the solution
of ut = αuxx with an initial Gaussian pulse and the boundary conditions
ux(0, t) = u(L, t) = 0. Derive a diffusion problem for the error e = ue−u.
Solve this problem numerically using an exact Dirichlet condition at
x = L. Animate the evolution of the error and make a curve plot of the
error measure

E(t) =

√√√√∫ L0 e2dx∫ L
0 udx

.

Is this a suitable error measure for the present problem?
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b) Instead of using u(L, t) = 0 as approximate boundary condition for
letting the diffused Gaussian pulse move out of our finite domain, one
may try ux(L, t) = 0 since the solution for large t is quite flat. Argue that
this condition gives a completely wrong asymptotic solution as t → 0.
To do this, integrate the diffusion equation from 0 to L, integrate uxx by
parts (or use Gauss’ divergence theorem in 1D) to arrive at the important
property

d

dt

∫ L

0
u(x, t)dx = 0,

implying that
∫ L

0 udx must be constant in time, and therefore∫ L

0
u(x, t)dx =

∫ L

0
I(x)dx .

The integral of the initial pulse is 1.
c) Another idea for an artificial boundary condition at x = L is to use a
cooling law

− αux = q(u− uS), (3.68)

where q is an unknown heat transfer coefficient and uS is the surrounding
temperature in the medium outside of [0, L]. (Note that arguing that uS
is approximately u(L, t) gives the ux = 0 condition from the previous
subexercise that is qualitatively wrong for large t.) Develop a diffusion
problem for the error in the solution using (3.68) as boundary condition.
Assume one can take uS = 0 “outside the domain” since ue → 0 as
x → ∞. Find a function q = q(t) such that the exact solution obeys
the condition (3.68). Test some constant values of q and animate how
the corresponding error function behaves. Also compute E(t) curves as
defined above.
Filename: diffu_open_BC.

Exercise 3.4: Simulate a diffused Gaussian peak in 2D/3D

a) Generalize (3.48) to multi dimensions by assuming that one-
dimensional solutions can be multiplied to solve ut = α∇2u. Set c = 0
such that the peak of the Gaussian is at the origin.
b) One can from the exact solution show that ux = 0 on x = 0, uy = 0
on y = 0, and uz = 0 on z = 0. The approximately correct condition



292 3 Diffusion equations

u = 0 can be set on the remaining boundaries (say x = L, y = L,
z = L), cf. Exercise 3.3. Simulate a 2D case and make an animation of
the diffused Gaussian peak.

c) The formulation in b) makes use of symmetry of the solution such
that we can solve the problem in the first quadrant (2D) or octant (3D)
only. To check that the symmetry assumption is correct, formulate the
problem without symmetry in a domain [−L,L]× [L,L] in 2D. Use u = 0
as approximately correct boundary condition. Simulate the same case
as in b), but in a four times as large domain. Make an animation and
compare it with the one in b).
Filename: diffu_symmetric_gaussian_2D.

Exercise 3.5: Examine stability of a diffusion model with a
source term

Consider a diffusion equation with a linear u term:

ut = αuxx + βu .

a) Derive in detail the Forward Euler, Backward Euler, and Crank-
Nicolson schemes for this type of diffusion model. Thereafter, formulate
a θ-rule to summarize the three schemes.

b) Assume a solution like (3.49) and find the relation between a, k, α,
and β.

Hint. Insert (3.49) in the PDE problem.

c) Calculate the stability of the Forward Euler scheme. Design numerical
experiments to confirm the results.

Hint. Insert the discrete counterpart to (3.49) in the numerical scheme.
Run experiments at the stability limit and slightly above.

d) Repeat c) for the Backward Euler scheme.

e) Repeat c) for the Crank-Nicolson scheme.

f) How does the extra term bu impact the accuracy of the three schemes?

Hint. For analysis of the accuracy, compare the numerical and exact
amplification factors, in graphs and/or by Taylor series expansion.
Filename: diffu_stability_uterm.



3.5 Diffusion in heterogeneous media 293

3.5 Diffusion in heterogeneous media

Diffusion in heterogeneous media normally implies a non-constant dif-
fusion coefficient α = α(x). A 1D diffusion model with such a variable
diffusion coefficient reads

∂u

∂t
= ∂

∂x

(
α(x)∂u

∂x

)
+ f(x, t), x ∈ (0, L), t ∈ (0, T ], (3.69)

u(x, 0) = I(x), x ∈ [0, L], (3.70)
u(0, t) = U0, t > 0, (3.71)
u(L, t) = UL, t > 0. (3.72)

A short form of the diffusion equation with variable coefficients is ut =
(αux)x.

3.5.1 Discretization

We can discretize (3.69) by a θ-rule in time and centered differences in
space:

[Dtu]n+ 1
2

i = θ[Dx(αxDxu) + f ]n+1
i + (1− θ)[Dx(αxDxu) + f ]ni .

Written out, this becomes

un+1
i − uni
∆t

= θ
1

∆x2 (αi+ 1
2
(un+1
i+1 − un+1

i )− αi− 1
2
(un+1
i − un+1

i+1 ))+

(1− θ) 1
∆x2 (αi+ 1

2
(uni+1 − uni )− αi− 1

2
(uni − uni+1))+

θfn+1
i + (1− θ)fni ,

where, e.g., an arithmetic mean can to be used for αi+ 1
2
:

αi+ 1
2

= 1
2(αi + αi+1) .
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3.5.2 Implementation

Suitable code for solving the discrete equations is very similar to what
we created for a constant α. Since the Fourier number has no meaning
for varying α, we introduce a related parameter D = ∆t/∆x2.

def solver_theta(I, a, L, Nx, D, T, theta=0.5, u_L=1, u_R=0,
user_action=None):

x = linspace(0, L, Nx+1) # mesh points in space
dx = x[1] - x[0]
dt = D*dx**2
Nt = int(round(T/float(dt)))
t = linspace(0, T, Nt+1) # mesh points in time

u = zeros(Nx+1) # solution array at t[n+1]
u_n = zeros(Nx+1) # solution at t[n]

Dl = 0.5*D*theta
Dr = 0.5*D*(1-theta)

# Representation of sparse matrix and right-hand side
diagonal = zeros(Nx+1)
lower = zeros(Nx)
upper = zeros(Nx)
b = zeros(Nx+1)

# Precompute sparse matrix (scipy format)
diagonal[1:-1] = 1 + Dl*(a[2:] + 2*a[1:-1] + a[:-2])
lower[:-1] = -Dl*(a[1:-1] + a[:-2])
upper[1:] = -Dl*(a[2:] + a[1:-1])
# Insert boundary conditions
diagonal[0] = 1
upper[0] = 0
diagonal[Nx] = 1
lower[-1] = 0

A = scipy.sparse.diags(
diagonals=[diagonal, lower, upper],
offsets=[0, -1, 1],
shape=(Nx+1, Nx+1),
format=’csr’)

# Set initial condition
for i in range(0,Nx+1):

u_n[i] = I(x[i])

if user_action is not None:
user_action(u_n, x, t, 0)

# Time loop
for n in range(0, Nt):

b[1:-1] = u_n[1:-1] + Dr*(
(a[2:] + a[1:-1])*(u_n[2:] - u_n[1:-1]) -
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(a[1:-1] + a[0:-2])*(u_n[1:-1] - u_n[:-2]))
# Boundary conditions
b[0] = u_L(t[n+1])
b[-1] = u_R(t[n+1])
# Solve
u[:] = scipy.sparse.linalg.spsolve(A, b)

if user_action is not None:
user_action(u, x, t, n+1)

# Switch variables before next step
u_n, u = u, u_n

The code is found in the file diffu1D_vc.py.

3.5.3 Stationary solution

As t → ∞, the solution of the problem (3.69)-(3.72) will approach a
stationary limit where ∂u/∂t = 0. The governing equation is then

d

dx

(
α
du

dx

)
= 0, (3.73)

with boundary conditions u(0) = U0 and u(L) = uL. It is possible
to obtain an exact solution of (3.73) for any α. Integrating twice and
applying the boundary conditions to determine the integration constants
gives

u(x) = U0 + (UL − U0)
∫ x

0 (α(ξ))−1dξ∫ L
0 (α(ξ))−1dξ

. (3.74)

3.5.4 Piecewise constant medium

Consider a medium built of M layers. The layer boundaries are denoted
b0, . . . , bM , where b0 = 0 and bM = L. If the layers potentially have
different material properties, but these properties are constant within
each layer, we can express α as a piecewise constant function according
to

http://tinyurl.com/nu656p2/diffu/diffu1D_vc.py
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α(x) =



α0, b0 ≤ x < b1,
...
αi, bi ≤ x < bi+1,
...
αM−1, bM−1 ≤ x ≤ bM .

(3.75)

The exact solution (3.74) in case of such a piecewise constant α function
is easy to derive. Assume that x is in the m-th layer: x ∈ [bm, bm+1].
In the integral

∫ x
0 (a(ξ))−1dξ we must integrate through the first m− 1

layers and then add the contribution from the remaining part x − bm
into the m-th layer:

u(x) = U0+(UL−U0)
∑m−1
j=0 (bj+1 − bj)/α(bj) + (x− bm)/α(bm)∑M−1

j=0 (bj+1 − bj)/α(bj)
(3.76)

Remark. It may sound strange to have a discontinuous α in a differential
equation where one is to differentiate, but a discontinuous α is compen-
sated by a discontinuous ux such that αux is continuous and therefore
can be differentiated as (αux)x.

3.5.5 Implementation of diffusion in a piecewise constant
medium

Programming with piecewise function definitions quickly becomes cum-
bersome as the most naive approach is to test for which interval x lies,
and then start evaluating a formula like (3.76). In Python, vectorized
expressions may help to speed up the computations. The convenience
classes PiecewiseConstant and IntegratedPiecewiseConstant in the
Heaviside module were made to simplify programming with functions
like (3.5.4) and expressions like (3.76). These utilities not only represent
piecewise constant functions, but also smoothed versions of them where
the discontinuities can be smoothed out in a controlled fashion.

The PiecewiseConstant class is created by sending in the domain as
a 2-tuple or 2-list and a data object describing the boundaries b0, . . . , bM
and the corresponding function values α0, . . . , αM−1. More precisely, data
is a nested list, where data[i][0] holds bi and data[i][1] holds the
corresponding value αi, for i = 0, . . . ,M − 1. Given bi and αi in arrays b
and a, it is easy to fill out the nested list data.

http://tinyurl.com/nu656p2/diffu/Heaviside.py
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In our application, we want to represent α and 1/α as piecewise
constant functions, in addition to the u(x) function which involves the
integrals of 1/α. A class creating the functions we need and a method
for evaluating u, can take the form

class SerialLayers:
"""
b: coordinates of boundaries of layers, b[0] is left boundary
and b[-1] is right boundary of the domain [0,L].
a: values of the functions in each layer (len(a) = len(b)-1).
U_0: u(x) value at left boundary x=0=b[0].
U_L: u(x) value at right boundary x=L=b[0].
"""

def __init__(self, a, b, U_0, U_L, eps=0):
self.a, self.b = np.asarray(a), np.asarray(b)
self.eps = eps # smoothing parameter for smoothed a
self.U_0, self.U_L = U_0, U_L

a_data = [[bi, ai] for bi, ai in zip(self.b, self.a)]
domain = [b[0], b[-1]]
self.a_func = PiecewiseConstant(domain, a_data, eps)

# inv_a = 1/a is needed in formulas
inv_a_data = [[bi, 1./ai] for bi, ai in zip(self.b, self.a)]
self.inv_a_func = \

PiecewiseConstant(domain, inv_a_data, eps)
self.integral_of_inv_a_func = \

IntegratedPiecewiseConstant(domain, inv_a_data, eps)
# Denominator in the exact formula is constant
self.inv_a_0L = self.integral_of_inv_a_func(b[-1])

def __call__(self, x):
solution = self.U_0 + (self.U_L-self.U_0)*\

self.integral_of_inv_a_func(x)/self.inv_a_0L
return solution

A visualization method is also convenient to have. Below we plot u(x)
along with α(x) (which works well as long as maxα(x) is of the same
size as max u = max(U0, UL)).

class SerialLayers:
...

def plot(self):
x, y_a = self.a_func.plot()
x = np.asarray(x); y_a = np.asarray(y_a)
y_u = self.u_exact(x)
import matplotlib.pyplot as plt
plt.figure()
plt.plot(x, y_u, ’b’)
plt.hold(’on’) # Matlab style
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plt.plot(x, y_a, ’r’)
ymin = -0.1
ymax = 1.2*max(y_u.max(), y_a.max())
plt.axis([x[0], x[-1], ymin, ymax])
plt.legend([’solution $u$’, ’coefficient $a$’], loc=’upper left’)
if self.eps > 0:

plt.title(’Smoothing eps: %s’ % self.eps)
plt.savefig(’tmp.pdf’)
plt.savefig(’tmp.png’)
plt.show()

Figure 3.12 shows the case where

b = [0, 0.25, 0.5, 1] # material boundaries
a = [0.2, 0.4, 4] # material values
U_0 = 0.5; U_L = 5 # boundary conditions

0.0 0.2 0.4 0.6 0.8 1.0
0

1

2

3

4

5

6
solution u
coefficient a

Fig. 3.12 Solution of the stationary diffusion equation corresponding to a piecewise
constant diffusion coefficient.

By adding the eps parameter to the constructor of the SerialLayers
class, we can experiment with smoothed versions of α and see the (small)
impact on u. Figure 3.13 shows the result.
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6 Smoothed discontinuous coefficient (eps=0.05)

solution u
coefficient a

Fig. 3.13 Solution of the stationary diffusion equation corresponding to a smoothed
piecewise constant diffusion coefficient.

3.5.6 Axi-symmetric diffusion

Suppose we have a diffusion process taking place in a straight tube with
radius R. We assume axi-symmetry such that u is just a function of
r and t, r being the radial distance from the center axis of the tube
to a point. With such axi-symmetry it is advantageous to introduce
cylindrical coordinates r, θ, and z, where z is in the direction of the tube
and (r, θ) are polar coordinates in a cross section. Axi-symmetry means
that all quantities are independent of θ. From the relations x = cos θ,
y = sin θ, and z = z, between Cartesian and cylindrical coordinates,
one can (with some effort) derive the diffusion equation in cylindrical
coordinates, which with axi-symmetry takes the form

∂u

∂t
= 1
r

∂

∂r

(
rα(r, z)∂u

∂r

)
+ ∂

∂z

(
α(r, z)∂u

∂z

)
+ f(r, z, t) .

Let us assume that u does not change along the tube axis so it suffices
to compute variations in a cross section. Then ∂u/∂z = 0 and the we
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have a 1D diffusion equation in the radial coordinate r and time t. In
particular, we shall address the initial-boundary value problem

∂u

∂t
= 1
r

∂

∂r

(
rα(r)∂u

∂r

)
+ f(t),r ∈ (0, R), t ∈ (0, T ], (3.77)

∂u

∂r
(0, t) = 0, t ∈ (0, T ], (3.78)

u(R, t) = 0, t ∈ (0, T ], (3.79)
u(r, 0) = I(r), r ∈ [0, R]. (3.80)

The condition (3.78) is a necessary symmetry condition at r = 0, while
(3.79) could be any Dirichlet or Neumann condition (or Robin condition
in case of cooling or heating).

The finite difference approximation will need the discretized version
of the PDE for r = 0 (just as we use the PDE at the boundary when
implementing Neumann conditions). However, discretizing the PDE at
r = 0 poses a problem because of the 1/r factor. We therefore need to
work out the PDE for discretization at r = 0 with care. Let us, for the
case of constant α, expand the spatial derivative term to

α
∂2u

∂r2 + α
1
r

∂u

∂r
.

The last term faces a difficulty at r = 0, since it becomes a 0/0 expression
caused by the symmetry condition at r = 0. However, L’Hosptial’s rule
can be used:

lim
r→0

1
r

∂u

∂r
= ∂2u

∂r2 .

The PDE at r = 0 therefore becomes

∂u

∂t
= 2α∂

2u

∂r2 + f(t) . (3.81)

For a variable coefficient α(r) the expanded spatial derivative term reads

α(r)∂
2u

∂r2 + 1
r

(α(r) + rα′(r))∂u
∂r

.

We are interested in this expression for r = 0. A necessary condition
for u to be axi-symmetric is that all input data, including α, must also
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be axi-symmetric, implying that α′(0) = 0 (the second term vanishes
anyway because of r = 0). The limit of interest is

lim
r→0

1
r
α(r)∂u

∂r
= α(0)∂

2u

∂r2 .

The PDE at r = 0 now looks like

∂u

∂t
= 2α(0)∂

2u

∂r2 + f(t), (3.82)

so there is no essential difference between the constant coefficient and
variable coefficient cases.

The second-order derivative in (3.81) and (3.82) is discretized in the
usual way.

2α ∂2

∂r2u(r0, tn) ≈ [2α2DrDru]n0 = 2αu
n
1 − 2un0 + un−1

∆r2 .

The fictitious value un−1 can be eliminated using the discrete symmetry
condition

[D2ru = 0]n0 ⇒ un−1 = un1 ,

which then gives the modified approximation to the term with the second-
order derivative of u in r at r = 0:

4αu
n
1 − un0
∆r2 . (3.83)

The discretization of the term with the second-order derivative in r at
any internal mesh point is straightforward:

[1
r

∂

∂r

(
rα
∂u

∂r

)]n
i

≈ [r−1Dr(rαDru)]ni

= 1
ri

1
∆r2

(
ri+ 1

2
αi+ 1

2
(uni+1 − uni )− ri− 1

2
αi− 1

2
(uni − uni−1)

)
.

To complete the discretization, we need a scheme in time, but that
can be done as before and does not interfere with the discretization in
space.
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3.5.7 Spherically-symmetric diffusion

Discretization in spherical coordinates. Let us now pose the problem
from Section 3.5.6 in spherical coordinates, where u only depends on the
radial coordinate r and time t. That is, we have spherical symmetry. For
simplicity we restrict the diffusion coefficient α to be a constant. The
PDE reads

∂u

∂t
= α

rγ
∂

∂r

(
rγ
∂u

∂r

)
+ f(t), (3.84)

for r ∈ (0, R) and t ∈ (0, T ]. The parameter γ is 2 for spherically-
symmetric problems and 1 for axi-symmetric problems. The boundary
and initial conditions have the same mathematical form as in (3.77)-
(3.80).

Since the PDE in spherical coordinates has the same form as the PDE
in Section 3.5.6, just with the γ parameter being different, we can use
the same discretization approach. At the origin r = 0 we get problems
with the term

γ

r

∂u

∂t
,

but L’Hosptial’s rule shows that this term equals γ∂2u/∂r2, and the
PDE at r = 0 becomes

∂u

∂t
= (γ + 1)α∂

2u

∂r2 + f(t) . (3.85)

The associated discrete form is then

[Dtu = 1
2(γ + 1)α([DrDru

t + f
t]ni , (3.86)

for a Crank-Nicolson scheme.

Discretization in Cartesian coordinates. The spherically-symmetric
spatial derivative can be transformed to the Cartesian counterpart by
introducing

v(r, t) = ru(r, t) .

Inserting u = v/r in

1
r2

∂

∂r

(
α(r)r2∂u

∂r

)
,
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yields

r

(
dα

dr

∂v

∂r
+ α

∂2v

∂r2

)
− dα

dr
v .

The two terms in the parenthesis can be combined to

r
∂

∂r

(
α
∂v

∂r

)
.

The PDE for v takes the form

∂v

∂t
= ∂

∂r

(
α
∂v

∂r

)
− 1
r

dα

dr
v + rf(r, t), r ∈ (0, R), t ∈ (0, T ] . (3.87)

For α constant we immediately realize that we can reuse a solver in
Cartesian coordinates to compute v. With variable α, a “reaction” term
v/r needs to be added to the Cartesian solver. The boundary condition
∂u/∂r = 0 at r = 0, implied by symmetry, forces v(0, t) = 0, because

∂u

∂r
= 1
r2

(
r
∂v

∂r
− v

)
= 0, r = 0 .

3.6 Diffusion in 2D

We now address a diffusion in two space dimensions:

∂u

∂t
= α

(
∂2u

∂x2 + ∂2u

∂x2

)
+ f(x, y), (3.88)

in a domain

(x, y) ∈ (0, Lx)× (0, Ly), t ∈ (0, T ],

with u = 0 on the boundary and u(x, y, 0) = I(x, y) as initial condition.

3.6.1 Discretization

For generality, it is natural to use a θ-rule for the time discretization.
Standard, second-order accurate finite differences are used for the spatial
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derivatives. We sample the PDE at a space-time point (i, j, n+ 1
2) and

apply the difference approximations:

[Dtu]n+ 1
2 = θ[α(DxDxu+DyDyu) + f ]n+1+

(1− θ)[α(DxDxu+DyDyu) + f ]n . (3.89)

Written out,

un+1
i,j − uni,j
∆t

=

θ(α(
un+1
i−1,j − 2n+1

i,j + un+1
i+1,j

∆x2 +
un+1
i,j−1 − 2n+1

i,j + un+1
i,j+1

∆y2 ) + fn+1
i,j )+

(1− θ)(α(
uni−1,j − 2ni,j + uni+1,j

∆x2 +
uni,j−1 − 2ni,j + uni,j+1

∆y2 ) + fni,j)

(3.90)

We collect the unknowns on the left-hand side

un+1
i,j − θ

(
Fx(un+1

i−1,j − 2n+1
i,j + un+1

i,j ) + Fy(un+1
i,j−1 − 2n+1

i,j + un+1
i,j+1)

)
=

(1− θ)
(
Fx(uni−1,j − 2ni,j + uni,j) + Fy(uni,j−1 − 2ni,j + uni,j+1)

)
+

θ∆tfn+1
i,j + (1− θ)∆tfni,j + uni,j , (3.91)

where

Fx = α∆t

∆x2 , Fy = α∆t

∆y2 ,

are the Fourier numbers in x and y direction, respectively.

3.6.2 Numbering of mesh points versus equations and
unknowns

The equations (3.91) are coupled at the new time level n+ 1. That is, we
must solve a system of (linear) algebraic equations, which we will write
as Ac = b, where A is the coefficient matrix, c is the vector of unknowns,
and b is the right-hand side.
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Fig. 3.14 3x2 2D mesh.

Let us examine the equations in Ac = b on a mesh with Nx = 3 and
Ny = 2 cells in each direction. The spatial mesh is depicted in Figure 3.14.
The equations at the boundary just implement the boundary condition
u = 0:

un+1
0,0 = un+1

1,0 = un+1
2,0 = un+1

3,0 = un+1
0,1 =

un+1
3,1 = un+1

0,2 = un+1
1,2 = un+1

2,2 = un+1
3,2 = 0 .

We are left with two interior points, with i = 1, j = 1 and i = 2, j = 1.
The corresponding equations are

un+1
i,j − θ

(
Fx(un+1

i−1,j − 2n+1
i,j + un+1

i,j ) + Fy(un+1
i,j−1 − 2n+1

i,j + un+1
i,j+1)

)
=

(1− θ)
(
Fx(uni−1,j − 2ni,j + uni,j) + Fy(uni,j−1 − 2ni,j + uni,j+1)

)
+

θ∆tfn+1
i,j + (1− θ)∆tfni,j + uni,j ,

There are in total 12 unknowns un+1
i,j for i = 0, 1, 2, 3 and j = 0, 1, 2.

To solve the equations, we need to form a matrix system Ac = b. In that
system, the solution vector c can only have one index. Thus, we need a
numbering of the unknowns with one index, not two as used in the mesh.



306 3 Diffusion equations

We introduce a mapping m(i, j) from a mesh point with indices (i, j) to
the corresponding unknown p in the equation system:

p = m(i, j) = j(Nx + 1) + i .

When i and j run through their values, we see the following mapping to
p:

(0, 0)→ 0, (0, 1)→ 1, (0, 2)→ 2, (0, 3)→ 3,
(1, 0)→ 4, (1, 1)→ 5, (1, 2)→ 6, (1, 3)→ 7,
(2, 0)→ 8, (2, 1)→ 9, (2, 2)→ 10, (2, 3)→ 11 .

That is, we number the points along the x axis, starting with y = 0, and
then progress one “horizontal” mesh line at a time. In Figure 3.14 you
can see that the (i, j) and the corresponding single index (p) are listed
for each mesh point.

We could equally well have numbered the equations in other ways, e.g.,
let the j index be the fastest varying index: p = m(i, j) = i(Ny + 1) + j.

Let us form the coefficient matrix A, or more precisely, insert a matrix
element (according Python’s convention with zero as base index) for each
of the nonzero elements in A (the indices run through the values of p,
i.e., p = 0, . . . , 11):

(0, 0) 0 0 0 0 0 0 0 0 0 0 0
0 (1, 1) 0 0 0 0 0 0 0 0 0 0
0 0 (2, 2) 0 0 0 0 0 0 0 0 0
0 0 0 (3, 3) 0 0 0 0 0 0 0 0
0 0 0 0 (4, 4) 0 0 0 0 0 0 0
0 (5, 1) 0 0 (5, 4) (5, 5) (5, 6) 0 0 (5, 9) 0 0
0 0 (6, 2) 0 0 (6, 5) (6, 6) (6, 7) 0 0 (6, 10) 0
0 0 0 0 0 0 0 (7, 7) 0 0 0 0
0 0 0 0 0 0 0 0 (8, 8) 0 0 0
0 0 0 0 0 0 0 0 0 (9, 9) 0 0
0 0 0 0 0 0 0 0 0 0 (10, 10) 0
0 0 0 0 0 0 0 0 0 0 0 (11, 11)


Here is a more compact visualization of the coefficient matrix where we
insert dots for zeros and bullets for non-zero elements:
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• · · · · · · · · · · ·
· • · · · · · · · · · ·
· · • · · · · · · · · ·
· · · • · · · · · · · ·
· · · · • · · · · · · ·
· • · · • • • · · • · ·
· · • · · • • • · · • ·
· · · · · · · • · · · ·
· · · · · · · · • · · ·
· · · · · · · · · • · ·
· · · · · · · · · · • ·
· · · · · · · · · · · •


It is clearly seen that most of the elements are zero. This is a general
feature of coefficient matrices arising from discretizing PDEs by finite
difference methods. We say that the matrix is sparse.

Let Ap,q be the value of element (p, q) in the coefficient matrix A,
where p and q now correspond to the numbering of the unknowns in the
equation system. We have Ap,q = 1 for p = q = 0, 1, 2, 3, 4, 7, 8, 9, 10, 11,
corresponding to all the known boundary values. Let p be m(i, j), i.e.,
the single index corresponding to mesh point (i, j). Then we have

Am(i,j),m(i,j) = Ap,p = 1 + θ(Fx + Fy), (3.92)
Ap,m(i−1,j) = Ap,p−1 = −θFx, (3.93)
Ap,m(i+1,j) = Ap,p+1 = −θFx, (3.94)

Ap,m(i,j−1) = Ap,p−(Nx+1) = −θFy, (3.95)
Ap,m(i,j+1) = Ap,p+(Nx+1) = −θFy, (3.96)

(3.97)

for the equations associated with the two interior mesh points. At these
interior points, the single index p takes on the specific values p = 5, 6,
corresponding to the values (1, 1) and (1, 2) of the pair (i, j).

The above values for Ap,q can be inserted in the matrix:

1 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0
0 −θFy 0 0 −θFx 1 + 2θFx −θFx 0 0 −θFy 0 0
0 0 −θFy 0 0 −θFx 1 + 2θFx −θFx 0 0 −θFy 0
0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 1


The corresponding right-hand side vector in the equation system has the
entries bp, where p numbers the equations. We have
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b0 = b1 = b2 = b3 = b4 = b7 = b8 = b9 = b10 = b11 = 0,

for the boundary values. For the equations associated with the interior
points, we get for p = 5, 6, corresponding to i = 1, 2 and j = 1:

bp = ui + (1− θ)
(
Fx(uni−1,j − 2ni,j + uni,j) + Fy(uni,j−1 − 2ni,j + uni,j+1)

)
+

θ∆tfn+1
i,j + (1− θ)∆tfni,j .

Recall that p = m(i, j) = j(Nx + 1) + j in this expression.
We can, as an alternative, leave the boundary mesh points out of the

matrix system. For a mesh with Nx = 3 and Ny = 2 there are only two
internal mesh points whose unknowns will enter the matrix system. We
must now number the unknowns at the interior points:

p = (j − 1)(Nx − 1) + i,

for i = 1, . . . , Nx − 1, j = 1, . . . , Ny − 1.
We can continue with illustrating a bit larger mesh, Nx = 4 and

Ny = 3, see Figure 3.15. The corresponding coefficient matrix with dots
for zeros and bullets for non-zeroes looks as follows (values at boundary
points are included in the equation system):

• · · · · · · · · · · · · · · · · · · ·
· • · · · · · · · · · · · · · · · · · ·
· · • · · · · · · · · · · · · · · · · ·
· · · • · · · · · · · · · · · · · · · ·
· · · · • · · · · · · · · · · · · · · ·
· · · · · • · · · · · · · · · · · · · ·
· • · · · • • • · · · • · · · · · · · ·
· · • · · · • • • · · · • · · · · · · ·
· · · • · · · • • • · · · • · · · · · ·
· · · · · · · · · • · · · · · · · · · ·
· · · · · · · · · · • · · · · · · · · ·
· · · · · · • · · · • • • · · · • · · ·
· · · · · · · • · · · • • • · · · • · ·
· · · · · · · · • · · · • • • · · · • ·
· · · · · · · · · · · · · · • · · · · ·
· · · · · · · · · · · · · · · • · · · ·
· · · · · · · · · · · · · · · · • · · ·
· · · · · · · · · · · · · · · · · • · ·
· · · · · · · · · · · · · · · · · · • ·
· · · · · · · · · · · · · · · · · · · •



The coefficient matrix is banded
Besides being sparse, we observe that the coefficient matrix is banded:
it has five distinct bands. We have the diagonal Ai,i, the subdiagonal
Ai−1,j , the superdiagonal Ai,i+1, a lower diagonal Ai,i−(Nx+1), and
an upper diagonal Ai,i+(Nx+1). The other matrix entries are known
to be zero. With Nx + 1 = Ny + 1 = N , only a fraction 5N−2 of
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(0,2): 10

(0,1): 5

(0,0): 0 (3,0): 3

(3,1): 8

(1,2): 11

(1,0): 1

(1,1): 6

(3,2): 13

(1,3): 16 (4,3): 19

(4,2): 14

(3,3): 18

(2,1): 7

(2,0): 2

(4,1): 9

(4,0): 4

(2,3): 17

(2,2): 12

(0,3): 15

Fig. 3.15 4x3 2D mesh.

the matrix entries are nonzero, so the matrix is clearly very sparse
for relevant N values. The more we can compute with the nonzeros
only, the faster the solution methods will be.

3.6.3 Algorithm for setting up the coefficient matrix

We looked at a specific mesh in the previous section, formulated the
equations, and saw what the corresponding coefficient matrix and right-
hand side are. Now our aim is to set up a general algorithm, for any choice
of Nx and Ny, that produces the coefficient matrix and the right-hand
side vector. We start with a zero matrix and vector, run through each
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mesh point, and fill in the values depending on whether the mesh point
is an interior point or on the boundary.

• for i = 0, . . . , Nx

– for j = 0, . . . , Ny

· p = j(Nx + 1) + i
· if point (i, j) is on the boundary:

· Ap,p = 1, bp = 0
· else:

· fill Ap,m(i−1,j), Ap,m(i+1,j), Ap,m(i,j), Ap,m(i,j−1), Ap,m(i,j+1),
and bp

To ease the test on whether (i, j) is on the boundary or not, we can split
the loops a bit, starting with the boundary line j = 0, then treat the
interior lines 1 ≤ j < Ny, and finally treat the boundary line j = Ny:

• for i = 0, . . . , Nx

– boundary j = 0: p = j(Nx + 1) + i, Ap,p = 1
• for j = 0, . . . , Ny

– boundary i = 0: p = j(Nx + 1) + i, Ap,p = 1
– for i = 1, . . . , Nx − 1

· interior point p = j(Nx + 1) + i
· fill Ap,m(i−1,j), Ap,m(i+1,j), Ap,m(i,j), Ap,m(i,j−1), Ap,m(i,j+1), and
bp

– boundary i = Nx: p = j(Nx + 1) + i, Ap,p = 1
• for i = 0, . . . , Nx

– boundary j = Ny: p = j(Nx + 1) + i, Ap,p = 1

The right-hand side is set up as follows.

• for i = 0, . . . , Nx

– boundary j = 0: p = j(Nx + 1) + i, bp = 0
• for j = 0, . . . , Ny

– boundary i = 0: p = j(Nx + 1) + i, bp = 0
– for i = 1, . . . , Nx − 1

· interior point p = j(Nx + 1) + i
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· fill bp
– boundary i = Nx: p = j(Nx + 1) + i, bp = 0

• for i = 0, . . . , Nx

– boundary j = Ny: p = j(Nx + 1) + i, bp = 0

3.6.4 Implementation with a dense coefficient matrix

The goal now is to map the algorithms in the previous section to Python
code. One should, for computational efficiency reasons, take advantage
of the fact that the coefficient matrix is sparse and/or banded, i.e., take
advantage of all the zeros. However, we first demonstrate how to fill an
N ×N dense square matrix, where N is the number of unknowns, here
N = (Nx + 1)(Ny + 1). The dense matrix is much easier to understand
than the sparse matrix case.

import numpy as np

def solver_dense(
I, a, f, Lx, Ly, Nx, Ny, dt, T, theta=0.5, user_action=None):
"""
Solve u_t = a*(u_xx + u_yy) + f, u(x,y,0)=I(x,y), with u=0
on the boundary, on [0,Lx]x[0,Ly]x[0,T], with time step dt,
using the theta-scheme.
"""
x = np.linspace(0, Lx, Nx+1) # mesh points in x dir
y = np.linspace(0, Ly, Ny+1) # mesh points in y dir
dx = x[1] - x[0]
dy = y[1] - y[0]

dt = float(dt) # avoid integer division
Nt = int(round(T/float(dt)))
t = np.linspace(0, Nt*dt, Nt+1) # mesh points in time

# Mesh Fourier numbers in each direction
Fx = a*dt/dx**2
Fy = a*dt/dy**2

The un+1
i,j and uni,j mesh functions are represented by their spatial values

at the mesh points:

u = np.zeros((Nx+1, Ny+1)) # unknown u at new time level
u_n = np.zeros((Nx+1, Ny+1)) # u at the previous time level

It is a good habit (for extensions) to introduce index sets for all mesh
points:
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Ix = range(0, Nx+1)
Iy = range(0, Ny+1)
It = range(0, Nt+1)

The initial condition is easy to fill in:

# Load initial condition into u_n
for i in Ix:

for j in Iy:
u_n[i,j] = I(x[i], y[j])

The memory for the coefficient matrix and right-hand side vector is
allocated by

N = (Nx+1)*(Ny+1) # no of unknowns
A = np.zeros((N, N))
b = np.zeros(N)

The filling of A goes like this:

m = lambda i, j: j*(Nx+1) + i

# Equations corresponding to j=0, i=0,1,... (u known)
j = 0
for i in Ix:

p = m(i,j); A[p, p] = 1

# Loop over all internal mesh points in y diretion
# and all mesh points in x direction
for j in Iy[1:-1]:

i = 0; p = m(i,j); A[p, p] = 1 # Boundary
for i in Ix[1:-1]: # Interior points

p = m(i,j)
A[p, m(i,j-1)] = - theta*Fy
A[p, m(i-1,j)] = - theta*Fx
A[p, p] = 1 + 2*theta*(Fx+Fy)
A[p, m(i+1,j)] = - theta*Fx
A[p, m(i,j+1)] = - theta*Fy

i = Nx; p = m(i,j); A[p, p] = 1 # Boundary
# Equations corresponding to j=Ny, i=0,1,... (u known)
j = Ny
for i in Ix:

p = m(i,j); A[p, p] = 1

Since A is independent of time, it can be filled once and for all before the
time loop. The right-hand side vector must be filled at each time level
inside the time loop:

import scipy.linalg

for n in It[0:-1]:
# Compute b
j = 0
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for i in Ix:
p = m(i,j); b[p] = 0 # Boundary

for j in Iy[1:-1]:
i = 0; p = m(i,j); b[p] = 0 # Boundary
for i in Ix[1:-1]: # Interior points

p = m(i,j)
b[p] = u_n[i,j] + \

(1-theta)*(
Fx*(u_n[i+1,j] - 2*u_n[i,j] + u_n[i-1,j]) +\
Fy*(u_n[i,j+1] - 2*u_n[i,j] + u_n[i,j-1]))\

+ theta*dt*f(i*dx,j*dy,(n+1)*dt) + \
(1-theta)*dt*f(i*dx,j*dy,n*dt)

i = Nx; p = m(i,j); b[p] = 0 # Boundary
j = Ny
for i in Ix:

p = m(i,j); b[p] = 0 # Boundary

# Solve matrix system A*c = b
c = scipy.linalg.solve(A, b)

# Fill u with vector c
for i in Ix:

for j in Iy:
u[i,j] = c[m(i,j)]

# Update u_n before next step
u_n, u = u, u_n

We use solve from scipy.linalg and not from numpy.linalg. The
difference is stated below.

scipy.linalg versus numpy.linalg

Quote from the SciPy documentation:
scipy.linalg contains all the functions in numpy.linalg plus

some other more advanced ones not contained in numpy.linalg.
Another advantage of using scipy.linalg over numpy.linalg is

that it is always compiled with BLAS/LAPACK support, while
for NumPy this is optional. Therefore, the SciPy version might be
faster depending on how NumPy was installed.

Therefore, unless you don’t want to add SciPy as a depen-
dency to your NumPy program, use scipy.linalg instead of
numpy.linalg.

The code shown above is available in the solver_dense function in
the file diffu2D_u0.py, differing only in the boundary conditions, which
in the code can be an arbitrary function along each side of the domain.

http://docs.scipy.org/doc/scipy/reference/tutorial/linalg.html
http://tinyurl.com/nu656p2/diffu/diffu2D_u0.py
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We do not bother to look at vectorized versions of filling A since
a dense matrix is just used of pedagogical reasons for the very first
implementation. Vectorization will be treated when A has a sparse matrix
representation, as in Section 3.6.7.

How to debug the computation of A and b

A good starting point for debugging the filling of A and b is to
choose a very coarse mesh, say Nx = Ny = 2, where there is just
one internal mesh point, compute the equations by hand, and print
out A and b for comparison in the code. If wrong elements in A or b
occur, print out each assignment to elements in A and b inside the
loops and compare with what you expect.

To let the user store, analyze, or visualize the solution at each time
level, we include a callback function, named user_action, to be called
before the time loop and in each pass in that loop. The function has the
signature

user_action(u, x, xv, y, yv, t, n)

where u is a two-dimensional array holding the solution at time level n
and time t[n]. The x and y coordinates of the mesh points are given by
the arrays x and y, respectively. The arrays xv and yv are vectorized rep-
resentations of the mesh points such that vectorized function evaluations
can be invoked. The xv and yv arrays are defined by

xv = x[:,np.newaxis]
yv = y[np.newaxis,:]

One can then evaluate, e.g., f(x, y, t) at all internal mesh points at time
level n by first evaluating f at all points,

f_a = f(xv, yv, t[n])

and then use slices to extract a view of the values at the internal mesh
points: f_a[1:-1,1:-1]. The next section features an example on writing
a user_action callback function.
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3.6.5 Verification: exact numerical solution

A good test example to start with is one that preserves the solution
u = 0, i.e., f = 0 and I(x, y) = 0. This trivial solution can uncover some
bugs.

The first real test example is based on having an exact solution of the
discrete equations. This solution is linear in time and quadratic in space:

u(x, y, t) = 5tx(Lx − x)y(y − Ly) .

Inserting this manufactured solution in the PDE shows that the source
term f must be

f(x, y, t) = 5x(Lx − x)y(y − Ly) + 10αt(x(Lx − x) + y(y − Ly)) .

We can use the user_action function to compare the numerical
solution with the exact solution at each time level. A suitable helper
function for checking the solution goes like this:

def quadratic(theta, Nx, Ny):

def u_exact(x, y, t):
return 5*t*x*(Lx-x)*y*(Ly-y)

def I(x, y):
return u_exact(x, y, 0)

def f(x, y, t):
return 5*x*(Lx-x)*y*(Ly-y) + 10*a*t*(y*(Ly-y)+x*(Lx-x))

# Use rectangle to detect errors in switching i and j in scheme
Lx = 0.75
Ly = 1.5
a = 3.5
dt = 0.5
T = 2

def assert_no_error(u, x, xv, y, yv, t, n):
"""Assert zero error at all mesh points."""
u_e = u_exact(xv, yv, t[n])
diff = abs(u - u_e).max()
tol = 1E-12
msg = ’diff=%g, step %d, time=%g’ % (diff, n, t[n])
print msg
assert diff < tol, msg

solver_dense(
I, a, f, Lx, Ly, Nx, Ny,
dt, T, theta, user_action=assert_no_error)
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A true test function for checking the quadratic solution for several
different meshes and θ values can take the form

def test_quadratic():
# For each of the three schemes (theta = 1, 0.5, 0), a series of
# meshes are tested (Nx > Ny and Nx < Ny)
for theta in [1, 0.5, 0]:

for Nx in range(2, 6, 2):
for Ny in range(2, 6, 2):

print ’testing for %dx%d mesh’ % (Nx, Ny)
quadratic(theta, Nx, Ny)

3.6.6 Verification: convergence rates
For 2D verification with convergence rate computations, the expressions
and computations just build naturally on what we saw for 1D diffusion.
Truncation error analysis and other forms of error analysis point to a
numerical error formula like

E = Ct∆t
p + Cx∆x

2 + Cy∆y
2,

where p, Ct, Cx, and Cy are constants. Often, the analysis of a Crank-
Nicolson method can show that p = 2, while the Forward and Backward
Euler schemes have p = 1.

When checking the error formula empirically, we need to reduce it to
a form E = Chr with a single discretization parameter h and some rate
r to be estimated. For the Backward Euler method, where p = 1, we can
introduce a single discretization parameter according to

h = ∆x2 = ∆y2, h = K−1∆t,

where K is a constant. The error formula then becomes

E = CtKh+ Cxh+ Cy = C̃h, C̃ = CtK + Cx + Cy .

The simplest choice is obviously K = 1. With the Forward Euler method,
however, stability requires ∆t = hK ≤ h/(4α), so K ≤ 1/(4α).

For the Crank-Nicolson method, p = 2, and we can simply choose

h = ∆x = ∆y = ∆t,

since there is no restriction on ∆t in terms of ∆x and ∆y.
A frequently used error measure is the `2 norm of the error mesh point

values. Section 2.2.3 and the formula (2.26) shows the error measure for
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a 1D time-dependent problem. The extension to the current 2D problem
reads

E =

∆t∆x∆y Nt∑
n=0

Nx∑
i=0

Ny∑
j=0

(ue(xi, yj , tn)− uni,j)2

 1
2

.

One attractive manufactured solution is

ue = e−pt sin(kxx) sin(kyy), kx = π

Lx
, ky = π

Ly
,

where p can be arbitrary. The required source term is

f = (α(k2
x + k2

y)− p)ue .

The function convergence_rates in diffu2D_u0.py implements a
convergence rate test. Two potential difficulties are important to be aware
of:

1. The error formula is assumed to be correct when h→ 0, so for coarse
meshes the estimated rate r may be somewhat away from the expected
value. Fine meshes may lead to prohibitively long execution times.

2. Choosing p = α(k2
x + k2

y) in the manufactured solution above seems
attractive (f = 0), but leads to a slower approach to the asymptotic
range where the error formula is valid (i.e., r fluctuates and needs
finer meshes to stabilize).

3.6.7 Implementation with a sparse coefficient matrix

We used a sparse matrix implementation in Section 3.2.2 for a 1D problem
with a tridiagonal matrix. The present matrix, arising from a 2D problem,
has five diagonals, but we can use the same sparse matrix data structure
scipy.sparse.diags.

Understanding the diagonals. Let us look closer at the diagonals in the
example with a 4× 3 mesh as depicted in Figure 3.15 and its associated
matrix visualized by dots for zeros and bullets for nonzeros. From the
example mesh, we may generalize to an Nx ×Ny mesh.

http://tinyurl.com/nu656p2/diffu/diffu2D_u0.py
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0 = m(0, 0) • · · · · · · · · · · · · · · · · · · ·
1 = m(1, 0) · • · · · · · · · · · · · · · · · · · ·
2 = m(2, 0) · · • · · · · · · · · · · · · · · · · ·
3 = m(3, 0) · · · • · · · · · · · · · · · · · · · ·
Nx = m(Nx, 0) · · · · • · · · · · · · · · · · · · · ·
Nx + 1 = m(0, 1) · · · · · • · · · · · · · · · · · · · ·
(Nx + 1) + 1 = m(1, 1) · • · · · • • • · · · • · · · · · · · ·
(Nx + 1) + 2 = m(2, 1) · · • · · · • • • · · · • · · · · · · ·
(Nx + 1) + 3 = m(3, 1) · · · • · · · • • • · · · • · · · · · ·
(Nx + 1) + Nx = m(Nx, 1) · · · · · · · · · • · · · · · · · · · ·
2(Nx + 1) = m(0, 2) · · · · · · · · · · • · · · · · · · · ·
2(Nx + 1) + 1 = m(1, 2) · · · · · · • · · · • • • · · · • · · ·
2(Nx + 1) + 2 = m(2, 2) · · · · · · · • · · · • • • · · · • · ·
2(Nx + 1) + 3 = m(3, 2) · · · · · · · · • · · · • • • · · · • ·
2(Nx + 1) + Nx = m(Nx, 2) · · · · · · · · · · · · · · • · · · · ·
Ny(Nx + 1) = m(0, Ny) · · · · · · · · · · · · · · · • · · · ·
Ny(Nx + 1) + 1 = m(1, Ny) · · · · · · · · · · · · · · · · • · · ·
Ny(Nx + 1) + 2 = m(2, Ny) · · · · · · · · · · · · · · · · · • · ·
Ny(Nx + 1) + 3 = m(3, Ny) · · · · · · · · · · · · · · · · · · • ·
Ny(Nx + 1) + Nx = m(Nx,Ny) · · · · · · · · · · · · · · · · · · · •

The main diagonal has N = (Nx + 1)(Ny + 1) elements, while the
sub- and super-diagonals have N − 1 elements. By looking at the matrix
above, we realize that the lower diagonal starts in row Nx + 1 and goes
to row N , so its length is N − (Nx + 1). Similarly, the upper diagonal
starts at row 0 and lasts to row N − (Nx + 1), so it has the same length.
Based on this information, we declare the diagonals by

main = np.zeros(N) # diagonal
lower = np.zeros(N-1) # subdiagonal
upper = np.zeros(N-1) # superdiagonal
lower2 = np.zeros(N-(Nx+1)) # lower diagonal
upper2 = np.zeros(N-(Nx+1)) # upper diagonal
b = np.zeros(N) # right-hand side

Filling the diagonals. We run through all mesh points and fill in elements
on the various diagonals. The line of mesh points corresponding to j = 0
are all on the boundary, and only the main diagonal gets a contribution:

m = lambda i, j: j*(Nx+1) + i
j = 0; main[m(0,j):m(Nx+1,j)] = 1 # j=0 boundary line

Then we run through all interior j = const lines of mesh points. The
first and the last point on each line, i = 0 and i = Nx, correspond to
boundary points:

for j in Iy[1:-1]: # Interior mesh lines j=1,...,Ny-1
i = 0; main[m(i,j)] = 1
i = Nx; main[m(i,j)] = 1 # Boundary

For the interior mesh points i = 1, . . . , Nx − 1 on a mesh line y = const
we can start with the main diagonal. The entries to be filled go from i = 1
to i = Nx− 1 so the relevant slice in the main vector is m(1,j):m(Nx,j):

main[m(1,j):m(Nx,j)] = 1 + 2*theta*(Fx+Fy)
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The upper array for the superdiagonal has its index 0 corresponding to
row 0 in the matrix, and the array entries to be set go from m(1, j) to
m(Nx − 1, j):

upper[m(1,j):m(Nx,j)] = - theta*Fx

The subdiagonal (lower array), however, has its index 0 corresponding to
row 1, so there is an offset of 1 in indices compared to the matrix. The first
nonzero occurs (interior point) at a mesh line j = const corresponding
to matrix row m(1, j), and the corresponding array index in lower is
then m(1, j). To fill the entries from m(1, j) to m(Nx − 1, j) we set the
following slice in lower:

lower_offset = 1
lower[m(1,j)-lower_offset:m(Nx,j)-lower_offset] = - theta*Fx

For the upper diagonal, its index 0 corresponds to matrix row 0, so
there is no offset and we can set the entries correspondingly to upper:

upper2[m(1,j):m(Nx,j)] = - theta*Fy

The lower2 diagonal, however, has its first index 0 corresponding to row
Nx + 1, so here we need to subtract the offset Nx + 1:

lower2_offset = Nx+1
lower2[m(1,j)-lower2_offset:m(Nx,j)-lower2_offset] = - theta*Fy

We can now summarize the above code lines for setting the entries in
the sparse matrix representation of the coefficient matrix:

lower_offset = 1
lower2_offset = Nx+1
m = lambda i, j: j*(Nx+1) + i

j = 0; main[m(0,j):m(Nx+1,j)] = 1 # j=0 boundary line
for j in Iy[1:-1]: # Interior mesh lines j=1,...,Ny-1

i = 0; main[m(i,j)] = 1 # Boundary
i = Nx; main[m(i,j)] = 1 # Boundary
# Interior i points: i=1,...,N_x-1
lower2[m(1,j)-lower2_offset:m(Nx,j)-lower2_offset] = - theta*Fy
lower[m(1,j)-lower_offset:m(Nx,j)-lower_offset] = - theta*Fx
main[m(1,j):m(Nx,j)] = 1 + 2*theta*(Fx+Fy)
upper[m(1,j):m(Nx,j)] = - theta*Fx
upper2[m(1,j):m(Nx,j)] = - theta*Fy

j = Ny; main[m(0,j):m(Nx+1,j)] = 1 # Boundary line

The next task is to create the sparse matrix from these diagonals:

import scipy.sparse

A = scipy.sparse.diags(
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diagonals=[main, lower, upper, lower2, upper2],
offsets=[0, -lower_offset, lower_offset,

-lower2_offset, lower2_offset],
shape=(N, N), format=’csr’)

Filling the right-hand side; scalar version. Setting the entries in the
right-hand side is easier since there are no offsets in the array to take into
account. The is in fact similar to the one previously shown when we used
a dense matrix representation (the right-hand side vector is, of course,
independent of what type of representation we use for the coefficient
matrix). The complete time loop goes as follows.

import scipy.sparse.linalg

for n in It[0:-1]:
# Compute b
j = 0
for i in Ix:

p = m(i,j); b[p] = 0 # Boundary
for j in Iy[1:-1]:

i = 0; p = m(i,j); b[p] = 0 # Boundary
for i in Ix[1:-1]:

p = m(i,j) # Interior
b[p] = u_n[i,j] + \

(1-theta)*(
Fx*(u_n[i+1,j] - 2*u_n[i,j] + u_n[i-1,j]) +\
Fy*(u_n[i,j+1] - 2*u_n[i,j] + u_n[i,j-1]))\

+ theta*dt*f(i*dx,j*dy,(n+1)*dt) + \
(1-theta)*dt*f(i*dx,j*dy,n*dt)

i = Nx; p = m(i,j); b[p] = 0 # Boundary
j = Ny
for i in Ix:

p = m(i,j); b[p] = 0 # Boundary

# Solve matrix system A*c = b
c = scipy.sparse.linalg.spsolve(A, b)

# Fill u with vector c
for i in Ix:

for j in Iy:
u[i,j] = c[m(i,j)]

# Update u_n before next step
u_n, u = u, u_n

Filling the right-hand side; vectorized version. Since we use a sparse
matrix and try to speed up the computations, we should examine the
loops and see if some can be easily removed by vectorization. In the
filling of A we have already used vectorized expressions at each j = const
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line of mesh points. We can very easily do the same in the code above
and remove the need for loops over the i index:

for n in It[0:-1]:
# Compute b, vectorized version

# Precompute f in array so we can make slices
f_a_np1 = f(xv, yv, t[n+1])
f_a_n = f(xv, yv, t[n])

j = 0; b[m(0,j):m(Nx+1,j)] = 0 # Boundary
for j in Iy[1:-1]:

i = 0; p = m(i,j); b[p] = 0 # Boundary
i = Nx; p = m(i,j); b[p] = 0 # Boundary
imin = Ix[1]
imax = Ix[-1] # for slice, max i index is Ix[-1]-1
b[m(imin,j):m(imax,j)] = u_n[imin:imax,j] + \

(1-theta)*(Fx*(
u_n[imin+1:imax+1,j] -

2*u_n[imin:imax,j] + \
u_n[imin-1:imax-1,j]) +

Fy*(
u_n[imin:imax,j+1] -

2*u_n[imin:imax,j] +
u_n[imin:imax,j-1])) + \

theta*dt*f_a_np1[imin:imax,j] + \
(1-theta)*dt*f_a_n[imin:imax,j]

j = Ny; b[m(0,j):m(Nx+1,j)] = 0 # Boundary

# Solve matrix system A*c = b
c = scipy.sparse.linalg.spsolve(A, b)

# Fill u with vector c
u[:,:] = c.reshape(Ny+1,Nx+1).T

# Update u_n before next step
u_n, u = u, u_n

The most tricky part of this code snippet is the loading of values from
the one-dimensional array c into the two-dimensional array u. With our
numbering of unknowns from left to right along “horizontal” mesh lines,
the correct reordering of the one-dimensional array c as a two-dimensional
array requires first a reshaping to an (Ny+1,Nx+1) two-dimensional array
and then taking the transpose. The result is an (Nx+1,Ny+1) array
compatible with u both in size and appearance of the function values.

The spsolve function in scipy.sparse.linalg is an efficient version
of Gaussian elimination suited for matrices described by diagonals. The
algorithm is known as sparse Gaussian elimination, and spsolve calls
up a well-tested C code called SuperLU.

http://crd-legacy.lbl.gov/~xiaoye/SuperLU/
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The complete code utilizing spsolve is found in the solver_sparse
function in the file diffu2D_u0.py.

Verification. We can easily extend the function quadratic from Sec-
tion 3.6.5 to include a test of the solver_sparse function as well.

def quadratic(theta, Nx, Ny):
...
t, cpu = solver_sparse(

I, a, f, Lx, Ly, Nx, Ny,
dt, T, theta, user_action=assert_no_error)

3.6.8 The Jacobi iterative method

So far we have created a matrix and right-hand side of a linear system
Ac = b and solved the system for c by calling an exact algorithm based
on Gaussian elimination. A much simpler implementation, which requires
no memory for the coefficient matrix A, arises if we solve the system by
iterative methods. These methods are only approximate, and the core
algorithm is repeated many times until the solution is considered to be
converged.

Numerical scheme and linear system. To illustrate the idea of the
Jacobi method, we simplify the numerical scheme to the Backward Euler
case, θ = 1, so there are fewer terms to write:

un+1
i,j −

(
Fx(un+1

i−1,j − 2un+1
i,j + un+1

i,j ) + Fy(un+1
i,j−1 − 2un+1

i,j + un+1
i,j+1)

)
=

uni,j +∆tfn+1
i,j (3.98)

The idea of the Jacobi iterative method is to introduce an iteration, here
with index r, where we in each iteration treat un+1

i,j as unknown, but use
values from the previous iteration for the other unknowns un+1

i±1,j±1.

Iterations. Let un+1,r
i,j be the approximation to un+1

i,j in iteration r, for
all relevant i and j indices. We first solve with respect to un+1

i,j to get the
equation to solve:

un+1
i,j = (1 + 2Fx + 2Fy)−1

(
Fx(un+1

i−1,j + un+1
i,j ) + Fy(un+1

i,j−1 + un+1
i,j+1)

)
+

uni,j +∆tfn+1
i,j (3.99)

http://tinyurl.com/nu656p2/diffu/diffu2D_u0.py
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The iteration is introduced by using iteration index r, for computed
values, on the right-hand side and r + 1 (unknown in this iteration) on
the left-hand side:

un+1,r+1
i,j = (1 + 2Fx + 2Fy)−1

(
Fx(un+1,r

i−1,j + un+1,r
i,j ) + Fy(un+1,r

i,j−1 + un+1,r
i,j+1 )

)
+ uni,j +∆tfn+1

i,j (3.100)

Initial guess. We start the iteration with the computed values at the
previous time level:

un+1,0
i,j = uni,j , i = 0, . . . , Nx, j = 0, . . . , Ny . (3.101)

Relaxation. A common technique in iterative methods is to introduce a
relaxation, which means that the new approximation is a weighted mean
of the approximation as suggested by the algorithm and the previous
approximation. Naming the quantity on the left-hand side of (3.100) as
un+1,∗
i,j , a new approximation based on relaxation reads

un+1,r+1 = ωun+1,∗
i,j + (1− ω)un+1,r

i,j . (3.102)

Under-relaxation means ω < 1, while over-relaxation has ω > 1.

Stopping criteria. The iteration can be stopped when the change from
one iteration to the next is sufficiently small (ε), using either an infinity
norm,

max
i,j

∣∣∣un+1,r+1
i,j − un+1,r

i,j

∣∣∣ ≤ ε, (3.103)

or an L2 norm, ∆x∆y∑
i,j

(un+1,r+1
i,j − un+1,r

i,j )2

 1
2

≤ ε . (3.104)

Another widely used criterion measures how well the equations are
solved by looking at the residual (essentially b − Acr+1 if cr+1 is the
approximation to the solution in iteration r + 1). The residual, defined
in terms of the finite difference stencil, is
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Ri,j = un+1,r+1
i,j − (Fx(un+1,r+1

i−1,j − 2un+1,r+1
i,j + un+1,r+1

i,j )+
Fy(un+1,r+1

i,j−1 − 2un+1,r+1
i,j + un+1,r+1

i,j+1 ))−
uni,j −∆tfn+1

i,j (3.105)

One can then iterate until the norm of the mesh function Ri,j is less than
some tolerance: ∆x∆y∑

i,j

R2
i,j

 1
2

≤ ε . (3.106)

Code-friendly notation. To make the mathematics as close as possible
to what we will write in a computer program, we may introduce some
new notation: ui,j is a short notation for un+1,r+1

i,j , u−i,j is a short notation
for un+1,r

i,j , and u
(s)
i,j denotes un+1−s

i,j . That is, ui,j is the unknown, u−i,j
is its most recently computed approximation, and s counts time levels
backwards in time. The Jacobi method (3.100)) takes the following form
with the new notation:

u∗i,j = (1 + 2Fx + 2Fy)−1((Fx(u−i−1,j + u−i,j) + Fy(un+1,r
i,j−1 + un+1,r

i,j+1 ))+

u
(1)
i,j +∆tfn+1

i,j ) (3.107)

Generalization of the scheme. We can also quite easily introduce the
θ rule for discretization in time and write up the Jacobi iteration in that
case as well:

u∗i,j = (1 + 2θ(Fx + Fy))−1(θ(Fx(u−i−1,j + u−i,j) + Fy(u−i,j−1 + u−i,j+1))+

u
(1)
i,j + θ∆tfn+1

i,j + (1− θ)∆tfni,j+

(1− θ)(Fx(u(1)
i−1,j − 2u(1)

i,j + u
(1)
i+1,j) + Fy(u(1)

i,j−1 − 2u(1)
i,j + u

(1)
i,j+1))) .
(3.108)

The final update of u applies relaxation:

ui,j = ωu∗i,j + (1− ω)u−i,j .



3.6 Diffusion in 2D 325

3.6.9 Implementation of the Jacobi method

The Jacobi method needs no coefficient matrix and right-hand side vector,
but it needs an array for u in the previous iteration. We call this array
u_, using the notation at the end of the previous section (at the same
time level). The unknown itself is called u, while u_n is the computed
solution one time level back in time. With a θ rule in time, the time loop
can be coded like this:

for n in It[0:-1]:
# Solve linear system by Jacobi iteration at time level n+1
u_[:,:] = u_n # Start value
converged = False
r = 0
while not converged:

if version == ’scalar’:
j = 0
for i in Ix:

u[i,j] = U_0y(t[n+1]) # Boundary
for j in Iy[1:-1]:

i = 0; u[i,j] = U_0x(t[n+1]) # Boundary
i = Nx; u[i,j] = U_Lx(t[n+1]) # Boundary

# Interior points
for i in Ix[1:-1]:

u_new = 1.0/(1.0 + 2*theta*(Fx + Fy))*(theta*(
Fx*(u_[i+1,j] + u_[i-1,j]) +
Fy*(u_[i,j+1] + u_[i,j-1])) + \

u_n[i,j] + \
(1-theta)*(Fx*(
u_n[i+1,j] - 2*u_n[i,j] + u_n[i-1,j]) +

Fy*(
u_n[i,j+1] - 2*u_n[i,j] + u_n[i,j-1]))\

+ theta*dt*f(i*dx,j*dy,(n+1)*dt) + \
(1-theta)*dt*f(i*dx,j*dy,n*dt))
u[i,j] = omega*u_new + (1-omega)*u_[i,j]

j = Ny
for i in Ix:

u[i,j] = U_Ly(t[n+1]) # Boundary

elif version == ’vectorized’:
j = 0; u[:,j] = U_0y(t[n+1]) # Boundary
i = 0; u[i,:] = U_0x(t[n+1]) # Boundary
i = Nx; u[i,:] = U_Lx(t[n+1]) # Boundary
j = Ny; u[:,j] = U_Ly(t[n+1]) # Boundary

# Internal points
f_a_np1 = f(xv, yv, t[n+1])
f_a_n = f(xv, yv, t[n])
u_new = 1.0/(1.0 + 2*theta*(Fx + Fy))*(theta*(Fx*(

u_[2:,1:-1] + u_[:-2,1:-1]) +
Fy*(

u_[1:-1,2:] + u_[1:-1,:-2])) +\
u_n[1:-1,1:-1] + \



326 3 Diffusion equations

(1-theta)*(Fx*(
u_n[2:,1:-1] - 2*u_n[1:-1,1:-1] + u_n[:-2,1:-1]) +\

Fy*(
u_n[1:-1,2:] - 2*u_n[1:-1,1:-1] + u_n[1:-1,:-2]))\
+ theta*dt*f_a_np1[1:-1,1:-1] + \
(1-theta)*dt*f_a_n[1:-1,1:-1])

u[1:-1,1:-1] = omega*u_new + (1-omega)*u_[1:-1,1:-1]
r += 1
converged = np.abs(u-u_).max() < tol or r >= max_iter
u_[:,:] = u

# Update u_n before next step
u_n, u = u, u_n

The vectorized version should be quite straightforward to understand
once one has an understanding of how a standard 2D finite stencil is
vectorized.

The first natural verification is to use the test problem in the function
quadratic from Section 3.6.5. This problem is known to have no approx-
imation error, but any iterative method will produce an approximate
solution with unknown error. For a tolerance 10−k in the iterative method,
we can, e.g., use a slightly larger tolerance 10−(k−1) for the difference
between the exact and the computed solution.

def quadratic(theta, Nx, Ny):
...
def assert_small_error(u, x, xv, y, yv, t, n):

"""Assert small error for iterative methods."""
u_e = u_exact(xv, yv, t[n])
diff = abs(u - u_e).max()
tol = 1E-4
msg = ’diff=%g, step %d, time=%g’ % (diff, n, t[n])
assert diff < tol, msg

for version in ’scalar’, ’vectorized’:
for theta in 1, 0.5:

print ’testing Jacobi, %s version, theta=%g’ % \
(version, theta)

t, cpu = solver_Jacobi(
I=I, a=a, f=f, Lx=Lx, Ly=Ly, Nx=Nx, Ny=Ny,
dt=dt, T=T, theta=theta,
U_0x=0, U_0y=0, U_Lx=0, U_Ly=0,
user_action=assert_small_error,
version=version, iteration=’Jacobi’,
omega=1.0, max_iter=100, tol=1E-5)

Even for a very coarse 4×4 mesh, the Jacobi method requires 26 iterations
to reach a tolerance of 10−5, which is quite many iterations, given that
there are only 25 unknowns.
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3.6.10 Test problem: diffusion of a sine hill
It can be shown that

ue = Ae−απ
2(L−2

x +L−2
y )t sin

(
π

Lx
x

)
sin
(
π

Ly
y

)
, (3.109)

is a solution of the 2D homogeneous diffusion equation ut = α(uxx + uyy)
in a rectangle [0, Lx] × [0, Ly], for any value of the amplitude A. This
solution vanishes at the boundaries, and the initial condition is the
product of two sines. We may choose A = 1 for simplicity.

It is difficult to know if our solver based on the Jacobi method works
properly since we are faced with two sources of errors: one from the
discretization, E∆, and one from the iterative Jacobi method, Ei. The
total error in the computed u can be represented as

Eu = E∆ + Ei .

One error measure is to look at the maximum value, which is obtained
for the midpoint x = Lx/2 and y = Lx/2. This midpoint is represented
in the discrete u if Nx and Ny are even numbers. We can then compute
Eu as Eu = |max ue−max u|, when we know an exact solution ue of the
problem.

What about E∆? If we use the maximum value as a measure of the
error, we have in fact analytical insight into the approximation error in
this particular problem. According to Section 3.3.9, the exact solution
(3.109) of the PDE problem is also an exact solution of the discrete
equations, except that the damping factor in time is different. More
precisely, (3.66) and (3.67) are solutions of the discrete problem for θ = 1
(Backward Euler) and θ = 1

2 (Crank-Nicolson), respectively. The factors
raised to the power n is the numerical amplitude, and the errors in these
factors become

E∆ = e−αk
2t −

(
1− 2(Fx sin2 px + Fx sin2 py)
1 + 2(Fx sin2 px + Fx sin2 py)

)n
, θ = 1

2 ,

E∆ = e−αk
2t − (1 + 4Fx sin2 px + 4Fy sin2 py)−n, θ = 1 .

We are now in a position to compute Ei numerically. That is, we can
compute the error due to iterative solution of the linear system and
see if it corresponds to the convergence tolerance used in the method.
Note that the convergence is based on measuring the difference in two
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consecutive approximations, which is not exactly the error due to the
iteration, but it is a kind of measure, and it should have about the same
size as Ei.

The function demo_classic_iterative in diffu2D_u0.py imple-
ments the idea above (also for the methods in Section 3.6.12). The
value of Ei is in particular printed at each time level. By changing the
tolerance in the convergence criterion in the Jacobi method, we can see
that Ei is of the same order of magnitude as the prescribed tolerance
in the Jacobi method. For example: E∆ ∼ 10−2 with Nx = Ny = 10
and θ = 1

2 , as long as max u has some significant size (max u > 0.02).
An appropriate value of the tolerance is then 10−3, such that the error
in the Jacobi method does not become bigger than the discretization
error. In that case, Ei is around 5 · 10−3. The corresponding number
of Jacobi iterations (with ω = 1) varies from 31 to 12 during the time
simulation (for max u > 0.02). Changing the tolerance to 10−5 causes
many more iterations (61 to 42) without giving any contribution to the
overall accuracy, because the total error is dominated by E∆.

Also, with an Nx = Ny = 20, the spatial accuracy increases and many
more iterations are needed (143 to 45), but the dominating error is from
the time discretization. However, with such a finer spatial mesh, a higher
tolerance in the convergence criterion 10−4 is needed to keep Ei ∼ 10−3.
More experiments show the disadvantage of the very simple Jacobi
iteration method: the number of iterations increases with the number
of unknowns, keeping the tolerance fixed, but the tolerance should also
be lowered to avoid the iteration error to dominate the total error. A
small adjustment of the Jacobi method, as described in Section 3.6.12,
provides a better method.

3.6.11 The relaxed Jacobi method and its relation to the
Forward Euler method

We shall now show that solving the Poisson equation −α∇2u = f by the
Jacobi iterative method is in fact equivalent to using a Forward Euler
scheme on ut = α∇2u+ f and letting t→∞.

A Forward Euler discretization of the 2D diffusion equation,

[D+
t u = α(DxDxu+DyDyu) + f ]ni,j ,

can be written out as

http://tinyurl.com/nu656p2/diffu/diffu2D_u0.py
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un+1
i,j = uni,j + ∆t

αh2

(
uni−1,j + uni+1,j + uni,j−1 + uni,j+1 − 4uni,j + h2fi,j

)
,

where h = ∆x = ∆y has been introduced for simplicity. The scheme can
be reordered as

un+1
i,j = (1− ω)uni,j+

1
4ω
(
uni−1,j + uni+1,j + uni,j−1 + uni,j+1 − 4uni,j + h2fi,j

)
,

with

ω = 4 ∆t
αh2 ,

but this latter form is nothing but the relaxed Jacobi method applied to

[DxDxu+DyDyu = −f ]ni,j .

From the equivalence above we know a couple of things about the
Jacobi method for solving −∇2u = f :

1. The method is unstable if ω > 1 (since the Forward Euler method is
then unstable).

2. The convergence is really slow as the iteration index increases (coming
from the fact that the Forward Euler scheme requires many small
time steps to reach the stationary solution).

These observations are quite disappointing: if we already have a time-
dependent diffusion problem and want to take larger time steps by an
implicit time discretization method, we will with the Jacobi method
end up with something close to a slow Forward Euler simulation of the
original problem at each time level. Nevertheless, the are two reasons
for why the Jacobi method remains a fundamental building block for
solving linear systems arising from PDEs: 1) a couple of iterations remove
large parts of the error and this is effectively used in the very efficient
class of multigrid methods; and 2) the idea of the Jacobi method can
be developed into more efficient methods, especially the SOR method,
which is treated next.

3.6.12 The Gauss-Seidel and SOR methods

If we update the mesh points according to the Jacobi method (3.99)
for a Backward Euler discretization with a loop over i = 1, . . . , Nx − 1
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and j = 1, . . . , Ny − 1, we realize that when un+1,r+1
i,j is computed,

un+1,r+1
i−1,j and un+1,r+1

i,j−1 are already computed, so these new values can
be used rather than un+1,r

i−1,j and un+1,r
i,j−1 (respectively) in the formula for

un+1,r+1
i,j . This idea gives rise to the Gauss-Seidel iteration method, which

mathematically is just a small adjustment of (3.99):

un+1,r+1
i,j = (1 + 2Fx + 2Fy)−1((

Fx(un+1,r+1
i−1,j + un+1,r

i,j ) + Fy(un+1,r+1
i,j−1 + un+1,r

i,j+1 )) + uni,j +∆tfn+1
i,j ) .
(3.110)

Observe that the way we access the mesh points in the formula (3.110)
is important: points with i − 1 must be computed before points with
i, and points with j − 1 must be computed before points with j. Any
sequence of mesh points can be used in the Gauss-Seidel method, but
the particular math formula must distinguish between already visited
points in the current iteration and the points not yet visited.

The idea of relaxation (3.102) can equally well be applied to the Gauss-
Seidel method. Actually, the Gauss-Seidel method with an arbitrary
0 < ω ≤ 2 has its own name: the Successive Over-Relaxation method,
abbreviated as SOR.

The SOR method for a θ rule discretization, with the shortened u and
u− notation, can be written

u∗i,j = (1 + 2θ(Fx + Fy))−1(θ(Fx(ui−1,j + u−i,j) + Fy(ui,j−1 + u−i,j+1))+

u
(1)
i,j + θ∆tfn+1

i,j + (1− θ)∆tfni,j+

(1− θ)(Fx(u(1)
i−1,j − 2u(1)

i,j + u
(1)
i+1,j) + Fy(u(1)

i,j−1 − 2u(1)
i,j + u

(1)
i,j+1))),
(3.111)

ui,j = ωu∗i,j + (1− ω)u−i,j (3.112)

The sequence of mesh points in (3.111) is i = 1, . . . , Nx − 1, j =
1, . . . , Ny − 1 (but whether i runs faster or slower than j does not
matter).
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3.6.13 Scalar implementation of the SOR method
Since the Jacobi and Gauss-Seidel methods with relaxation are so similar,
we can easily make a common code for the two:

for n in It[0:-1]:
# Solve linear system by Jacobi/SOR iteration at time level n+1
u_[:,:] = u_n # Start value
converged = False
r = 0
while not converged:

if version == ’scalar’:
if iteration == ’Jacobi’:

u__ = u_
elif iteration == ’SOR’:

u__ = u
j = 0
for i in Ix:

u[i,j] = U_0y(t[n+1]) # Boundary
for j in Iy[1:-1]:

i = 0; u[i,j] = U_0x(t[n+1]) # Boundary
i = Nx; u[i,j] = U_Lx(t[n+1]) # Boundary
for i in Ix[1:-1]:

u_new = 1.0/(1.0 + 2*theta*(Fx + Fy))*(theta*(
Fx*(u_[i+1,j] + u__[i-1,j]) +
Fy*(u_[i,j+1] + u__[i,j-1])) + \

u_n[i,j] + (1-theta)*(
Fx*(

u_n[i+1,j] - 2*u_n[i,j] + u_n[i-1,j]) +
Fy*(

u_n[i,j+1] - 2*u_n[i,j] + u_n[i,j-1]))\
+ theta*dt*f(i*dx,j*dy,(n+1)*dt) + \

(1-theta)*dt*f(i*dx,j*dy,n*dt))
u[i,j] = omega*u_new + (1-omega)*u_[i,j]

j = Ny
for i in Ix:

u[i,j] = U_Ly(t[n+1]) # boundary
r += 1
converged = np.abs(u-u_).max() < tol or r >= max_iter
u_[:,:] = u

u_n, u = u, u_n # Get ready for next iteration

The idea here is to introduce u__ to be used for already computed values
(u) in the Gauss-Seidel/SOR version of the implementation, or just values
from the previous iteration (u_) in case of the Jacobi method.

3.6.14 Vectorized implementation of the SOR method
Vectorizing the Gauss-Seidel iteration step turns out to be non-trivial.
The problem is that vectorized operations typically imply operations
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on arrays where the sequence we visit the elements in does not matter.
In particular, this principle makes vectorized code trivial to parallelize.
However, in the Gauss-Seidel algorithm the sequence we visit the elements
in the arrays does matter, and it is well known that the basic method as
explained above cannot be parallelized. Therefore, also vectorization will
require new thinking.

The strategy for vectorizing (and parallelizing) the Gauss-Seidel
method is to use a special numbering of the mesh points called red-
black numbering: every other point is red or black as in a checkerboard
pattern. This numbering requires Nx and Ny to be even numbers. Here
is an example of a 6× 6 mesh:

r b r b r b r
b r b r b r b
r b r b r b r
b r b r b r b
r b r b r b r
b r b r b r b
r b r b r b r

The idea now is to first update all the red points. Each formula for
updating a red point involves only the black neighbors. Thereafter, we
update all the black points, and at each black point, only the recently
computed red points are involved.

The scalar implementation of the red-black numbered Gauss-Seidel
method is really compact, since we can update values directly in u (that
guarantees that we use the most recently computed values). Here is the
relevant code for the Backward Euler scheme in time and without a
source term:

# Update internal points
for sweep in ’red’, ’black’:

for j in range(1, Ny, 1):
if sweep == ’red’:

start = 1 if j % 2 == 1 else 2
elif sweep == ’black’:

start = 2 if j % 2 == 1 else 1
for i in range(start, Nx, 2):
u[i,j] = 1.0/(1.0 + 2*(Fx + Fy))*(

Fx*(u[i+1,j] + u[i-1,j]) +
Fy*(u[i,j+1] + u[i,j-1]) + u_n[i,j])

The vectorized version must be based on slices. Looking at a typical
red-black pattern, e.g.,

r b r b r b r
b r b r b r b
r b r b r b r
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b r b r b r b
r b r b r b r
b r b r b r b
r b r b r b r

we want to update the internal points (marking boundary points with
x):

x x x x x x x
x r b r b r x
x b r b r b x
x r b r b r x
x b r b r b x
x r b r b r x
x x x x x x x

It is impossible to make one slice that picks out all the internal red points.
Instead, we need two slices. The first involves points marked with R:

x x x x x x x
x R b R b R x
x b r b r b x
x R b R b R x
x b r b r b x
x R b R b R x
x x x x x x x

This slice is specified as 1::2 for i and 1::2 for j, or with slice objects:

i = slice(1, None, 2); j = slice(1, None, 2)

The second slice involves the red points with R:

x x x x x x x
x r b r b r x
x b R b R b x
x r b r b r x
x b R b R b x
x r b r b r x
x x x x x x x

The slices are

i = slice(2, None, 2); j = slice(2, None, 2)

For the black points, the first slice involves the B points:

x x x x x x x
x r B r B r x
x b r b r b x
x r B r B r x
x b r b r b x
x r B r B r x
x x x x x x x
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with slice objects

i = slice(2, None, 2); j = slice(1, None, 2)

The second set of black points is shown here:

x x x x x x x
x r b r b r x
x B r B r B x
x r b r b r x
x B r B r B x
x r b r b r x
x x x x x x x

with slice objects

i = slice(1, None, 2); j = slice(2, None, 2)

That is, we need four sets of slices. The simplest way of implementing
the algorithm is to make a function with variables for the slices repre-
senting i, i− 1, i+ 1, j, j − 1, and j + 1, here called ic (“i center”), im1
(“i minus 1”, ip1 (“i plus 1”), jc, jm1, and jp1, respectively.

def update(u_, u_n, ic, im1, ip1, jc, jm1, jp1):
return \

1.0/(1.0 + 2*theta*(Fx + Fy))*(theta*(
Fx*(u_[ip1,jc] + u_[im1,jc]) +
Fy*(u_[ic,jp1] + u_[ic,jm1])) +\

u_n[ic,jc] + (1-theta)*(
Fx*(u_n[ip1,jc] - 2*u_n[ic,jc] + u_n[im1,jc]) +\
Fy*(u_n[ic,jp1] - 2*u_n[ic,jc] + u_n[ic,jm1]))+\
theta*dt*f_a_np1[ic,jc] + \
(1-theta)*dt*f_a_n[ic,jc])

The formula returned from update is to be compared with (3.111).
The relaxed Jacobi iteration can be implemented by

ic = jc = slice(1,-1)
im1 = jm1 = slice(0,-2)
ip1 = jp1 = slice(2,None)
u_new[ic,jc] = update(

u_, u_n, ic, im1, ip1, jc, jm1, jp1)
u[ic,jc] = omega*u_new[ic,jc] + (1-omega)*u_[ic,jc]

The Gauss-Seidel (or SOR) updates need four different steps. The ic
and jc slices are specified above. For each of these, we must specify the
corresponding im1, ip1, jm1, and jp1 slices. The code below contains
the details.

# Red points
ic = slice(1,-1,2)
im1 = slice(0,-2,2)
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ip1 = slice(2,None,2)
jc = slice(1,-1,2)
jm1 = slice(0,-2,2)
jp1 = slice(2,None,2)
u_new[ic,jc] = update(

u_new, u_n, ic, im1, ip1, jc, jm1, jp1)

ic = slice(2,-1,2)
im1 = slice(1,-2,2)
ip1 = slice(3,None,2)
jc = slice(2,-1,2)
jm1 = slice(1,-2,2)
jp1 = slice(3,None,2)
u_new[ic,jc] = update(

u_new, u_n, ic, im1, ip1, jc, jm1, jp1)

# Black points
ic = slice(2,-1,2)
im1 = slice(1,-2,2)
ip1 = slice(3,None,2)
jc = slice(1,-1,2)
jm1 = slice(0,-2,2)
jp1 = slice(2,None,2)
u_new[ic,jc] = update(

u_new, u_n, ic, im1, ip1, jc, jm1, jp1)

ic = slice(1,-1,2)
im1 = slice(0,-2,2)
ip1 = slice(2,None,2)
jc = slice(2,-1,2)
jm1 = slice(1,-2,2)
jp1 = slice(3,None,2)
u_new[ic,jc] = update(

u_new, u_n, ic, im1, ip1, jc, jm1, jp1)

# Relax
c = slice(1,-1)
u[c,c] = omega*u_new[c,c] + (1-omega)*u_[c,c]

The function solver_classic_iterative in diffu2D_u0.py con-
tains a unified implementation of the relaxed Jacobi and SOR methods
in scalar and vectorized versions using the techniques explained above.

3.6.15 Direct versus iterative methods
Direct methods. There are two classes of methods for solving linear
systems: direct methods and iterative methods. Direct methods are based
on variants of the Gaussian elimination procedure and will produce an
exact solution (in exact arithmetics) in an a priori known number of
steps. Iterative methods, on the other hand, produce an approximate

http://tinyurl.com/nu656p2/diffu/diffu2D_u0.py
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solution, and the amount of work for reaching a given accuracy is usually
not known.

The most common direct method today is to use the LU factorization
procedure to factor the coefficient matrix A as the product of a lower-
triangular matrix L (with unit diagonal terms) and an upper-triangular
matrix U : A = LU . As soon as we have L and U , a system of equations
LUc = b is easy to solve because of the triangular nature of L and U . We
first solve Ly = b for y (forward substitution), and thereafter we find c
from solving Uc = y (backward substitution). When A is a dense N ×N
matrix, the LU factorization costs 1

3N
3 arithmetic operations, while the

forward and backward substitution steps each require of the order N2

arithmetic operations. That is, factorization dominates the costs, while
the substitution steps are cheap.

Symmetric, positive definite coefficient matrices often arise when
discretizing PDEs. In this case, the LU factorization becomes A = LLT ,
and the associated algorithm is known as Cholesky factorization. Most
linear algebra software offers highly optimized implementations of LU
and Cholesky factorization as well as forward and backward substitution
(scipy.linalg is the relevant Python package).

Finite difference discretizations lead to sparse coefficient matrices.
An extreme case arose in Section 3.2.1 where A was tridiagonal. For
a tridiagonal matrix, the amount of arithmetic operations in the LU
and Cholesky factorization algorithms is just of the order N , not N3.
Tridiagonal matrices are special cases of banded matrices, where the
matrices contain just a set of diagonal bands. Finite difference methods
on regularly numbered rectangular and box-shaped meshes give rise to
such banded matrices, with 5 bands in 2D and 7 in 3D for diffusion
problems. Gaussian elimination only needs to work within the bands,
leading to much more efficient algorithms.

If Ai,j = 0 for j > i + p and j < i − p, p is the half-bandwidth
of the matrix. We have in our 2D problem p = Nx + 2, while in 3D,
p = (Nx + 1)(Ny + 1) + 2. The cost of Gaussian elimination is then
O(Np2), so with p � N , we see that banded matrices are much more
efficient to compute with. By reordering the unknowns in clever ways,
one can reduce the work of Gaussian elimination further. Fortunately,
the Python programmer has access to such algorithms through the
scipy.sparse.linalg package.

Although a direct method is an exact algorithm, rounding errors may
in practice accumulate and pollute the solution. The effect grows with
the size of the linear system, so both for accuracy and efficiency, iterative
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methods are better suited than direct methods for solving really large
linear systems.

Iterative methods. The Jacobi and SOR iterative methods belong to a
class of iterative methods where the idea is to solve Au = b by splitting
A into two parts, A = M −N , such that solving systems Mu = c is easy
and efficient. With the splitting, we get a system

Mu = Nu+ b,

which suggests an iterative method

Mur+1 = Nur + b, r = 0, 1, 2, . . . ,

where ur+1 is a new approximation to u in the r + 1-th iteration. To
initiate the iteration, we need a start vector u0.

The Jacobi and SOR methods are based on splitting A into a lower
tridiagonal part L, the diagonal D, and an upper tridiagonal part U ,
such that A = L+D + U . The Jacobi method corresponds to M = D
and N = −L− U . The Gauss-Seidel method employs M = L+D and
N = −U , while the SOR method corresponds to

M = 1
ω
D + L, N = 1− ω

ω
D − U .

The relaxed Jacobi method has similar expressions:

M = 1
ω
D, N = 1− ω

ω
D − L− U .

With the matrix forms of the Jacobi and SOR methods as written
above, we could in an implementation alternatively fill the matrix A with
entries and call general implementations of the Jacobi or SOR methods
that work on a system Au = b. However, this is almost never done
since forming the matrix A requires quite some code and storing A in
the computer’s memory is unnecessary. It is much easier to just apply
the Jacobi and SOR ideas to the finite difference stencils directly in an
implementation, as we have shown in detail.

Nevertheless, the matrix formulation of the Jacobi and SOR methods
have been important for analyzing their convergence behavior. One
can show that the error ur − u fulfills ur − u = Gr(u0 − u), where
G = M−1N and Gk is a matrix exponential. For the method to converge,
limr→∞ ||Gr|| = 0 is a necessary and sufficient condition. This implies
that the spectral radius of G must be less than one. Since G is directly
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related to the finite difference scheme for the underlying PDE problem,
one can in principle compute the spectral radius. For a given PDE
problem, however, this is not a practical strategy, since it is very difficult
to develop useful formulas. Analysis of model problems, usually related
to the Poisson equation, reveals some trends of interest: the convergence
rate of the Jacobi method goes like h2, while that of SOR with an optimal
ω goes like h, where h is the spatial spacing: h = ∆x = ∆y. That is, the
efficiency of the Jacobi method quickly deteriorates with the increasing
mesh resolution, and SOR is much to be preferred (even if the optimal
ω remains an open question). We refer to Chapter 4 of [16] for more
information on the convergence theory. One important result is that if
A is symmetric and positive definite, then SOR will converge for any
0 < ω < 2.

The optimal ω parameter can be theoretically established for a Poisson
problem as

ωo = 2
1 +

√
1− %2

, % = cos(π/Nx) + (∆x/∆y)2 cos(π/Ny)
1 + (∆x/∆y)2 . (3.113)

This formula can be used as a guide also in other problems.
The Jacobi and the SOR methods have their great advantage of

being trivial to implement, so they are obviously popular of this reason.
However, the slow convergence of these methods limits the popularity to
fairly small linear systems (i.e., coarse meshes). As soon as the matrix
size grows, one is better off with more sophisticated iterative methods
like the preconditioned Conjugate gradient method, which we now turn
to.

Finally, we mention that there is a variant of the SOR method, called
Symmetric Successive Overrelaxation method, known as SSOR, where
one runs a standard SOR sweep through the mesh points and then a new
sweep but visiting the points in reverse order.

3.6.16 The Conjugate gradient method

There is no simple intuitive derivation of the Conjugate gradient method,
so we refer to the many excellent expositions in the literature for the
idea of the method and how the algorithm is derived. In particular, we
recommend the books [2, 1, 16, 5]. A brief overview is provided in the
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Wikipedia article. Here, we just state the pros and cons of the method
from a user’s perspective and how we utilize it in code.

The original Conjugate gradient method is limited to linear systems
Au = b, where A is a symmetric and positive definite matrix. There are,
however, extensions of the method to non-symmetric matrices.

A major advantage of all conjugate gradient methods is that the matrix
A is only used in matrix-vector products, so we do not need form and
store A if we can provide code for computing a matrix-vector product
Au. Another important feature is that the algorithm is very easy to
vectorize and parallelize. The primary downside of the method is that
it convergences slowly unless one has an effective preconditioner for the
system. That is, instead of solving Au = b, we try to solve M−1Au =
M−1b in the hope that the method works better for this preconditioned
system. The matrix M is the preconditioner or preconditioning matrix.
Now we need to perform matrix-vector products y = M−1Au, which is
done in two steps: first the matrix-vector product v = Au is carried out
and then the system My = v must be solved. Therefore, M must be
cheap to compute and systems My = v must be cheap to solve.

A perfect preconditioner is M = A, but in each iteration in the
Conjugate gradient method one then has so solve a system with A
as coefficient matrix! A key idea is to let M be some kind of cheap
approximation to A. The simplest preconditioner is to set M = D, where
D is the diagonal of A. This choice means running one Jacobi iteration
as preconditioner. Exercise 3.8 shows that the Jacobi and SOR methods
can also be viewed as preconditioners.

Constructing good preconditioners is a scientific field on its own. Here
we shall treat the topic just very briefly. For a user having access to the
scipy.sparse.linalg library, there are Conjugate gradient methods
and preconditioners readily available:

• For positive definite, symmetric systems: cg (the Conjugate gradient
method)

• For symmetric systems: minres (Minimum residual method)
• For non-symmetric systems:

– gmres (GMRES: Generalized minimum residual method)
– bicg (BiConjugate gradient method)
– bicgstab (Stabilized BiConjugate gradient method)
– cgs (Conjugate gradient squared method)
– qmr (Quasi-minimal residual iteration)

• Preconditioner: spilu (Sparse, incomplete LU factorization)

https://en.wikipedia.org/wiki/Conjugate_gradient_method
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The ILU preconditioner is an attractive all-round type of preconditioner
that is suitable for most problems on serial computers. A more efficient
preconditioner is the multigrid method, and algebraic multigrid is also an
all-round choice as preconditioner. The Python package PyAMG offers
efficient implementations of the algebraic multigrid method, to be used
both as a preconditioner and as a stand-alone iterative method.

The matrix arising from implicit time discretization methods of the
diffusion equation is symmetric and positive definite so we can use the
Conjugate gradient method (cg), typically in combination with an ILU
preconditioner. The code is very similar to the one we created when
solving the linear system by sparse Gaussian elimination, the main
difference is that we now allow for calling up the Conjugate gradient
function as an alternative solver.

def solver_sparse(
I, a, f, Lx, Ly, Nx, Ny, dt, T, theta=0.5,
U_0x=0, U_0y=0, U_Lx=0, U_Ly=0, user_action=None,
method=’direct’, CG_prec=’ILU’, CG_tol=1E-5):
"""
Full solver for the model problem using the theta-rule
difference approximation in time. Sparse matrix with
dedicated Gaussian elimination algorithm (method=’direct’)
or ILU preconditioned Conjugate Gradients (method=’CG’ with
tolerance CG_tol and preconditioner CG_prec (’ILU’ or None)).
"""
# Set up data structures as shown before

# Precompute sparse matrix
...

A = scipy.sparse.diags(
diagonals=[main, lower, upper, lower2, upper2],
offsets=[0, -lower_offset, lower_offset,

-lower2_offset, lower2_offset],
shape=(N, N), format=’csc’)

if method == ’CG’:
if CG_prec == ’ILU’:

# Find ILU preconditioner (constant in time)
A_ilu = scipy.sparse.linalg.spilu(A) # SuperLU defaults
M = scipy.sparse.linalg.LinearOperator(

shape=(N, N), matvec=A_ilu.solve)
else:

M = None
CG_iter = [] # No of CG iterations at time level n

# Time loop
for n in It[0:-1]:

# Compute b, vectorized version

https://github.com/pyamg/pyamg
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# Solve matrix system A*c = b
if method == ’direct’:

c = scipy.sparse.linalg.spsolve(A, b)
elif method == ’CG’:

x0 = u_n.T.reshape(N) # Start vector is u_n
CG_iter.append(0)

def CG_callback(c_k):
"""Trick to count the no of iterations in CG."""
CG_iter[-1] += 1

c, info = scipy.sparse.linalg.cg(
A, b, x0=x0, tol=CG_tol, maxiter=N, M=M,
callback=CG_callback)

# Fill u with vector c
# Update u_n before next step
u_n, u = u, u_n

The number of iterations in the Conjugate gradient method is of interest,
but is unfortunately not available from the cg function. Therefore, we
perform a trick: in each iteration a user function CG_callback is called
where we accumulate the number of iterations in a list CG_iter.

3.6.17 What is the recommended method for solving linear
systems?

There is no clear answer to this question. If you have enough memory
and computing time available, direct methods such as spsolve are to be
preferred since they are easy to use and finds almost an exact solution.
However, in larger 2D and in 3D problems, direct methods usually run
too slowly or required too much memory, so one is forced to use iterative
methods. The fastest and most reliable methods are in the Conjugate
Gradient family, but these requires suitable preconditioners. ILU is an
all-round preconditioner, but it is not suited for parallel computing. The
Jacobi and SOR iterative methods are easy to implement, and popular
of that reason, but run slowly. Jacobi iteration is not an option in real
problems, but SOR may be.

3.7 Random walk

Models leading to diffusion equations, see Section 3.8, are usually based
on reasoning with averaged physical quantities such as concentration,
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temperature, and velocity. The underlying physical processes involve
complicated microscopic movement of atoms and molecules, but an
average of a large number of molecules is performed in a small volume
before the modeling starts, and the averaged quantity inside this volume
is assigned as a point value at the centroid of the volume. This means that
concentration, temperature, and velocity at a space-time point represent
averages around the point in a small time interval and small spatial
volume.

Random walk is a principally different kind of modeling procedure
compared to the reasoning behind partial differential equations. The
idea in random walk is to have a large number of “particles” that un-
dergo random movements. Averaging can then be used afterwards to
compute macroscopic quantities like concentration. The “particles” and
their random movement represent a very simplified microscopic behavior
of molecules, much simpler and computationally much more efficient
than direct molecular simulation, yet the random walk model has been
very powerful to describe a wide range of phenomena, including heat
conduction, quantum mechanics, polymer chains, population genetics,
neuroscience, hazard games, and pricing of financial instruments.

It can be shown that random walk, when averaged, produces models
that are mathematically equivalent to diffusion equations. This is the
primary reason why we treat random walk in this chapter: two very
different algorithms (finite difference stencils and random walk) solve
the same type of problems. The simplicity of the random walk algorithm
makes it particularly attractive for solving diffusion equations on mas-
sively parallel computers. The exposition here is as simple as possible,
and good thorough derivation of the models is provided by Hjorth-Jensen
[7].

3.7.1 Random walk in 1D

Imagine that we have some particles that perform random moves, either
to the right or to the left. We may flip a coin to decide the movement
of each particle, say head implies movement to the right and tail means
movement to the left. Each move is one unit length. Physicists use the
term random walk for this type of movement. The movement is also
known as drunkard’s walk. You may try this yourself: flip the coin and
make one step to the left or right, and repeat the process.

https://en.wikipedia.org/wiki/Molecular_dynamics
https://en.wikipedia.org/wiki/The_Drunkard%27s_Walk
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We introduce the symbol N for the number of steps in a random walk.
Figure 3.16 shows four different random walks with N = 200.
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Fig. 3.16 Ensemble of 4 random walks, each with 200 steps.

3.7.2 Statistical considerations

Let Sk be the stochastic variable representing a step to the left or to
the right in step number k. We have that Sk = −1 with probability p
and Sk = 1 with probability q = 1 − p. The variable Sk is known as a
Bernoulli variable. The expectation of Sk is

E[Sk] = p · (−1) + q · 1 = 1− 2p,

and the variance is

Var[Sk] = E[S2
k ]− E[Sk]2 = 1− (1− 2p)2 = 4p(1− p) .

The position after k steps is another stochastic variable

https://en.wikipedia.org/wiki/Bernoulli_distribution
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X̄k =
k−1∑
i=0

Si .

The expected position is

E[X̄k] = E[
k−1∑
i=0

Si] =
k−1∑
i=0

E[Si] = k(1− 2p) .

All the Sk variables are independent. The variance therefore becomes

Var[X̄k] = Var[
k−1∑
i=0

Si] =
k−1∑
i=0

Var[Si] = k4p(1− p) .

We see that Var[X̄k] is proportional with the number of steps k. For the
very important case p = q = 1

2 , E[X̄k] = 0 and Var[X̄k] = k.
How can we estimate E[X̄k] = 0 and Var[X̄k] = N? We must have

many random walks of the type in Figure 3.16. For a given k, say k = 100,
we find all the values of X̄k, name them x̄0,k, x̄1,k, x̄2,k, and so on. The
empirical estimate of E[X̄k] is the average,

E[X̄k] ≈= 1
W

W−1∑
j=0

x̄j,k,

while an empirical estimate of Var[X̄k] is

Var[X̄k] ≈
1
W

W−1∑
j=0

(x̄j,k)2 −

 1
W

W−1∑
j=0

x̄j,k

2

.

That is, we take the statistics for a given K across the ensemble of
random walks (“vertically” in Figure 3.16). The key quantities to record
are

∑
i x̄i,k and

∑
i x̄

2
i,k.

3.7.3 Playing around with some code

Scalar code. Python has a random module for drawing random numbers,
and this module has a function uniform(a, b) for drawing a uniformly
distributed random number in the interval [a, b). If an event happens
with probability p, we can simulate this on the computer by drawing a
random number r in [0, 1), because then r ≤ p with probability p and
r > p with probability 1− p:
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import random
r = random.uniform(0, 1)
if r <= p:

# Event happens
else:

# Event does not happen

A random walk with N steps, starting at x0, where we move to the left
with probability p and to the right with probability 1 − p can now be
implemented by

import random, numpy as np

def random_walk1D(x0, N, p):
"""1D random walk with 1 particle."""
# Store position in step k in position[k]
position = np.zeros(N)
position[0] = x0
current_pos = x0
for k in range(N-1):

r = random.uniform(0, 1)
if r <= p:

current_pos -= 1
else:

current_pos += 1
position[k+1] = current_pos

return position

Vectorized code. Since N is supposed to be large and we want to repeat
the process for many particles, we should speed up the code as much as
possible. Vectorization is the obvious technique here: we draw all the ran-
dom numbers at once with aid of numpy, and then we formulate vector op-
erations to get rid of the loop over the steps (k). The numpy.random mod-
ule has vectorized versions of the functions in Python’s built-in random
module. For example, numpy.random.uniform(a, b, N) returns N ran-
dom numbers uniformly distributed between a (included) and b (not
included).

We can then make an array of all the steps in a random walk: if the
random number is less than or equal to p, the step is −1, otherwise the
step is 1:

r = np.random.uniform(0, 1, size=N)
steps = np.where(r <= p, -1, 1)

The value of position[k] is the sum of all steps up to step k. Such
sums are often needed in vectorized algorithms and therefore available
by the numpy.cumsum function:
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>>> import numpy as np
>>> np.cumsum(np.array([1,3,4,6]))
array([ 1, 4, 8, 14])

The resulting array in this demo has elements 1, 1 + 3 = 4, 1 + 3 + 4 = 8,
and 1 + 3 + 4 + 6 = 14.

We can now vectorize the random_walk1D function:

def random_walk1D_vec(x0, N, p):
"""Vectorized version of random_walk1D."""
# Store position in step k in position[k]
position = np.zeros(N+1)
position[0] = x0
r = np.random.uniform(0, 1, size=N)
steps = np.where(r <= p, -1, 1)
position[1:] = x0 + np.cumsum(steps)
return position

This code runs about 10 times faster than the scalar version. With a
parallel numpy library, the code can also automatically take advantage of
hardware for parallel computing because each of the four array operations
can be trivially parallelized.

Fixing the random sequence. During software development with ran-
dom numbers it is advantageous to always generate the same sequence
of random numbers as this may help debugging processes. To fix the
sequence, we set a seed of the random number generator to some chosen
integer, e.g.,

np.random.seed(10)

Calls to random_walk1D_vec give positions of the particle as depicted
in Figure 3.17. The particle starts at the origin and moves with p = 1

2 .
Since the seed is the same, the plot to the left is just a magnification of
the first 1,000 steps in the plot to the right.
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Fig. 3.17 1,000 (left) and 50,000 (right) steps of a random walk.
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Verification. When we have a scalar and a vectorized code, it is always a
good idea to develop a unit test for checking that they produce the same
result. A problem in the present context is that the two versions apply
to different random number generators. For a test to be meaningful, we
need to fix the seed and use the same generator. This means that the
scalar version must either use np.random or have this as an option. An
option is the most flexible choice:

import random

def random_walk1D(x0, N, p, random=random):
...
r = random.uniform(0, 1)

Using random=np.random, the r variable gets computed by
np.random.uniform, and the sequence of random numbers will be
the same as in the vectorized version that employs the same generator
(given that the seed is also the same). A proper test function may be
to check that the positions in the walk are the same in the scalar and
vectorized implementations:

def test_random_walk1D():
# For fixed seed, check that scalar and vectorized versions
# produce the same result
x0 = 2; N = 4; p = 0.6
np.random.seed(10)
scalar_computed = random_walk1D(x0, N, p, random=np.random)
np.random.seed(10)
vectorized_computed = random_walk1D_vec(x0, N, p)
assert (scalar_computed == vectorized_computed).all()

Note that we employ == for arrays with real numbers, which is normally
an inadequate test due to rounding errors, but in the present case, all
arithmetics consists of adding or subtracting one, so these operations
are expected to have no rounding errors. Comparing two numpy arrays
with == results in a boolean array, so we need to call the all() method
to ensure that all elements are True, i.e., that all elements in the two
arrays match each other pairwise.

3.7.4 Equivalence with diffusion

The original random walk algorithm can be said to work with dimen-
sionless coordinates x̄i = −N + i, i = 0, 1, . . . , 2N + 1 (i ∈ [−N,N ]),
and t̄n = n, n = 0, 1, . . . , N . A mesh with spacings ∆x and ∆t with
dimensions can be introduced by
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xi = X0 + x̄i∆x, tn = t̄n∆t .

If we implement the algorithm with dimensionless coordinates, we can
just use this rescaling to obtain the movement in a coordinate system
without unit spacings.

Let P n+1
i be the probability of finding the particle at mesh point x̄i at

time t̄n+1. We can reach mesh point (i, n+ 1) in two ways: either coming
in from the left from (i − 1, n) or from the right (i + 1, n). Each has
probability 1

2 (if we assume p = q = 1
2). The fundamental equation for

P n+1
i is

P n+1
i = 1

2P
n
i−1 + 1

2P
n
i+1 . (3.114)

(This equation is easiest to understand if one looks at the random walk
as a Markov process and applies the transition probabilities, but this is
beyond scope of the present text.)

Subtracting P n
i from (3.7.1) results in

P n+1
i − P n

i = 1
2(P n

i−1 − 2P n
i + 1

2P
n
i+1) .

Readers who have seen the Forward Euler discretization of a 1D diffusion
equation recognize this scheme as very close to such a discretization. We
have

∂

∂t
P (xi, tn) = P n+1

i − P n
i

∆t
+O(∆t),

or in dimensionless coordinates

∂

∂t̄
P (x̄i, t̄n) ≈ P n+1

i − P n
i .

Similarly, we have

∂2

∂x2P (xi, tn) =
P n
i−1 − 2P n

i + 1
2P

n
i+1

∆x2 +O(∆x2),

∂2

∂x2P (x̄i, t̄n) ≈ P n
i−1 − 2P n

i + 1
2P

n
i+1 .

Equation (3.7.1) is therefore equivalent with the dimensionless diffusion
equation
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∂P

∂t̄
= 1

2
∂2P

∂x̄2 , (3.115)

or the diffusion equation

∂P

∂t
= D

∂2P

∂x2 , (3.116)

with diffusion coefficient

D = ∆x2

2∆t .

This derivation shows the tight link between random walk and diffusion.
If we keep track of where the particle is, and repeat the process many
times, or run the algorithms for lots of particles, the histogram of the
positions will approximate the solution of the diffusion equation for the
local probability P n

i .
Suppose all the random walks start at the origin. Then the initial

condition for the probability distribution is the Dirac delta function δ(x).
The solution of (3.115) can be shown to be

P̄ (x̄, t̄) = 1√
4παt

e−
x2
4αt , (3.117)

where α = 1
2 .

3.7.5 Implementation of multiple walks

Our next task is to implement an ensemble of walks (for statistics, see
Section 3.7.2) and also provide data from the walks such that we can
compute the probabilities of the positions as introduced in the previous
section. An appropriate representation of probabilities P n

i are histograms
(with i along the x axis) for a few selected values of n.

To estimate the expectation and variance of the random walks, Sec-
tion 3.7.2 points to recording

∑
j xj,k and

∑
j x

2
j,k, where xj,k is the

position at time/step level k in random walk number j. The histogram
of positions needs the individual values xi,k for all i values and some
selected k values.

We introduce position[k] to hold
∑
j xj,k, position2[k] to hold∑

j(xj,k)2, and pos_hist[i,k] to hold xi,k. A selection of k values can
be specified by saying how many, num_times, and let them be equally
spaced through time:
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pos_hist_times = [(N//num_times)*i for i in range(num_times)]

This is one of the few situations we want integer division (//) or real
division rounded to an integer.

Scalar version. Our scalar implementation of running num_walks ran-
dom walks may go like this:

def random_walks1D(x0, N, p, num_walks=1, num_times=1,
random=random):

"""Simulate num_walks random walks from x0 with N steps."""
position = np.zeros(N+1) # Accumulated positions
position[0] = x0*num_walks
position2 = np.zeros(N+1) # Accumulated positions**2
position2[0] = x0**2*num_walks
# Histogram at num_times selected time points
pos_hist = np.zeros((num_walks, num_times))
pos_hist_times = [(N//num_times)*i for i in range(num_times)]
#print ’save hist:’, post_hist_times

for n in range(num_walks):
num_times_counter = 0
current_pos = x0
for k in range(N):

if k in pos_hist_times:
#print ’save, k:’, k, num_times_counter, n
pos_hist[n,num_times_counter] = current_pos
num_times_counter += 1

# current_pos corresponds to step k+1
r = random.uniform(0, 1)
if r <= p:

current_pos -= 1
else:

current_pos += 1
position [k+1] += current_pos
position2[k+1] += current_pos**2

return position, position2, pos_hist, np.array(pos_hist_times)

Vectorized version. We have already vectorized a single random walk.
The additional challenge here is to vectorize the computation of the
data for the histogram, pos_hist, but given the selected steps in
pos_hist_times, we can find the corresponding positions by indexing
with the list pos_hist_times: position[post_hist_times], which are
to be inserted in pos_hist[n,:].

def random_walks1D_vec1(x0, N, p, num_walks=1, num_times=1):
"""Vectorized version of random_walks1D."""
position = np.zeros(N+1) # Accumulated positions
position2 = np.zeros(N+1) # Accumulated positions**2
walk = np.zeros(N+1) # Positions of current walk
walk[0] = x0
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# Histogram at num_times selected time points
pos_hist = np.zeros((num_walks, num_times))
pos_hist_times = [(N//num_times)*i for i in range(num_times)]

for n in range(num_walks):
r = np.random.uniform(0, 1, size=N)
steps = np.where(r <= p, -1, 1)
walk[1:] = x0 + np.cumsum(steps) # Positions of this walk
position += walk
position2 += walk**2
pos_hist[n,:] = walk[pos_hist_times]

return position, position2, pos_hist, np.array(pos_hist_times)

Improved vectorized version. Looking at the vectorized version above,
we still have one potentially long Python loop over n. Normally,
num_walks will be much larger than N. The vectorization of the loop over
N certainly speeds up the program, but if we think of vectorization as
also a way to parallelize the code, all the independent walks (the n loop)
can be executed in parallel. Therefore, we should include this loop as
well in the vectorized expressions, at the expense of using more memory.

We introduce the array walks to hold the N + 1 steps of all the walks:
each row represents the steps in one walk.

walks = np.zeros((num_walks, N+1)) # Positions of each walk
walks[:,0] = x0

Since all the steps are independent, we can just make one long vector of
enough random numbers (N*num_walks), translate these numbers to ±1,
then we reshape the array such that the steps of each walk are stored in
the rows.

r = np.random.uniform(0, 1, size=N*num_walks)
steps = np.where(r <= p, -1, 1).reshape(num_walks, N)

The next step is to sum up the steps in each walk. We need the
np.cumsum function for this, with the argument axis=1 for indicating a
sum across the columns:

>>> a = np.arange(6).reshape(2,3)
>>> a
array([[0, 1, 2],

[3, 4, 5]])
>>> np.cumsum(a, axis=1)
array([[ 0, 1, 3],

[ 3, 7, 12]])

Now walks can be computed by

walks[:,1:] = x0 + np.cumsum(steps, axis=1)
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The position vector is the sum of all the walks. That is, we want to
sum all the rows, obtained by

position = np.sum(walks, axis=0)

A corresponding expression computes the squares of the positions. Finally,
we need to compute pos_hist, but that is a matter of grabbing some of
the walks (according to pos_hist_times):

pos_hist[:,:] = walks[:,pos_hist_times]

The complete vectorized algorithm without any loop can now be summa-
rized:

def random_walks1D_vec2(x0, N, p, num_walks=1, num_times=1):
"""Vectorized version of random_walks1D; no loops."""
position = np.zeros(N+1) # Accumulated positions
position2 = np.zeros(N+1) # Accumulated positions**2
walks = np.zeros((num_walks, N+1)) # Positions of each walk
walks[:,0] = x0
# Histogram at num_times selected time points
pos_hist = np.zeros((num_walks, num_times))
pos_hist_times = [(N//num_times)*i for i in range(num_times)]

r = np.random.uniform(0, 1, size=N*num_walks)
steps = np.where(r <= p, -1, 1).reshape(num_walks, N)
walks[:,1:] = x0 + np.cumsum(steps, axis=1)
position = np.sum(walks, axis=0)
position2 = np.sum(walks**2, axis=0)
pos_hist[:,:] = walks[:,pos_hist_times]
return position, position2, pos_hist, np.array(pos_hist_times)

What is the gain of the vectorized implementations? One important
gain is that each vectorized operation can be automatically parallelized
if one applies a parallel numpy library like Numba. On a single CPU,
however, the speed up of the vectorized operations is also significant.
With N = 1, 000 and 50,000 repeated walks, the two vectorized ver-
sions run about 25 and 18 times faster than the scalar version, with
random_walks1D_vec1 being fastest.
Remark on vectorized code and parallelization. Our first attempt
on vectorization removed the loop over the N steps in a single walk.
However, the number of walks is usually much larger than N , because
of the need for accurate statistics. Therefore, we should rather remove
the loop over all walks. It turns out, from our efficiency experiments,
that the function random_walks1D_vec2 (with no loops) is slower than
random_walks1D_vec1. This is a bit surprising and may be explained by
less efficiency in the statements involving very large arrays, containing
all steps for all walks at once.

http://numba.pydata.org
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From a parallelization and improved vectorization point of view, it
would be more natural to switch the sequence of the loops in the serial
code such that the shortest loop is the outer loop:

def random_walks1D2(x0, N, p, num_walks=1, num_times=1, ...):
...
current_pos = x0 + np.zeros(num_walks)
num_times_counter = -1

for k in range(N):
if k in pos_hist_times:
num_times_counter += 1
store_hist = True

else:
store_hist = False

for n in range(num_walks):
# current_pos corresponds to step k+1
r = random.uniform(0, 1)

if r <= p:
current_pos[n] -= 1

else:
current_pos[n] += 1

position [k+1] += current_pos[n]
position2[k+1] += current_pos[n]**2
if store_hist:

pos_hist[n,num_times_counter] = current_pos[n]
return position, position2, pos_hist, np.array(pos_hist_times)

The vectorized version of this code, where we just vectorize the loop over
n, becomes

def random_walks1D2_vec1(x0, N, p, num_walks=1, num_times=1):
"""Vectorized version of random_walks1D2."""
position = np.zeros(N+1) # Accumulated positions
position2 = np.zeros(N+1) # Accumulated positions**2
# Histogram at num_times selected time points
pos_hist = np.zeros((num_walks, num_times))
pos_hist_times = [(N//num_times)*i for i in range(num_times)]

current_pos = np.zeros(num_walks)
current_pos[0] = x0
num_times_counter = -1

for k in range(N):
if k in pos_hist_times:
num_times_counter += 1
store_hist = True # Store histogram data for this k

else:
store_hist = False

# Move all walks one step
r = np.random.uniform(0, 1, size=num_walks)
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steps = np.where(r <= p, -1, 1)
current_pos += steps
position[k+1] = np.sum(current_pos)
position2[k+1] = np.sum(current_pos**2)
if store_hist:

pos_hist[:,num_times_counter] = current_pos
return position, position2, pos_hist, np.array(pos_hist_times)

This function runs significantly faster than the random_walks1D_vec1
function above, typically 1.7 times faster. The code is also more appro-
priate in a parallel computing context since each vectorized statement
can work with data of size num_walks over the compute units, repeated
N times (compared with data of size N, repeated num_walks times, in
random_walks1D_vec1).

The scalar code with switched loops, random_walks1D2 runs a bit
slower than the original code in random_walks1D, so with the longest
loop as the inner loop, the vectorized function random_walks1D2_vec1
is almost 60 times faster than the scalar counterpart, while the code
random_walks1D_vec2 without loops is only around 18 times faster.
Taking into account the very large arrays required by the latter function,
we end up with random_walks1D2_vec1 as the preferred implementation.
Test function. During program development, it is highly recommended
to carry out computations by hand for, e.g., N=4 and num_walks=3.
Normally, this is done by executing the program with these parameters
and checking with pen and paper that the computations make sense. The
next step is to use this test for correctness in a formal test function.

First, we need to check that the simulation of multiple random walks
reproduces the results of random_walk1D, random_walk1D_vec1, and
random_walk1D_vec2 for the first walk, if the seed is the same. Second,
we run three random walks (N=4) with the scalar and the two vectorized
versions and check that the returned arrays are identical.

For this type of test to be successful, we must be sure that exactly the
same set of random numbers are used in the three versions, a fact that
requires the same random number generator and the same seed, of course,
but also the same sequence of computations. This is not obviously the case
with the three random_walk1D* functions we have presented. The critical
issue in random_walk1D_vec1 is that the first random numbers are used
for the first walk, the second set of random numbers is used for the second
walk and so, to be compatible with how the random numbers are used
in the function random_walk1D. For the function random_walk1D_vec2
the situation is a bit more complicated since we generate all the random
numbers at once. However, the critical step now is the reshaping of the
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array returned from np.where: we must reshape as (num_walks, N) to
ensure that the first N random numbers are used for the first walk, the
next N numbers are used for the second walk, and so on.

We arrive at the test function below.

def test_random_walks1D():
# For fixed seed, check that scalar and vectorized versions
# produce the same result
x0 = 0; N = 4; p = 0.5

# First, check that random_walks1D for 1 walk reproduces
# the walk in random_walk1D
num_walks = 1
np.random.seed(10)
computed = random_walks1D(

x0, N, p, num_walks, random=np.random)
np.random.seed(10)
expected = random_walk1D(

x0, N, p, random=np.random)
assert (computed[0] == expected).all()

# Same for vectorized versions
np.random.seed(10)
computed = random_walks1D_vec1(x0, N, p, num_walks)
np.random.seed(10)
expected = random_walk1D_vec(x0, N, p)
assert (computed[0] == expected).all()
np.random.seed(10)
computed = random_walks1D_vec2(x0, N, p, num_walks)
np.random.seed(10)
expected = random_walk1D_vec(x0, N, p)
assert (computed[0] == expected).all()

# Second, check multiple walks: scalar == vectorized
num_walks = 3
num_times = N
np.random.seed(10)
serial_computed = random_walks1D(

x0, N, p, num_walks, num_times, random=np.random)
np.random.seed(10)
vectorized1_computed = random_walks1D_vec1(

x0, N, p, num_walks, num_times)
np.random.seed(10)
vectorized2_computed = random_walks1D_vec2(

x0, N, p, num_walks, num_times)
# positions: [0, 1, 0, 1, 2]
# Can test without tolerance since everything is +/- 1
return_values = [’pos’, ’pos2’, ’pos_hist’, ’pos_hist_times’]
for s, v, r in zip(serial_computed,

vectorized1_computed,
return_values):

msg = ’%s: %s (serial) vs %s (vectorized)’ % (r, s, v)
assert (s == v).all(), msg
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for s, v, r in zip(serial_computed,
vectorized2_computed,
return_values):

msg = ’%s: %s (serial) vs %s (vectorized)’ % (r, s, v)
assert (s == v).all(), msg

Such test functions are indispensable for further development of the code
as we can at any time test whether the basic computations remain correct
or not. This is particularly important in stochastic simulations since
without test functions and fixed seeds, we always experience variations
from run to run, and it can be very difficult to spot bugs through averaged
statistical quantities.

3.7.6 Demonstration of multiple walks

Assuming now that the code works, we can just scale up the number of
steps in each walk and the number of walks. The latter influences the
accuracy of the statistical estimates. Figure 3.18 shows the impact of
the number of walks on the expectation, which should approach zero.
Figure 3.19 displays the corresponding estimate of the variance of the
position, which should grow linearly with the number of steps. It does,
seemingly very accurately, but notice that the scale on the y axis is so
much larger than for the expectation, so irregularities due to the stochastic
nature of the process become so much less visible in the variance plots.
The probability of finding a particle at a certain position at time (or
step) 800 is shown in Figure 3.20. The dashed red line is the theoretical
distribution (3.117) arising from solving the diffusion equation (3.115)
instead. As always, we realize that one needs significantly more statistical
samples to estimate a histogram accurately than the expectation or
variance.
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Fig. 3.18 Estimated expected value for 1000 steps, using 100 walks (upper left), 10,000
(upper right), 100,000 (lower left), and 1,000,000 (lower right).
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Fig. 3.19 Estimated variance over 1000 steps, using 100 walks (upper left), 10,000 (upper
right), 100,000 (lower left), and 1,000,000 (lower right).
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Fig. 3.20 Estimated probability distribution at step 800, using 100 walks (upper left),
10,000 (upper right), 100,000 (lower left), and 1,000,000 (lower right).
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3.7.7 Ascii visualization of 1D random walk

If we want to study (very) long time series of random walks, it can
be convenient to plot the position in a terminal window with the time
axis pointing downwards. The module avplotter in SciTools has a class
Plotter for plotting functions in the terminal window with the aid
of ascii symbols only. Below is the code required to visualize a simple
random walk, starting at the origin, and considered over when the point
x = −1 is reached. We use a spacing ∆x = 0.05 (so x = −1 corresponds
to i = −20).

def run_random_walk():
from scitools.avplotter import Plotter
import time, numpy as np
p = Plotter(-1, 1, width=75) # Horizontal axis: 75 chars wide
dx = 0.05
np.random.seed(10)

x = 0
while True:

random_step = 1 if np.random.random() > 0.5 else -1
x = x + dx*random_step
if x < -1:

break # Destination reached!
print p.plot(0, x)

# Allow Ctrl+c to abort the simulation
try:

time.sleep(0.1) # Wait for interrupt
except KeyboardInterrupt:

print ’Interrupted by Ctrl+c’
break

Observe that we implement an infinite loop, but allow a smooth inter-
rupt of the program by Ctrl+c through Python’s KeyboardInterrupt
exception. This is a useful recipe that can be used in many occasions!

The output looks typically like

* |
* |

* |
* |

* |
* |

* |
* |

* |
* |

* |
* |
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* |
* |

* |
* |

* |
* |

Positions beyond the limits of the x axis appear with a value. A long
file contains the complete ascii plot corresponding to the function
run_random_walk above.

3.7.8 Random walk as a stochastic equation

The (dimensionless) position in a random walk, X̄k, can be expressed as
a stochastic difference equation:

X̄k = X̄k−1 + s, x0 = 0, (3.118)

where s is a Bernoulli variable, taking on the two values s = −1 and
s = 1 with equal probability:

P(s = 1) = 1
2 , P(s = −1) = 1

2 .

The s variable in a step is independent of the s variable in other steps.
The difference equation expresses essentially the sum of independent

Bernoulli variables. Because of the central limit theorem, Xk, will then be
normally distributed with expectation kE[s] and kVar[s]. The expectation
and variance of a Bernoulli variable with values r = 0 and r = 1 are p
and p(1− p), respectively. The variable s = 2r − 1 then has expectation
2E[r] − 1 = 2p − 1 = 0 and variance 22Var[r] = 4p(1 − p) = 1. The
position Xk is normally distributed with zero expectation and variance
k, as we found in Section 3.7.2.

The central limit theorem tells that as long as k is not small, the
distribution of Xk remains the same if we replace the Bernoulli variable s
by any other stochastic variable with the same expectation and variance.
In particular, we may let s be a standardized Gaussian variable (zero
mean, unit variance).

Dividing (3.118) by ∆t gives

X̄k − X̄k−1

∆t
= 1
∆t

s .

http://bit.ly/1UbULeH
http://bit.ly/1UbULeH
https://en.wikipedia.org/wiki/Bernoulli_distribution
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In the limit ∆t→ 0, s/∆t approaches a white noise stochastic process.
With X̄(t) as the continuous process in the limit ∆t→ 0 (Xk → X(tk)),
we formally get the stochastic differential equation

dX̄ = dW, (3.119)

where W (t) is a Wiener process. Then X is also a Wiener process.
It follows from the stochastic ODE dX = dW that the probability
distribution of X is given by the Fokker-Planck equation (3.115). In other
words, the key results for random walk we found earlier can alternatively
be derived via a stochastic ordinary differential equation and its related
Fokker-Planck equation.

3.7.9 Random walk in 2D

The most obvious generalization of 1D random walk to two spatial
dimensions is to allow movements to the north, east, south, and west,
with equal probability 1

4 .

def random_walk2D(x0, N, p, random=random):
"""2D random walk with 1 particle and N moves: N, E, W, S."""
# Store position in step k in position[k]
d = len(x0)
position = np.zeros((N+1, d))
position[0,:] = x0
current_pos = np.array(x0, dtype=float)
for k in range(N):

r = random.uniform(0, 1)
if r <= 0.25:

current_pos += np.array([0, 1]) # Move north
elif 0.25 < r <= 0.5:

current_pos += np.array([1, 0]) # Move east
elif 0.5 < r <= 0.75:

current_pos += np.array([0, -1]) # Move south
else:

current_pos += np.array([-1, 0]) # Move west
position[k+1,:] = current_pos

return position

The left plot in Figure 3.21 provides an example on 200 steps with this
kind of walk. We may refer to this walk as a walk on a rectangular mesh
as we move from any spatial mesh point (i, j) to one of its four neighbors
in the rectangular directions: (i+ 1, j), (i− 1, j), (i, j + 1), or (i, j − 1).

https://en.wikipedia.org/wiki/Wiener_process
https://en.wikipedia.org/wiki/Fokker-Planck_equation
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Fig. 3.21 Random walks in 2D with 200 steps: rectangular mesh (left) and diagonal
mesh (right).

3.7.10 Random walk in any number of space dimensions

From a programming point of view, especially when implementing a
random walk in any number of dimensions, it is more natural to consider
a walk in the diagonal directions NW, NE, SW, and SE. On a two-
dimensional spatial mesh it means that we go from (i, j) to either (i+
1, j + 1), (i− 1, j + 1), (i+ 1, j − 1), or (i− 1, j − 1). We can with such
a diagonal mesh (see right plot in Figure 3.21) draw a Bernoulli variable
for the step in each spatial direction and trivially write code that works
in any number of spatial directions:

def random_walkdD(x0, N, p, random=random):
"""Any-D (diagonal) random walk with 1 particle and N moves."""
# Store position in step k in position[k]
d = len(x0)
position = np.zeros((N+1, d))
position[0,:] = x0
current_pos = np.array(x0, dtype=float)
for k in range(N):

for i in range(d):
r = random.uniform(0, 1)
if r <= p:

current_pos[i] -= 1
else:

current_pos[i] += 1
position[k+1,:] = current_pos

return position

A vectorized version is desired. We follow the ideas from Section 3.7.3,
but each step is now a vector in d spatial dimensions. We therefore need
to draw Nd random numbers in r, compute steps in the various directions
through np.where(r <=p, -1, 1) (each step being −1 or 1), and then
we can reshape this array to an N × d array of step vectors. Doing an
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np.cumsum summation along axis 0 will add the vectors, as this demo
shows:

>>> a = np.arange(6).reshape(3,2)
>>> a
array([[0, 1],

[2, 3],
[4, 5]])

>>> np.cumsum(a, axis=0)
array([[ 0, 1],

[ 2, 4],
[ 6, 9]])

With such summation of step vectors, we get all the positions to be filled
in the position array:

def random_walkdD_vec(x0, N, p):
"""Vectorized version of random_walkdD."""
d = len(x0)
# Store position in step k in position[k]
position = np.zeros((N+1,d))
position[0] = np.array(x0, dtype=float)
r = np.random.uniform(0, 1, size=N*d)
steps = np.where(r <= p, -1, 1).reshape(N,d)
position[1:,:] = x0 + np.cumsum(steps, axis=0)
return position

3.7.11 Multiple random walks in any number of space
dimensions

As we did in 1D, we extend one single walk to a number of walks
(num_walks in the code).
Scalar code. As always, we start with implementing the scalar case:

def random_walksdD(x0, N, p, num_walks=1, num_times=1,
random=random):

"""Simulate num_walks random walks from x0 with N steps."""
d = len(x0)
position = np.zeros((N+1, d)) # Accumulated positions
position2 = np.zeros((N+1, d)) # Accumulated positions**2
# Histogram at num_times selected time points
pos_hist = np.zeros((num_walks, num_times, d))
pos_hist_times = [(N//num_times)*i for i in range(num_times)]

for n in range(num_walks):
num_times_counter = 0
current_pos = np.array(x0, dtype=float)
for k in range(N):

if k in pos_hist_times:
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Fig. 3.22 Four random walks with 5000 steps in 2D.

pos_hist[n,num_times_counter,:] = current_pos
num_times_counter += 1

# current_pos corresponds to step k+1
for i in range(d):

r = random.uniform(0, 1)
if r <= p:

current_pos[i] -= 1
else:

current_pos[i] += 1
position [k+1,:] += current_pos
position2[k+1,:] += current_pos**2

return position, position2, pos_hist, np.array(pos_hist_times)

Vectorized code. Significant speed-ups can be obtained by vectorization.
We get rid of the loops in the previous function and arrive at the following
vectorized code.

def random_walksdD_vec(x0, N, p, num_walks=1, num_times=1):
"""Vectorized version of random_walks1D; no loops."""
d = len(x0)
position = np.zeros((N+1, d)) # Accumulated positions
position2 = np.zeros((N+1, d)) # Accumulated positions**2
walks = np.zeros((num_walks, N+1, d)) # Positions of each walk
walks[:,0,:] = x0
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# Histogram at num_times selected time points
pos_hist = np.zeros((num_walks, num_times, d))
pos_hist_times = [(N//num_times)*i for i in range(num_times)]

r = np.random.uniform(0, 1, size=N*num_walks*d)
steps = np.where(r <= p, -1, 1).reshape(num_walks, N, d)
walks[:,1:,:] = x0 + np.cumsum(steps, axis=1)
position = np.sum(walks, axis=0)
position2 = np.sum(walks**2, axis=0)
pos_hist[:,:,:] = walks[:,pos_hist_times,:]
return position, position2, pos_hist, np.array(pos_hist_times)

3.8 Applications

3.8.1 Diffusion of a substance

The first process to be considered is a substance that gets transported
through a fluid at rest by pure diffusion. We consider an arbitrary volume
V of this fluid, containing the substance with concentration function
c(x, t). Physically, we can think of a very small volume with centroid x
at time t and assign the ratio of the volume of the substance and the
total volume to c(x, t). This means that the mass of the substance in
a small volume ∆V is approximately %c∆V , where % is the density of
the substance. Consequently, the total mass of the substance inside the
volume V is the sum of all %c∆V , which becomes the volume integral∫
V %cdV .
Let us reason how the mass of the substance changes and thereby

derive a PDE governing the concentration c. Suppose the substance flows
out of V with a flux q. If ∆S is a small part of the boundary ∂V of V , the
volume of the substance flowing out through dS in a small time interval
∆t is %q · n∆t∆S, where n is an outward unit normal to the boundary
∂V , see Figure 3.23. We realize that only the normal component of q is
able to transport mass in and out of V . The total outflow of the mass of
the substance in a small time interval ∆t becomes the surface integral∫

∂V

%q · n∆t dS .

Assuming conservation of mass, this outflow of mass must be balanced by
a loss of mass inside the volume. The increase of mass inside the volume,
during a small time interval ∆t, is
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V

%(c(x, t+∆t)− c(x, t))dV,

assuming % is constant, which is reasonable. The outflow of mass balances
the loss of mass in V , which is the increase with a minus sign. Setting
the two contributions equal to each other ensures balance of mass inside
V . Dividing by ∆t gives∫

V

%
c(x, t+∆t)− c(x, t)

∆t
dV = −

∫
∂V

%q · n dS .

Note the minus sign on the right-hand side: the left-hand side expresses
loss of mass, while the integral on the right-hand side is the gain of mass.

Now, letting ∆t→ 0, we have

c(x, t+∆t)− c(x, t)
∆t

→ ∂c

∂t
,

so ∫
V

%
∂c

∂t
dV +

∫
∂V

%q · n dS = 0 . (3.120)

To arrive at a PDE, we express the surface integral as a volume integral
using Gauss’ divergence theorem:∫

V

(%∂c
∂t

+∇ · (%q))dV = 0 .

Since % is constant, we can divide by this quantity. If the integral is to
vanish for an arbitrary volume V , the integrand must vanish too, and
we get the mass conservation PDE for the substance:

∂c

∂t
+∇ · q = 0 . (3.121)

A fundamental problem is that this is a scalar PDE for four unknowns:
c and the three components of q. We therefore need additional equations.
Here, Fick’s law comes at rescue: it models how the flux q of the substance
is related to the concentration c. Diffusion is recognized by mass flowing
from regions with high concentration to regions of low concentration.
This principle suggests that q is proportional to the negative gradient of
c:
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Fig. 3.23 An arbitrary volume of a fluid.

q = −α∇c, (3.122)

where α is an empirically determined constant. The relation (3.122) is
known as Fick’s law. Inserting (3.122) in (3.121) gives a scalar PDE for
the concentration c:

∂c

∂t
= α∇2c . (3.123)

3.8.2 Heat conduction

Heat conduction is a well-known diffusion process. The governing PDE
is in this case based on the first law of thermodynamics: the increase in
energy of a system is equal to the work done on the system, plus the
supplied heat. Here, we shall consider media at rest and neglect work
done on the system. The principle then reduces to a balance between
increase in internal energy and supplied heat flow by conduction.

Let e(x, t) be the internal energy per unit mass. The increase of the
internal energy in a small volume ∆V in a small time interval ∆t is then

%(e(x, t+∆t)− e(x, t))∆V,

where % is the density of the material subject to heat conduction. In
an arbitrary volume V , as depicted in Figure 3.23, the corresponding
increase in internal energy becomes the volume integral∫

V

%(e(x, t+∆t)− e(x, t))dV .
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This increase in internal energy is balanced by heat supplied by conduc-
tion. Let q be the heat flow per time unit. Through the surface ∂V of V
the following amount of heat flows out of V during a time interval ∆t:∫

∂V

q · n∆t dS .

The simplified version of the first law of thermodynamics then states
that ∫

V

%(e(x, t+∆t)− e(x, t))dV = −
∫
∂V

q · n∆t dS .

The minus sign on the right-hand side ensures that the integral there
models net inflow of heat (since n is an outward unit normal, q · n
models outflow). Dividing by ∆t and notifying that

lim
∆t→0

e(x, t+∆t)− e(x, t)
∆t

= ∂e

∂t
,

we get (in the limit ∆t→ 0)∫
V

%
∂e

∂t
dV +

∫
∂V

q · n∆t dS = 0 .

This is the integral equation for heat conduction, but we aim at a PDE.
The next step is therefore to transform the surface integral to a volume
integral via Gauss’ divergence theorem. The result is∫

V

(
%
∂e

∂t
+∇ · q

)
dV = 0 .

If this equality is to hold for all volumes V , the integrand must vanish,
and we have the PDE

%
∂e

∂t
= −∇ · q . (3.124)

Sometimes the supplied heat can come from the medium itself. This is
the case, for instance, when radioactive rock generates heat. Let us add
this effect. If f(x, t) is the supplied heat per unit volume per unit time,
the heat supplied in a small volume is f∆t∆V , and inside an arbitrary
volume V the supplied generated heat becomes
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V

f∆tdV .

Adding this to the integral statement of the (simplified) first law of
thermodynamics, and continuing the derivation, leads to the PDE

%
∂e

∂t
= −∇ · q + f . (3.125)

There are four unknown scalar fields: e and q. Moreover, the tempera-
ture T , which is our primary quantity to compute, does not enter the
model yet. We need an additional equation, called the equation of state,
relating e, V = 1/% =, and T : e = e(V, T ). By the chain rule we have

∂e

∂t
= ∂e

∂T

∣∣∣∣
V

∂T

∂t
+ ∂e

∂V

∣∣∣∣
T

∂V

∂t
.

The first coefficient ∂e/∂T is called specific heat capacity at constant
volume, denoted by cv:

cv = ∂e

∂T

∣∣∣∣
V

.

The specific heat capacity will in general vary with T , but taking it as a
constant is a good approximation in many applications.

The term ∂e/∂V models effects due to compressibility and volume
expansion. These effects are often small and can be neglected. We shall
do so here. Using ∂e/∂t = cv∂T/∂t in the PDE gives

%cv
∂T

∂t
= −∇ · q + f .

We still have four unknown scalar fields (T and q). To close the system,
we need a relation between the heat flux q and the temperature T called
Fourier’s law:

q = −k∇T,

which simply states that heat flows from hot to cold areas, along the path
of greatest variation. In a solid medium, k depends on the material of
the medium, and in multi-material media one must regard k as spatially
dependent. In a fluid, it is common to assume that k is constant. The
value of k reflects how easy heat is conducted through the medium, and
k is named the coefficient of heat conduction.
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We have now one scalar PDE for the unknown temperature field
T (x, t):

%cv
∂T

∂t
= ∇ · (k∇T ) + f . (3.126)

3.8.3 Porous media flow
The requirement of mass balance for flow of a single, incompressible fluid
through a deformable (elastic) porous medium leads to the equation

S
∂p

∂t
+∇ · (q − α∂u

∂t
) = 0,

where p is the fluid pressure, q is the fluid velocity, u is the displacement
(deformation) of the medium, S is the storage coefficient of the medium
(related to the compressibility of the fluid and the material in the medium),
and α is another coefficient. In many circumstances, the last term with
u can be neglected, an assumption that decouples the equation above
from a model for the deformation of the medium. The famous Darcy’s
law relates q to p:

q = −K
µ

(∇p− %g),

where K is the permeability of the medium, µ is the dynamic viscosity
of the fluid, % is the density of the fluid, and g is the acceleration of
gravity, here taken as g = −gk. Combining the two equations results in
the diffusion model

S
∂p

∂t
= µ−1∇(K∇p) + %g

µ

∂K

∂z
. (3.127)

Boundary conditions consist of specifying p or q · n at (normal velocity)
each point of the boundary.

3.8.4 Potential fluid flow
Let v be the velocity of a fluid. The condition ∇ × v = 0 is relevant
for many flows, especially in geophysics when viscous effects are negli-
gible. From vector calculus it is known that ∇× v = 0 implies that v
can be derived from a scalar potential field φ: v = ∇φ. If the fluid is
incompressible, ∇ · v = 0, it follows that ∇ · ∇φ = 0, or
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∇2φ = 0 . (3.128)

This Laplace equation is sufficient for determining φ and thereby describe
the fluid motion. This type of flow is known as potential flow. One very
important application where potential flow is a good model is water
waves. As boundary condition we must prescribe v · n = ∂φ/∂n. This
gives rise to what is known as a pure Neumann problem and will cause
numerical difficulties because φ and φ plus any constant are two solutions
of the problem. The simplest remedy is to fix the value of φ at a point.

3.8.5 Streamlines for 2D fluid flow

The streamlines in a two-dimensional stationary fluid flow are lines
tangential to the flow. The stream function ψ is often introduced in
two-dimensional flow such that its contour lines, ψ = const, gives the
streamlines. The relation between ψ and the velocity field v = (u, v) is

u = ∂ψ

∂y
, v = −∂ψ

∂x
.

It follows that ∇v = ψyx − ψxy = 0, so the stream function can only be
used for incompressible flows. Since

∇× v =
(
∂v

∂y
− ∂u

∂x

)
k ≡ ωk,

we can derive the relation

∇2ψ = −ω, (3.129)

which is a governing equation for the stream function ψ(x, y) if the
vorticity ω is known.

3.8.6 The potential of an electric field

Under the assumption of time independence, Maxwell’s equations for the
electric field E become

https://en.wikipedia.org/wiki/Potential_flow
https://en.wikipedia.org/wiki/Stream_function
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∇ ·E = ρ

ε0
,

∇×E = 0,

where ρ is the electric charge density and ε0 is the electric permittivity
of free space (i.e., vacuum). Since ∇×E = 0, E can be derived from a
potential ϕ, E = −∇ϕ. The electric field potential is therefore governed
by the Poisson equation

∇2ϕ = − ρ
ε0
. (3.130)

If the medium is heterogeneous, ρ will depend on the spatial location
r. Also, ε0 must be exchanged with an electric permittivity function ε(r).

Each point of the boundary must be accompanied by, either a Dirichlet
condition ϕ(r) = ϕD(r), or a Neumann condition ∂ϕ(r)

∂n = ϕN (r).

3.8.7 Development of flow between two flat plates

Diffusion equations may also arise as simplified versions of other mathe-
matical models, especially in fluid flow. Consider a fluid flowing between
two flat, parallel plates. The velocity is uni-directional, say along the z
axis, and depends only on the distance x from the plates; u = u(x, t)k.
The flow is governed by the Navier-Stokes equations,

%
∂u

∂t
+ %u · ∇u = −∇p+ µ∇2u+ %f ,

∇ · u = 0,

where p is the pressure field, unknown along with the velocity u, % is
the fluid density, µ the dynamic viscosity, and f is some external body
force. The geometric restrictions of flow between two flat plates puts
restrictions on the velocity, u = u(x, t)i, and the z component of the
Navier-Stokes equations collapses to a diffusion equation:

%
∂u

∂t
= −∂p

∂z
+ µ

∂2u

∂z2 + %fz,

if fz is the component of f in the z direction.
The boundary conditions are derived from the fact that the fluid sticks

to the plates, which means u = 0 at the plates. Say the location of the
plates are z = 0 and z = L. We then have
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u(0, t) = u(L, t) = 0 .

One can easily show that ∂p/∂z must be a constant or just a function
of time t. We set ∂p/∂z = −β(t). The body force could be a component
of gravity, if desired, set as fz = γg. Switching from z to x as independent
variable gives a very standard one-dimensional diffusion equation:

%
∂u

∂t
= µ

∂2u

∂z2 + β(t) + %γg, x ∈ [0, L], t ∈ (0, T ] .

The boundary conditions are

u(0, t) = u(L, t) = 0,

while some initial condition

u(x, 0) = I(x)

must also be prescribed.
The flow is driven by either the pressure gradient β or gravity, or a

combination of both. One may also consider one moving plate that drives
the fluid. If the plate at x = L moves with velocity UL(t), we have the
adjusted boundary condition

u(L, t) = UL(t) .

3.8.8 Flow in a straight tube

Now we consider viscous fluid flow in a straight tube with radius R and
rigid walls. The governing equations are the Navier-Stokes equations, but
as in Section 3.8.7, it is natural to assume that the velocity is directed
along the tube, and that it is axi-symmetric. These assumptions reduced
the velocity field to u = u(r, x, t)i, if the x axis is directed along the
tube. From the equation of continuity, ∇ · u = 0, we see that u must be
independent of x. Inserting u = u(r, t)i in the Navier-Stokes equations,
expressed in axi-symmetric cylindrical coordinates, results in

%
∂u

∂t
= µ

1
r

∂

∂r

(
r
∂u

∂r

)
+ β(t) + %γg, r ∈ [0, R], t ∈ (0, T ] . (3.131)
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Here, β(t) = −∂p/∂x is the pressure gradient along the tube. The
associated boundary condition is u(R, t) = 0.

3.8.9 Tribology: thin film fluid flow

Thin fluid films are extremely important inside machinery to reduce
friction between gliding surfaces. The mathematical model for the fluid
motion takes the form of a diffusion problem and is quickly derived
here. We consider two solid surfaces whose distance is described by a
gap function h(x, y). The space between these surfaces is filled with a
fluid with dynamic viscosity µ. The fluid may move partially because of
pressure gradients and partially because the surfaces move. Let Ui+ V j
be the relative velocity of the two surfaces and p the pressure in the
fluid. The mathematical model builds on two principles: 1) conservation
of mass, 2) assumption of locally quasi-static flow between flat plates.

The conservation of mass equation reads ∇ · u, where u is the local
fluid velocity. For thin films the detailed variation between the surfaces
is not of interest, so ∇ · u = 0 is integrated (average) in the direction
perpendicular to the surfaces. This gives rise to the alternative mass
conservation equation

∇ · q = 0, q =
h(x,y)∫

0

udz,

where z is the coordinate perpendicular to the surfaces, and q is then
the volume flux in the fluid gap.

Locally, we may assume that we have steady flow between two flat
surfaces, with a pressure gradient and where the lower surface is at
rest and the upper moves with velocity Ui + V j. The corresponding
mathematical problem is actually the limit problem in Section 3.8.7 as
t → ∞. The limit problem can be solved analytically, and the local
volume flux becomes

q(x, y, z) =
h∫

0

u(x, y, z)dz = − h3

12µ∇p+ 1
2Uhi+ 1

2V hj .

The idea is to use this expression locally also when the surfaces are
not flat, but slowly varying, and if U , V , or p varies in time, provided
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the time variation is sufficiently slow. This is a common quasi-static
approximation much used in mathematical modeling.

Inserting the expression for q via p, U , and V in the equation ∇q = 0
gives a diffusion PDE for p:

∇ ·
(
h3

12µ∇p
)

= 1
2
∂

∂x
(hU) + 1

2
∂

∂x
(hV ) . (3.132)

The boundary conditions must involve p or q at the boundary.

3.8.10 Propagation of electrical signals in the brain

One can make a model of how electrical signals are propagated along
the neuronal fibers that receive synaptic inputs in the brain. The signal
propagation is one-dimensional and can, in the simplest cases, be governed
by the Cable equation:

cm
∂V

∂t
= 1
rl

∂2V

∂x2 −
1
rm
V (3.133)

where V (x, t) is the voltage to be determined, cm is capacitance of the
neuronal fiber, while rl and rm are measures of the resistance. The
boundary conditions are often taken as V = 0 at a short circuit or
open end, ∂V/∂x = 0 at a sealed end, or ∂V/∂x ∝ V where there is an
injection of current.

3.9 Exercises

Exercise 3.6: Stabilizing the Crank-Nicolson method by
Rannacher time stepping

It is well known that the Crank-Nicolson method may give rise to non-
physical oscillations in the solution of diffusion equations if the initial data
exhibit jumps (see Section 3.3.6). Rannacher [15] suggested a stabilizing
technique consisting of using the Backward Euler scheme for the first two
time steps with step length 1

2∆t. One can generalize this idea to taking
2m time steps of size 1

2∆t with the Backward Euler method and then
continuing with the Crank-Nicolson method, which is of second-order
in time. The idea is that the high frequencies of the initial solution
are quickly damped out, and the Backward Euler scheme treats these

http://en.wikipedia.org/wiki/Cable_equation
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high frequencies correctly. Thereafter, the high frequency content of the
solution is gone and the Crank-Nicolson method will do well.

Test this idea for m = 1, 2, 3 on a diffusion problem with a discontinu-
ous initial condition. Measure the convergence rate using the solution
(3.45) with the boundary conditions (3.46)-(3.47) for t values such that the
conditions are in the vicinity of ±1. For example, t < 5a1.6 · 10−2 makes
the solution diffusion from a step to almost a straight line. The program
diffu_erf_sol.py shows how to compute the analytical solution.

Project 3.7: Energy estimates for diffusion problems

This project concerns so-called energy estimates for diffusion problems
that can be used for qualitative analytical insight and for verification of
implementations.

a) We start with a 1D homogeneous diffusion equation with zero Dirichlet
conditions:

ut = αuxx,x ∈ Ω = (0, L), t ∈ (0, T ], (3.134)
u(0, t) = u(L, t) = 0, t ∈ (0, T ], (3.135)

u(x, 0) = I(x), x ∈ [0, L] . (3.136)

The energy estimate for this problem reads

||u||L2 ≤ ||I||L2 , (3.137)

where the || · ||L2 norm is defined by

||g||L2 =
√∫ L

0
g2dx . (3.138)

The quantify ||u||L2 or 1
2 ||u||L2 is known as the energy of the solution,

although it is not the physical energy of the system. A mathematical
tradition has introduced the notion energy in this context.

The estimate (3.137) says that the “size of u” never exceeds that of
the initial condition, or more precisely, it says that the area under the u
curve decreases with time.

To show (3.137), multiply the PDE by u and integrate from 0 to L.
Use that uut can be expressed as the time derivative of u2 and that uxxu
can integrated by parts to form an integrand u2

x. Show that the time
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derivative of ||u||2L2 must be less than or equal to zero. Integrate this
expression and derive (3.137).
b) Now we address a slightly different problem,

ut = αuxx+ f(x, t),x ∈ Ω = (0, L), t ∈ (0, T ], (3.139)
u(0, t) = u(L, t) = 0, t ∈ (0, T ], (3.140)

u(x, 0) = 0, x ∈ [0, L] . (3.141)

The associated energy estimate is

||u||L2 ≤ ||f ||L2 . (3.142)

(This result is more difficult to derive.)
Now consider the compound problem with an initial condition I(x)

and a right-hand side f(x, t):

ut = αuxx+ f(x, t),x ∈ Ω = (0, L), t ∈ (0, T ], (3.143)
u(0, t) = u(L, t) = 0, t ∈ (0, T ], (3.144)

u(x, 0) = I(x), x ∈ [0, L] . (3.145)

Show that if w1 fulfills (3.134)-(3.136) and w2 fulfills (3.139)-(3.141),
then u = w1 + w2 is the solution of (3.143)-(3.145). Using the triangle
inequality for norms,

||a+ b|| ≤ ||a||+ ||b||,

show that the energy estimate for (3.143)-(3.145) becomes

||u||L2 ≤ ||I||L2 + ||f ||L2 . (3.146)

c) One application of (3.146) is to prove uniqueness of the solution.
Suppose u1 and u2 both fulfill (3.143)-(3.145). Show that u = u1 − u2
then fulfills (3.143)-(3.145) with f = 0 and I = 0. Use (3.146) to deduce
that the energy must be zero for all times and therefore that u1 = u2,
which proves that the solution is unique.
d) Generalize (3.146) to a 2D/3D diffusion equation ut = ∇ · (α∇u) for
x ∈ Ω.
Hint. Use integration by parts in multi dimensions:



3.9 Exercises 379∫
Ω
u∇ · (α∇u) dx = −

∫
Ω
α∇u · ∇u dx+

∫
∂Ω
uα

∂u

∂n
,

where ∂u
∂n = n · ∇u, n being the outward unit normal to the boundary

∂Ω of the domain Ω.

e) Now we also consider the multi-dimensional PDE ut = ∇ · (α∇u).
Integrate both sides over Ω and use Gauss’ divergence theorem,

∫
Ω∇ ·

q dx =
∫
∂Ω q ·n ds for a vector field q. Show that if we have homogeneous

Neumann conditions on the boundary, ∂u/∂n = 0, area under the u
surface remains constant in time and∫

Ω
u dx =

∫
Ω
I dx . (3.147)

f) Establish a code in 1D, 2D, or 3D that can solve a diffusion equation
with a source term f , initial condition I, and zero Dirichlet or Neumann
conditions on the whole boundary.

We can use (3.146) and (3.147) as a partial verification of the code.
Choose some functions f and I and check that (3.146) is obeyed at any
time when zero Dirichlet conditions are used. Iterate over the same I
functions and check that (3.147) is fulfilled when using zero Neumann
conditions.

g) Make a list of some possible bugs in the code, such as indexing errors
in arrays, failure to set the correct boundary conditions, evaluation of
a term at a wrong time level, and similar. For each of the bugs, see if
the verification tests from the previous subexercise pass or fail. This
investigation shows how strong the energy estimates and the estimate
(3.147) are for pointing out errors in the implementation.
Filename: diffu_energy.

Exercise 3.8: Splitting methods and preconditioning

In Section 3.6.15, we outlined a class of iterative methods for Au = b
based on splitting A into A = M −N and introducing the iteration

Muk = Nuk + b .

The very simplest splitting is M = I, where I is the identity matrix.
Show that this choice corresponds to the iteration

uk = uk−1 + rk−1, rk−1 = b− Auk−1, (3.148)
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where rk−1 is the residual in the linear system in iteration k − 1. The
formula (3.148) is known as Richardson’s iteration. Show that if we
apply the simple iteration method (3.148) to the preconditioned system
M−1Au = M−1b, we arrive at the Jacobi method by choosing M = D
(the diagonal of A) as preconditioner and the SOR method by choosing
M = ω−1D+L (L being the lower triangular part of A). This equivalence
shows that we can apply one iteration of the Jacobi or SOR method as
preconditioner.

Problem 3.9: Oscillating surface temperature of the earth

Consider a day-and-night or seasonal variation in temperature at the
surface of the earth. How deep down in the ground will the surface
oscillations reach? For simplicity, we model only the vertical variation
along a coordinate x, where x = 0 at the surface, and x increases as
we go down in the ground. The temperature is governed by the heat
equation

%cv
∂T

∂t
= ∇ · (k∇T ),

in some spatial domain x ∈ [0, L], where L is chosen large enough such
that we can assume that T is approximately constant, independent of
the surface oscillations, for x > L. The parameters %, cv, and k are
the density, the specific heat capacity at constant volume, and the heat
conduction coefficient, respectively.

a) Derive the mathematical model for computing T (x, t). Assume the
surface oscillations to be sinusoidal around some mean temperature Tm.
Let T = Tm initially. At x = L, assume T ≈ Tm.

b) Scale the model in a) assuming k is constant. Use a time scale
tc = ω−1 and a length scale xc =

√
2α/ω, where α = k/(%cv). The

primary unknown can be scaled as T−Tm
2A .

Show that the scaled PDE is

∂u

∂t̄
= 1

2
∂2u

∂x2 ,

with initial condition u(x̄, 0) = 0, left boundary condition u(0, t̄) =
sin(t̄), and right boundary condition u(L̄, t̄) = 0. The bar indicates a
dimensionless quantity.
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Show that u(x̄, t̄) = e−x̄ sin(x̄− t̄) is a solution that fulfills the PDE and
the boundary condition at x̄ = 0 (this is the solution we will experience
as t̄→∞ and L→∞). Conclude that an appropriate domain for x is
[0, 4] if a damping e−4 ≈ 0.18 is appropriate for implementing ū ≈ const;
increasing to [0, 6] damps ū to 0.0025.
c) Compute the scaled temperature and make animations comparing
two solutions with L̄ = 4 and L̄ = 8, respectively (keep ∆x the same).

Problem 3.10: Oscillating and pulsating flow in tubes
We consider flow in a straight tube with radius R and straight walls. The
flow is driven by a pressure gradient β(t). The effect of gravity can be
neglected. The mathematical problem reads

%
∂u

∂t
= µ

1
r

∂

∂r

(
r
∂u

∂r

)
+ β(t), r ∈ [0, R], t ∈ (0, T ], (3.149)

u(r, 0) = I(r), r ∈ [0, R], (3.150)
u(R, t) = 0, t ∈ (0, T ], (3.151)
∂u

∂r
(0, t) = 0, t ∈ (0, T ]. (3.152)

We consider two models for β(t). One plain, sinusoidal oscillation:

β = A sin(ωt), (3.153)

and one with periodic pulses,

β = A sin16(ωt), (3.154)

Note that both models can be written as β = A sinm(ωt), with m = 1
and m = 16, respectively.
a) Scale the mathematical model, using the viscous time scale %R2/µ.
b) Implement the scaled model from a), using the unifying θ scheme in
time and centered differences in space.
c) Verify the implementation in b) using a manufactured solution that
is quadratic in r and linear in t. Make a corresponding test function.
Hint. You need to include an extra source term in the equation to allow
for such tests. Let the spatial variation be 1− r2 such that the boundary
condition is fulfilled.
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d) Make animations for m = 1, 16 and α = 1, 0.1. Choose T such that
the motion has reached a steady state (non-visible changes from period
to period in u).
e) For α� 1, the scaling in a) is not good, because the characteristic
time for changes (due to the pressure) is much smaller than the viscous
diffusion time scale (α becomes large). We should in this case base the
short time scale on 1/ω. Scale the model again, and make an animation
for m = 1, 16 and α = 10.
Filename: axisymm_flow.

Problem 3.11: Scaling a welding problem
Welding equipment makes a very localized heat source that moves in time.
We shall investigate the heating due to welding and choose, for maximum
simplicity, a one-dimensional heat equation with a fixed temperature
at the ends, and we neglect melting. We shall scale the problem, and
besides solving such a problem numerically, the aim is to investigate the
appropriateness of alternative scalings.

The governing PDE problem reads

%c
∂u

∂t
= k

∂2u

∂x2 + f,x ∈ (0, L), t ∈ (0, T ),

u(x, 0) = Us, x ∈ [0, L],
u(0, t) = u(L, t) = 0, t ∈ (0, T ].

Here, u is the temperature, % the density of the material, c a heat capacity,
k the heat conduction coefficient, f is the heat source from the welding
equipment, and Us is the initial constant (room) temperature in the
material.

A possible model for the heat source is a moving Gaussian function:

f = A exp
(
−1

2

(
x− vt
σ

)2
)
,

where A is the strength, σ is a parameter governing how peak-shaped (or
localized in space) the heat source is, and v is the velocity (in positive x
direction) of the source.
a) Let xc, tc, uc, and fc be scales, i.e., characteristic sizes, of x, t, u, and
f , respectively. The natural choice of xc and fc is L and A, since these
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make the scaled x and f in the interval [0, 1]. If each of the three terms
in the PDE are equally important, we can find tc and uc by demanding
that the coefficients in the scaled PDE are all equal to unity. Perform
this scaling. Use scaled quantities in the arguments for the exponential
function in f too and show that

f̄ = e−
1
2β

2(x̄−γt̄)2
,

where β and γ are dimensionless numbers. Give an interpretation of β
and γ.

b) Argue that for large γ we should base the time scale on the movement
of the heat source. Show that this gives rise to the scaled PDE

∂ū

∂t̄
= γ−1∂

2ū

∂x̄2 + f̄ ,

and

f̄ = exp (−1
2β

2(x̄− t̄)2) .

Discuss when the scalings in a) and b) are appropriate.

c) One aim with scaling is to get a solution that lies in the interval
[−1, 1]. This is not always the case when uc is based on a scale involving
a source term, as we do in a) and b). However, from the scaled PDE we
realize that if we replace f̄ with δf̄ , where δ is a dimensionless factor,
this corresponds to replacing uc by uc/δ. So, if we observe that ū ∼ 1/δ
in simulations, we can just replace f̄ by δf̄ in the scaled PDE.

Use this trick and implement the two scaled models. Reuse
software for the diffusion equation (e.g., the solver function in
diffu1D_vc.py). Make a function run(gamma, beta=10, delta=40,
scaling=1, animate=False) that runs the model with the given γ,
β, and δ parameters as well as an indicator scaling that is 1 for the
scaling in a) and 2 for the scaling in b). The last argument can be used
to turn screen animations on or off.

Experiments show that with γ = 1 and β = 10, δ = 20 is appropriate.
Then max |ū| will be larger than 4 for γ = 40, but that is acceptable.

Equip the run function with visualization, both animation of ū and f̄ ,
and plots with ū and f̄ for t = 0.2 and t = 0.5.

Hint. Since the amplitudes of ū and f̄ differs by a factor δ, it is attractive
to plot f̄/δ together with ū.
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d) Use the software in c) to investigate γ = 0.2, 1, 5, 40 for the two
scalings. Discuss the results.
Filename: welding.

Exercise 3.12: Implement a Forward Euler scheme for
axi-symmetric diffusion

Based on the discussion in Section 3.5.6, derive in detail the discrete
equations for a Forward Euler in time, centered in space, finite difference
method for axi-symmetric diffusion. The diffusion coefficient may be
a function of the radial coordinate. At the outer boundary r = R, we
may have either a Dirichlet or Robin condition. Implement this scheme.
Construct appropriate test problems.
Filename: FE_axisym.



Advection-dominated equations 4

Wave (Chapter 2) and diffusion (Chapter 3) equations are solved reliably
by finite difference methods. As soon as we add a first-order deriva-
tive in space, representing advective transport, also known as convective
transport, the numerics gets more complicated, and intuitively attractive
methods no longer work well. We shall show how and why such methods
fail and provide remedies. The present chapter builds on basic knowl-
edge about finite difference methods for diffusion and wave equations,
including the analysis by Fourier components, truncation error analysis
(Appendix B), and compact difference notation.

Remark on terminology

It is common to refer to movement of a fluid as convection, while
advection is the transport of some material dissolved or suspended
in the fluid. We shall mostly choose the word advection here, but
both terms are in heavy use, and for mass transport of a substance
the PDE has an advection term, while the similar term for the heat
equation is a convection term.

Much more comprehensive discussion of dispersion analysis for ad-
vection problems can be found in the book by Duran [3]. This is a an
excellent resource for further studies on the topic of advection PDEs,
with emphasis on generalizations to real geophysical problems. The book

© 2016, Hans Petter Langtangen, Svein Linge. Released under CC Attribution 4.0 license
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by Fletcher [4] also has a good overview of methods for advection and
convection problems.

4.1 One-dimensional time-dependent advection
equations

We consider the pure advection model

∂u

∂t
+ v

∂u

∂x
= 0, x ∈ (0, L), t ∈ (0, T ], (4.1)

u(x, 0) = I(x), x ∈ (0, L), (4.2)
u(0, t) = U0, t ∈ (0, T ]. (4.3)

In (4.1), v is a given parameter, typically reflecting the velocity of
transport of a quantity u with a flow. There is only one boundary
condition (4.2) since the spatial derivative is only first order in the PDE
(4.1). The information at x = 0 and the initial condition get transported
in the positive x direction if v > 0 through the domain.

It is easiest to find the solution of (4.1) if we remove the boundary
condition and consider a process on the infinite domain (−∞,∞). The
solution is simply

u(x, t) = I(x− vt) . (4.4)

This is also the solution we expect locally in a finite domain before
boundary conditions have reflected or modified the wave.

A particular feature of the solution (4.4) is that

u(xi, tn+1) = u(xi−1, tn), (4.5)

if xi = i∆x and tn = n∆t are points in a uniform mesh. We see this
relation from

u(i∆x, (n+1)∆t) = I(i∆x−v(n+1)∆t) = I((i−1)∆x−vn∆t−v∆t−∆x) = I((i−1)∆x−vn∆t) = u((i−1)∆x, n∆t),

provided v = ∆x/∆t. So, whenever we see a scheme that collapses to

un+1
i = uni−1, (4.6)
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for the PDE in question, we have in fact a scheme that reproduces the
analytical solution, and many of the schemes to be presented possess
this nice property!

Finally, we add that a discussion of appropriate boundary conditions
for the advection PDE in multiple dimensions is a challenching topic
beyond the scope of this text.

4.1.1 Simplest scheme: forward in time, centered in space

Method. A first attempt to solve a PDE like (4.1) will normally be
to look for a time-discretization scheme that is explicit so we avoid
solving systems of linear equations. In space, we anticipate that centered
differences are most accurate and therefore best. These two arguments
lead us to a Forward Euler scheme in time and centered differences in
space:

[D+
t u+ vD2xu = 0]ni (4.7)

Written out, we see that this expression reads

un+1 = un − 1
2C(uni+1 − uni−1),

with C as the Courant number

C = v∆t

∆x
.

Implementation. A solver function for our scheme goes as follows.

import numpy as np
import matplotlib.pyplot as plt

def solver_FECS(I, U0, v, L, dt, C, T, user_action=None):
Nt = int(round(T/float(dt)))
t = np.linspace(0, Nt*dt, Nt+1) # Mesh points in time
dx = v*dt/C
Nx = int(round(L/dx))
x = np.linspace(0, L, Nx+1) # Mesh points in space
# Make sure dx and dt are compatible with x and t
dx = x[1] - x[0]
dt = t[1] - t[0]
C = v*dt/dx

u = np.zeros(Nx+1)
u_n = np.zeros(Nx+1)
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# Set initial condition u(x,0) = I(x)
for i in range(0, Nx+1):

u_n[i] = I(x[i])

if user_action is not None:
user_action(u_n, x, t, 0)

for n in range(0, Nt):
# Compute u at inner mesh points
for i in range(1, Nx):

u[i] = u_n[i] - 0.5*C*(u_n[i+1] - u_n[i-1])

# Insert boundary condition
u[0] = U0

if user_action is not None:
user_action(u, x, t, n+1)

# Switch variables before next step
u_n, u = u, u_n

Test cases. The typical solution u has the shape of I and is transported
at velocity v to the right (if v > 0). Let us consider two different
initial conditions, one smooth (Gaussian pulse) and one non-smooth
(half-truncated cosine pulse):

u(x, 0) = Ae−
1
2 ( x−L/10

σ )2

, (4.8)

u(x, 0) = A cos
(5π
L

(
x− L

10

))
, x <

L

5 else 0 . (4.9)

The parameter A is the maximum value of the initial condition.
Before doing numerical simulations, we scale the PDE problem and

introduce x̄ = x/L and t̄ = vt/L, which gives

∂ū

∂t̄
+ ∂ū

∂x̄
= 0 .

The unknown u is scaled by the maximum value of the initial condition:
ū = u/max |I(x)| such that |ū(x̄, 0)| ∈ [0, 1]. The scaled problem is
solved by setting v = 1, L = 1, and A = 1. From now on we drop the
bars.

To run our test cases and plot the solution, we make the function

def run_FECS(case):
"""Special function for the FECS case."""
if case == ’gaussian’:

def I(x):
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return np.exp(-0.5*((x-L/10)/sigma)**2)
elif case == ’cosinehat’:

def I(x):
return np.cos(np.pi*5/L*(x - L/10)) if x < L/5 else 0

L = 1.0
sigma = 0.02
legends = []

def plot(u, x, t, n):
"""Animate and plot every m steps in the same figure."""
plt.figure(1)
if n == 0:

lines = plot(x, u)
else:

lines[0].set_ydata(u)
plt.draw()
#plt.savefig()

plt.figure(2)
m = 40
if n % m != 0:

return
print ’t=%g, n=%d, u in [%g, %g] w/%d points’ % \

(t[n], n, u.min(), u.max(), x.size)
if np.abs(u).max() > 3: # Instability?

return
plt.plot(x, u)
legends.append(’t=%g’ % t[n])
if n > 0:

plt.hold(’on’)

plt.ion()
U0 = 0
dt = 0.001
C = 1
T = 1
solver(I=I, U0=U0, v=1.0, L=L, dt=dt, C=C, T=T,

user_action=plot)
plt.legend(legends, loc=’lower left’)
plt.savefig(’tmp.png’); plt.savefig(’tmp.pdf’)
plt.axis([0, L, -0.75, 1.1])
plt.show()

Bug? Running either of the test cases, the plot becomes a mess, and
the printout of u values in the plot function reveals that u grows very
quickly. We may reduce ∆t and make it very small, yet the solution just
grows. Such behavior points to a bug in the code. However, choosing a
coarse mesh and performing a time step by hand calculations produce
the same numbers as in the code, so it seems that the implementation is
correct. The hypothesis is therefore that the solution is unstable.
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4.1.2 Analysis of the scheme

It is easy to show that a typical Fourier component

u(x, t) = B sin(k(x− ct))

is a solution of our PDE for any spatial wave length λ = 2π/k and
any amplitude B. (Since the PDE to be investigated by this method is
homogeneous and linear, B will always cancel out, so we tend to skip
this amplitude, but keep it here in the beginning for completeness.)

A general solution can be thought to be build of a collection of long and
short waves with different amplitudes. Algebraically, the work simplifies
if we introduce the complex Fourier component

u(x, t) = Ane e
ikx,

with

Ae = Be−ikv∆t = BeiCkx .

Note that |Ae| ≤ 1.
It turns out that many schemes also allow a Fourier wave component

as solution, and we can use the numerically computed values of Ae
(denoted A) to learn about the quality of the scheme. Hence, to analyze
the difference scheme we just have implemented, we look at how it treats
the Fourier component

unq = Aneikq∆x .

Inserting the numerical component in the scheme,

[D+
t A

neikq∆x + vD2xA
neikq∆x]ni ,

and making use of (A.25) results in

[eikq∆x(A− 1
∆t

+ v
1
∆x

i sin(k∆x))]ni ,

which implies

A = 1− iC sin(k∆x) .

The numerical solution features the formula An. To find out whether An
means growth in time, we rewrite A in polar form: A = Are

iφ, for real
numbers Ar and φ, since we then have An = Anr e

iφn. The magnitude of



4.1 One-dimensional time-dependent advection equations 391

An is Anr . In our case, Ar = (1 +C2 sin2(kx))1/2 > 1, so Anr will increase
in time, whereas the exact solution will not. Regardless of ∆t, we get
unstable numerical solutions.

4.1.3 Leapfrog in time, centered differences in space

Method. Another explicit scheme is to do a “leapfrog” jump over 2∆t
in time and combine it with central differences in space:

[D2tu+ vD2xu = 0]ni ,

which results in the updating formula

un+1
i = un−1

i − C2(uni+1 − uni−1) .

A special scheme is needed to compute u1, but we leave that problem
for now.

Implementation. We now need to work with three time levels and must
modify our solver a bit:

Nt = int(round(T/float(dt)))
t = np.linspace(0, Nt*dt, Nt+1) # Mesh points in time
...
u = np.zeros(Nx+1)
u_1 = np.zeros(Nx+1)
u_2 = np.zeros(Nx+1)
...
for n in range(0, Nt):

if scheme == ’UP’:
for i in range(1, Nx):

u[i] = u_1[i] - 0.5*C*(u_1[i+1] - u_1[i-1])
elif scheme == ’LF’:

if n == 0:
# Use some scheme for the first step
for i in range(1, Nx):

...
else:

for i in range(1, Nx+1):
u[i] = u_2[i] - C*(u_1[i] - u_1[i-1])

# Switch variables before next step
u_2, u_1, u = u_1, u, u_2

Running a test case. Let us try a coarse mesh such that the smooth
Gaussian initial condition is represented by 1 at mesh node 1 and 0 at all
other nodes. This triangular initial condition should then be advected to
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the right. Choosing scaled variables as ∆t = 0.1, T = 1, and C = 1 gives
the plot in Figure 4.1, which is in fact identical to the exact solution (!).
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Fig. 4.1 Exact solution obtained by Leapfrog scheme with ∆t = 0.1 and C = 1.

Running more test cases. We can run two types of initial conditions
for C = 0.8: one very smooth with a Gaussian function (Figure 4.4) and
one with a discontinuity in the first derivative (Figure 4.5). Unless we
have a very fine mesh, as in the left plots in the figures, we get small
ripples behind the main wave, and this main wave has the amplitude
reduced.
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Fig. 4.2 Advection of a Gaussian function with a leapfrog scheme and C = 0.8,∆t = 0.001
(left) and ∆t = 0.01 (right).
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Movie 4: Advection of a Gaussian function with a leapfrog scheme and C =
0.8, ∆t = 0.01. https://raw.githubusercontent.com/hplgit/fdm-book/master/
doc/.src/book/mov-advec/gaussian/LF/C08_dt01.ogg

Movie 5: Advection of a Gaussian function with a leapfrog scheme and C = 0.8,
∆t = 0.001. https://raw.githubusercontent.com/hplgit/fdm-book/master/
doc/.src/book/mov-advec/gaussian/LF/C08_dt001.ogg
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Fig. 4.3 Advection of half a cosine function with a leapfrog scheme and C = 0.8,
∆t = 0.001 (left) and ∆t = 0.01 (right).

Movie 6: Advection of half a cosine function with a leapfrog scheme and C =
0.8, ∆t = 0.01. https://raw.githubusercontent.com/hplgit/fdm-book/master/
doc/.src/book/mov-advec/cosinehat/UP/C08_dt01.ogg

Movie 7: Advection of half a cosine function with a leapfrog scheme and C = 0.8,
∆t = 0.001. https://raw.githubusercontent.com/hplgit/fdm-book/master/
doc/.src/book/mov-advec/cosinehat/UP/C08_dt001.ogg

Analysis. We can perform a Fourier analysis again. Inserting the numer-
ical Fourier component in the Leapfrog scheme, we get

A2 − i2C sin(k∆x)A− 1 = 0,

and

A = −iC sin(k∆x)±
√

1− C2 sin2(k∆x) .

Rewriting to polar form, A = Are
iφ, we see that Ar = 1, so the numerical

component is neither increasing nor decreasing in time, which is exactly
what we want. However, for C > 1, the square root can become complex
valued, so stability is obtained only as long as C ≤ 1.

https://raw.githubusercontent.com/hplgit/fdm-book/master/doc/.src/book/mov-advec/gaussian/LF/C08_dt01.ogg
https://raw.githubusercontent.com/hplgit/fdm-book/master/doc/.src/book/mov-advec/gaussian/LF/C08_dt01.ogg
https://raw.githubusercontent.com/hplgit/fdm-book/master/doc/.src/book/mov-advec/gaussian/LF/C08_dt001.ogg
https://raw.githubusercontent.com/hplgit/fdm-book/master/doc/.src/book/mov-advec/gaussian/LF/C08_dt001.ogg
https://raw.githubusercontent.com/hplgit/fdm-book/master/doc/.src/book/mov-advec/cosinehat/UP/C08_dt01.ogg
https://raw.githubusercontent.com/hplgit/fdm-book/master/doc/.src/book/mov-advec/cosinehat/UP/C08_dt01.ogg
https://raw.githubusercontent.com/hplgit/fdm-book/master/doc/.src/book/mov-advec/cosinehat/UP/C08_dt001.ogg
https://raw.githubusercontent.com/hplgit/fdm-book/master/doc/.src/book/mov-advec/cosinehat/UP/C08_dt001.ogg
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Stability

For all the working schemes to be presented in this chapter, we get
the stability condition C ≤ 1:

∆t ≤ ∆x

v
.

This is called the CFL condition and applies almost always to
successful schemes for advection problems. Of course, one can use
Crank-Nicolson or Backward Euler schemes for increased and even
unconditional stability (no ∆t restrictions), but these have other
less desired damping problems.

We introduce p = k∆x. The amplification factor now reads

A = −iC sin p±
√

1− C2 sin2 p,

and is to be compared to the exact amplification factor

Ae = e−ikv∆t = e−ikC∆x = e−iCp .

Section 4.1.9 compares numerical amplification factors of many schemes
with the exact expression.

4.1.4 Upwind differences in space
Since the PDE reflects transport of information along with a flow in
positive x direction, when v > 0, it could be natural to go (what is
called) upstream and not downstream in a spatial derivative to collect
information about the change of the function. That is, we approximate

∂u

∂x
(xi, tn) ≈ [D−x u]ni = uni − uni−1

∆x
.

This is called an upwind difference (the corresponding difference in the
time direction would be called a backward difference, and we could use
that name in space too, but upwind is the common name for a difference
against the flow in advection problems). This spatial approximation does
magic compared to the scheme we had with Forward Euler in time and
centered difference in space. With an upwind difference,

[D+
t u+ vD−x u = 0]ni , (4.10)
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written out as

un+1 = uni − C(uni − uni−1),

gives a generally popular and robust scheme that is stable if C ≤ 1. As
with the Leapfrog scheme, it becomes exact if C = 1, exactly as shown
in Figure 4.1. This is easy to see since C = 1 gives the property (4.6).
However, any C < 1 gives a significant reduction in the amplitude of
the solution, which is a purely numerical effect, see Figures 4.4 and 4.5.
Experiments show, however, that reducing ∆t or ∆x, while keeping C
reduces the error.
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Fig. 4.4 Advection of a Gaussian function with a forward in time, upwind in space
scheme and C = 0.8, ∆t = 0.001 (left) and ∆t = 0.01 (right).

Movie 8: Forward in time, upwind in space, C = 0.8, ∆t = 0.01.
https://raw.githubusercontent.com/hplgit/fdm-book/master/doc/.src/
book/mov-advec/gaussian/UP/C08_dt001/movie.ogg

Movie 9: Forward in time, upwind in space, C = 0.8, ∆t = 0.005.
https://raw.githubusercontent.com/hplgit/fdm-book/master/doc/.src/
book/mov-advec/gaussian/UP/C08_dt001/movie.ogg

Movie 10: Advection of half a cosine function with a forward in time, upwind in space
scheme and C = 0.8, ∆t = 0.01. https://raw.githubusercontent.com/hplgit/
fdm-book/master/doc/.src/book/mov-advec/cosinehat/UP/C08_dt01.ogg

Movie 11: Advection of half a cosine function with a forward in time, upwind in space
scheme and C = 0.8, ∆t = 0.001. https://raw.githubusercontent.com/hplgit/
fdm-book/master/doc/.src/book/mov-advec/cosinehat/UP/C08_dt001.ogg

The amplification factor can be computed using the formula (A.23),

A− 1
∆t

+ v

∆x
(1− e−ik∆x) = 0,

which means

https://raw.githubusercontent.com/hplgit/fdm-book/master/doc/.src/book/mov-advec/gaussian/UP/C08_dt001/movie.ogg
https://raw.githubusercontent.com/hplgit/fdm-book/master/doc/.src/book/mov-advec/gaussian/UP/C08_dt001/movie.ogg
https://raw.githubusercontent.com/hplgit/fdm-book/master/doc/.src/book/mov-advec/gaussian/UP/C08_dt001/movie.ogg
https://raw.githubusercontent.com/hplgit/fdm-book/master/doc/.src/book/mov-advec/gaussian/UP/C08_dt001/movie.ogg
https://raw.githubusercontent.com/hplgit/fdm-book/master/doc/.src/book/mov-advec/cosinehat/UP/C08_dt01.ogg
https://raw.githubusercontent.com/hplgit/fdm-book/master/doc/.src/book/mov-advec/cosinehat/UP/C08_dt01.ogg
https://raw.githubusercontent.com/hplgit/fdm-book/master/doc/.src/book/mov-advec/cosinehat/UP/C08_dt001.ogg
https://raw.githubusercontent.com/hplgit/fdm-book/master/doc/.src/book/mov-advec/cosinehat/UP/C08_dt001.ogg
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Fig. 4.5 Advection of half a cosine function with a forward in time, upwind in space
scheme and C = 0.8, ∆t = 0.01 (left) and ∆t = 0.001 (right).

A = 1− C(1− cos(p)− i sin(p)) .

For C < 1 there is, unfortunately, non-physical damping of discrete
Fourier components, giving rise to reduced amplitude of uni as in Fig-
ures 4.4 and 4.5. The damping is this figure is seen to be quite severe.
Stability requires C ≤ 1.

Interpretation of upwind difference as artificial diffusion

One can interpret the upwind difference as extra, artificial diffusion
in the equation. Solving

∂u

∂t
+ v

∂u

∂x
= ν

∂2u

∂x2 ,

by a forward difference in time and centered differences in space,

D+
t u+ vD2xu = νDxDxu]ni ,

gives actually the upwind scheme (4.10) if ν = v∆x/2. That is,
solving the PDE ut + vux = 0 by centered differences in space
and forward difference in time is unsuccessful, but by adding some
artificial diffusion νuxx, the method becomes stable:

∂u

∂t
+ v

∂u

∂x
=
(
α + v∆x

2

)
∂2u

∂x2 .
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4.1.5 Periodic boundary conditions

So far, we have given the value on the left boundary, un0 , and used the
scheme to propagate the solution signal through the domain. Often, we
want to follow such signals for long time series, and periodic boundary
conditions are then relevant since they enable a signal that leaves the
right boundary to immediately enter the left boundary and propagate
through the domain again.

The periodic boundary condition is

u(0, t) = u(L, t), un0 = unNx .

It means that we in the first equation, involving un0 , insert unNx , and that
we in the last equation, involving un+1

Nx
insert un+1

0 . Normally, we can
do this in the simple way that u_1[0] is updated as u_1[Nx] at the
beginning of a new time level.

In some schemes we may need unNx+1 and un−1. Periodicity then means
that these values are equal to un1 and unNx−1, respectively. For the upwind
scheme it is sufficient to set u_1[0]=u_1[Nx] at a new time level before
computing u[1], which ensures that u[1] becomes right and at the next
time level u[0] at the current time level is correctly updated. For the
Leapfrog scheme we must update u[0] and u[Nx] using the scheme:

if periodic_bc:
i = 0
u[i] = u_2[i] - C*(u_1[i+1] - u_1[Nx-1])

for i in range(1, Nx):
u[i] = u_2[i] - C*(u_1[i+1] - u_1[i-1])

if periodic_bc:
u[Nx] = u[0]

4.1.6 Implementation

Test condition. Analytically, we can show that the integral in space
under the u(x, t) curve is constant:
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0

(
∂u

∂t
+ v

∂u

∂x

)
dx = 0

∂

∂t

∫ L

0
udx = −

∫ L

0
v
∂u

∂x
dx

∂u

∂t

∫ L

0
udx = [vu]L0 = 0

as long as u(0) = u(L) = 0. We can therefore use the property∫ L

0
u(x, t)dx = const

as a partial verification during the simulation. Now, any numerical method
with C 6= 1 will deviate from the constant, expected value, so the integral
is a measure of the error in the scheme. The integral can be computed
by the Trapezoidal integration rule

dx*(0.5*u[0] + 0.5*u[Nx] + np.sum(u[1:-1]))

if u is an array holding the solution.

The code. An appropriate solver function for multiple schemes may
go as shown below.

def solver(I, U0, v, L, dt, C, T, user_action=None,
scheme=’FE’, periodic_bc=True):

Nt = int(round(T/float(dt)))
t = np.linspace(0, Nt*dt, Nt+1) # Mesh points in time
dx = v*dt/C
Nx = int(round(L/dx))
x = np.linspace(0, L, Nx+1) # Mesh points in space
# Make sure dx and dt are compatible with x and t
dx = x[1] - x[0]
dt = t[1] - t[0]
C = v*dt/dx
print ’dt=%g, dx=%g, Nx=%d, C=%g’ % (dt, dx, Nx, C)

u = np.zeros(Nx+1)
u_n = np.zeros(Nx+1)
u_nm1 = np.zeros(Nx+1)
integral = np.zeros(Nt+1)

# Set initial condition u(x,0) = I(x)
for i in range(0, Nx+1):

u_n[i] = I(x[i])

# Insert boundary condition
u[0] = U0
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# Compute the integral under the curve
integral[0] = dx*(0.5*u_n[0] + 0.5*u_n[Nx] + np.sum(u_n[1:-1]))

if user_action is not None:
user_action(u_n, x, t, 0)

for n in range(0, Nt):
if scheme == ’FE’:

if periodic_bc:
i = 0
u[i] = u_n[i] - 0.5*C*(u_n[i+1] - u_n[Nx])
u[Nx] = u[0]

for i in range(1, Nx):
u[i] = u_n[i] - 0.5*C*(u_n[i+1] - u_n[i-1])

elif scheme == ’LF’:
if n == 0:

# Use upwind for first step
if periodic_bc:

i = 0
u_n[i] = u_n[Nx]

for i in range(1, Nx+1):
u[i] = u_n[i] - C*(u_n[i] - u_n[i-1])

else:
if periodic_bc:

i = 0
u[i] = u_nm1[i] - C*(u_n[i+1] - u_n[Nx-1])

for i in range(1, Nx):
u[i] = u_nm1[i] - C*(u_n[i+1] - u_n[i-1])

if periodic_bc:
u[Nx] = u[0]

elif scheme == ’UP’:
if periodic_bc:

u_n[0] = u_n[Nx]
for i in range(1, Nx+1):

u[i] = u_n[i] - C*(u_n[i] - u_n[i-1])
else:

raise ValueError(’scheme="%s" not implemented’ % scheme)

if not periodic_bc:
# Insert boundary condition
u[0] = U0

# Compute the integral under the curve
integral[n+1] = dx*(0.5*u[0] + 0.5*u[Nx] + np.sum(u[1:-1]))

if user_action is not None:
user_action(u, x, t, n+1)

# Switch variables before next step
u_nm1, u_n, u = u_n, u, u_nm1

return integral
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Solving a specific problem. We need to call up the solver function
in some kind of administering problem solving function that can solve
specific problems and make appropriate visualization. The function below
makes both static plots, screen animation, and hard copy videos in various
formats.

def run(scheme=’UP’, case=’gaussian’, C=1, dt=0.01):
"""General admin routine for explicit and implicit solvers."""

if case == ’gaussian’:
def I(x):

return np.exp(-0.5*((x-L/10)/sigma)**2)
elif case == ’cosinehat’:

def I(x):
return np.cos(np.pi*5/L*(x - L/10)) if x < L/5 else 0

L = 1.0
sigma = 0.02
global lines # needs to be saved between calls to plot

def plot(u, x, t, n):
"""Plot t=0 and t=0.6 in the same figure."""
plt.figure(1)
global lines
if n == 0:

lines = plt.plot(x, u)
plt.axis([x[0], x[-1], -0.5, 1.5])
plt.xlabel(’x’); plt.ylabel(’u’)
plt.axes().set_aspect(0.15)
plt.savefig(’tmp_%04d.png’ % n)
plt.savefig(’tmp_%04d.pdf’ % n)

else:
lines[0].set_ydata(u)
plt.axis([x[0], x[-1], -0.5, 1.5])
plt.title(’C=%g, dt=%g, dx=%g’ %

(C, t[1]-t[0], x[1]-x[0]))
plt.legend([’t=%.3f’ % t[n]])
plt.xlabel(’x’); plt.ylabel(’u’)
plt.draw()
plt.savefig(’tmp_%04d.png’ % n)

plt.figure(2)
eps = 1E-14
if abs(t[n] - 0.6) > eps and abs(t[n] - 0) > eps:

return
print ’t=%g, n=%d, u in [%g, %g] w/%d points’ % \

(t[n], n, u.min(), u.max(), x.size)
if np.abs(u).max() > 3: # Instability?

return
plt.plot(x, u)
plt.hold(’on’)
plt.draw()
if n > 0:
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y = [I(x_-v*t[n]) for x_ in x]
plt.plot(x, y, ’k--’)
if abs(t[n] - 0.6) < eps:

filename = (’tmp_%s_dt%s_C%s’ % \
(scheme, t[1]-t[0], C)).replace(’.’, ’’)

np.savez(filename, x=x, u=u, u_e=y)

plt.ion()
U0 = 0
T = 0.7
v = 1
# Define video formats and libraries
codecs = dict(flv=’flv’, mp4=’libx264’, webm=’libvpx’,

ogg=’libtheora’)
# Remove video files
import glob, os
for name in glob.glob(’tmp_*.png’):

os.remove(name)
for ext in codecs:

name = ’movie.%s’ % ext
if os.path.isfile(name):

os.remove(name)

integral = solver(
I=I, U0=U0, v=v, L=L, dt=dt, C=C, T=T,
scheme=scheme, user_action=plot)

# Finish up figure(2)
plt.figure(2)
plt.axis([0, L, -0.5, 1.1])
plt.xlabel(’$x$’); plt.ylabel(’$u$’)
plt.savefig(’tmp1.png’); plt.savefig(’tmp1.pdf’)
plt.show()
# Make videos from figure(1) animation files
for codec in codecs:

cmd = ’ffmpeg -i tmp_%%04d.png -r 25 -vcodec %s movie.%s’ % \
(codecs[codec], codec)

os.system(cmd)
print ’Integral of u:’, integral.max(), integral.min()

The complete code is found in the file advec1D.py.

4.1.7 A Crank-Nicolson discretization in time and centered
differences in space

Another obvious candidate for time discretization is the Crank-Nicolson
method combined with centered differences in space:

[Dtu]ni + v
1
2([D2xu]n+1

i + [D2xu]ni ) = 0 .

It can be nice to include the Backward Euler scheme too, via the θ-rule,

http://tinyurl.com/nu656p2/advec/advec/advec1D.py
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[Dtu]ni + vθ[D2xu]n+1
i + v(1− θ)[D2xu]ni = 0 .

This gives rise to an implicit scheme,

un+1
i + θ

2C(un+1
i+1 − un+1

i−1 ) = uni −
1− θ

2 C(uni+1 − uni−1)

for i = 1, . . . , Nx−1. At the boundaries we set u = 0 and simulate just to
the point of time when the signal hits the boundary (and gets reflected).

un+1
0 = un+1

Nx
= 0 .

The elements on the diagonal in the matrix become:

Ai,i = 1, i = 0, . . . , Nx .

On the subdiagonal and superdiagonal we have

Ai−1,i = −θ2C, Ai+1,i = θ

2C, i = 1, . . . , Nx − 1,

with A0,1 = 0 and ANx−1,Nx = 0 due to the known boundary conditions.
And finally, the right-hand side becomes

b0 = unNx

bi = uni −
1− θ

2 C(uni+1 − uni−1), i = 1, . . . , Nx − 1

bNx = un0

The dispersion relation follows from inserting uni = Aneikx and using
the formula (A.25) for the spatial differences:

A = 1− (1− θ)iC sin p
1 + θiC sin p .

Movie 12: Crank-Nicolson in time, centered in space, C = 0.8, ∆t = 0.005.
https://raw.githubusercontent.com/hplgit/fdm-book/master/doc/.src/
book/mov-advec/gaussian/CN/C08_dt0005/movie.ogg

Movie 13: Backward-Euler in time, centered in space, C = 0.8, ∆t = 0.005.
https://raw.githubusercontent.com/hplgit/fdm-book/master/doc/.src/
book/mov-advec/cosinehat/BE/C_08_dt005.ogg

Figure 4.6 depicts a numerical solution for C = 0.8 and the Crank-
Nicolson with severe oscillations behind the main wave. These oscillations

https://raw.githubusercontent.com/hplgit/fdm-book/master/doc/.src/book/mov-advec/gaussian/CN/C08_dt0005/movie.ogg
https://raw.githubusercontent.com/hplgit/fdm-book/master/doc/.src/book/mov-advec/gaussian/CN/C08_dt0005/movie.ogg
https://raw.githubusercontent.com/hplgit/fdm-book/master/doc/.src/book/mov-advec/cosinehat/BE/C_08_dt005.ogg
https://raw.githubusercontent.com/hplgit/fdm-book/master/doc/.src/book/mov-advec/cosinehat/BE/C_08_dt005.ogg
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Fig. 4.6 Crank-Nicolson in time, centered in space, Gaussian profile, C = 0.8, ∆t = 0.01
(left) and ∆t = 0.005 (right).
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Fig. 4.7 Backward-Euler in time, centered in space, half a cosine profile, C = 0.8,
∆t = 0.01 (left) and ∆t = 0.005 (right).

are damped as the mesh is refined. Switching to the Backward Euler
scheme helps on the oscillations as they are removed, but the amplitude is
significantly reduced. One could expect that the discontinuous derivative
in the initial condition of the half a cosine wave would make even stronger
demands on producing a smooth profile, but Figure 4.7 shows that also
here, Backward-Euler is capable of producing a smooth profile. All in
all, there are no major differences between the Gaussian initial condition
and the half a cosine condition for any of the schemes.

4.1.8 The Lax-Wendroff method

The Lax-Wendroff method is based on three ideas:

1. Express the new unknown un+1
i in terms of known quantities at t = tn

by means of a Taylor polynomial of second degree.
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2. Replace time-derivatives at t = tn by spatial derivatives, using the
PDE.

3. Discretize the spatial derivatives by second-order differences so we
achieve a scheme of accuracy O(∆t2) +O(∆x2).

Let us follow the recipe. First we have the three-term Taylor polynomial,

un+1
i = uni +∆t

(
∂u

∂t

)n
i

+ 1
2∆t

2
(
∂2u

∂t2

)n
i

.

From the PDE we have that temporal derivatives can be substituted by
spatial derivatives:

∂u

∂t
= −v∂u

∂x
,

and furthermore,

∂2u

∂t2
= v2∂

2u

∂x2 .

Inserted in the Taylor polynomial formula, we get

un+1
i = uni − v∆t

(
∂u

∂x

)n
i

+ 1
2∆t

2v2
(
∂2u

∂x2

)n
i

.

To obtain second-order accuracy in space we now use central differences:

un+1
i = uni − v∆t[D2xu]ni + 1

2∆t
2v2[DxDxu]ni ,

or written out,

un+1
i = uni −

1
2C(uni+1 − uni−1) + 1

2C
2(uni+1 − 2uni + uni−1) .

This is the explicit Lax-Wendroff scheme.

Lax-Wendroff works because of artificial viscosity

We can immediately from the formulas above see that the Lax-
Wendroff method is nothing but a Forward Euler, central difference
in space scheme, which we have shown to be useless because of
chronic instability, plus an artificial diffusion term of strength 1

2∆tv
2.
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It means that we can take an unstable scheme and add some
diffusion to stabilize it. This is a common trick to deal with advection
problems. Sometimes, the real physical diffusion is not sufficiently
large to make schemes stable, so then we also add artificial diffusion.

From an analysis similar to the ones carried out above, we get an
amplification factor for the Lax-Wendroff method that equals

A = 1− iC sin p− 2C2 sin2(p/2) .

This means that |A| = 1 and also that we have an exact solution of
C = 1!

4.1.9 Analysis of dispersion relations

We have developed expressions for A(C, p) in the exact solution unq =
Aneikq∆x of the discrete equations. These expressions are valuable
for investigating the quality of the numerical solutions, see the file
dispersion_analysis.py. Note that the Fourier component that solves
the original PDE problem has no damping and moves with constant
velocity v. There are two basic errors in the numerical Fourier component:
there may be damping and the wave velocity may depend on C and
p = k∆x.

The shortest wavelength that can be represented is λ = 2∆x. The
corresponding k is k = 2π/λ = π/∆x, so p = k∆x ∈ (0, π].

Given a complex A as a function of C and p, how can we visualize it?
The two key ingredients in A is the magnitude, reflecting damping or
growth of the wave, and the angle, closely related to the velocity of the
wave. The Fourier component

Dneik(x−ct)

has damping D and wave velocity c. Let us express our A in polar
form, A = Are

iφ, and insert this expression in our discrete component
unq = Aneikq∆x = Aneikx:

unq = Anr e
iφneikx = Anr e

i(kx−nφ) = Anr e
i(k(x−ct)),

for

http://tinyurl.com/nu656p2/advec/advec/dispersion_analysis.py
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c = φ

k∆t
.

Now,

k∆t = Ck∆x

v
= Cp

v
,

so

c = φv

Cp
.

An appropriate dimensionless quantity to plot is the scaled wave velocity
c/v:

c

v
= φ

Cp
.

Figures 4.8–4.13 contain dispersion curves, velocity and damping,
for various values of C. The horizontal axis shows the dimensionless
frequency p of the wave, while the figures to the left illustrate the error
in wave velocity c/v (should ideally be 1 for all p), and the figures to the
right display the absolute value (magnitude) of the damping factor Ar.
The curves are labeled according to the table below.

Label Method
FE Forward Euler in time, centered difference in space
LF Leapfrog in time, centered difference in space
UP Forward Euler in time, upwind difference in space
CN Crank-Nicolson in time, centered difference in space
LW Lax-Wendroff’s method
BE Backward Euler in time, centered difference in space
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Fig. 4.8 Dispersion relations for C = 1.
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Fig. 4.9 Dispersion relations for C = 1.
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Fig. 4.10 Dispersion relations for C = 0.8.
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Fig. 4.11 Dispersion relations for C = 0.8.

The total damping after some time T = n∆t is reflected by Ar(C, p)n.
Since normally Ar < 1, the damping goes like A1/∆t

r and approaches zero
as ∆t→ 0. The only two ways to reduce the damping are to increase C
and the mesh resolution.
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Fig. 4.12 Dispersion relations for C = 0.5.
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Fig. 4.13 Dispersion relations for C = 0.5.

We can learn a lot from the dispersion relation plots. For example,
looking at the plots for C = 1, the schemes LW, UP, and LF has no
amplitude reduction, but LF has a wrong phase velocity for the shortest
wave in the mesh. This wave does not (normally) have enough amplitude
to be seen, so for all practical purposes, there is no damping or wrong
velocity of the individual waves, so the total shape of the wave is also
correct. For the CN scheme, see Figure 4.6, each individual wave has its
amplitude, but they move with different velocities, so after a while, we see
some of these waves lagging behind. For the BE scheme, see Figure 4.7,
all the shorter waves are so heavily dampened that we cannot see them
after a while. We see only the longest waves, which have slightly wrong
velocity, but visible amplitudes are sufficiently equal to produce what
looks like a smooth profile.

Another feature was that the Leapfrog method produced oscillations,
while the upwind scheme did not. Since the Leapfrog method does not
dampen the shorter waves, which have wrong wave velocities of order 10
percent, we can see these waves as noise. The upwind scheme, however,
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dampens these waves. The same effect is also present in the Lax-Wendroff
scheme, but the damping of the intermediate waves is hardly present, so
there is visible noise in the total signal.

We realize that there is more understanding of the behavior of the
schemes in the dispersion analysis compared with a pure truncation
error analysis. The latter just says Lax-Wendroff is better than upwind,
because of the increased order in time, but most people would say upwind
is the better by looking at the plots.

4.2 One-dimensional stationary advection-diffusion
equation

Now we pay attention to a physical process where advection (or convec-
tion) is in balance with diffusion:

v
du

dx
= α

d2u

dx2 . (4.11)

For simplicity, we assume v and α to be constant, but the extension to
the variable-coefficient case is trivial. This equation can be viewed as the
stationary limit of the corresponding time-dependent problem

∂u

∂t
+ v

∂u

∂x
= α

∂2u

∂x2 . (4.12)

Equations of the form (4.11) or (4.12) arise from transport phenomena,
either mass or heat transport. One can also view the equations as a simple
model problem for the Navier-Stokes equations. With the chosen bound-
ary conditions, the differential equation problem models the phenomenon
of a boundary layer, where the solution changes rapidly very close to
the boundary. This is a characteristic of many fluid flow problems and
make strong demands to numerical methods. The fundamental numerical
difficulty is related to non-physical oscillations of the solution (instability)
if the first-derivative spatial term dominates over the second-derivative
term.
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4.2.1 A simple model problem
We consider (4.11) on [0, L] equipped with the boundary conditions u(0) =
U0, u(L) = UL. By scaling we can reduce the number of parameters in
the problem. We scale x by x̄ = x/L, and u by

ū = u− u0

uL − u0
.

Inserted in the governing equation we get

v(uL − u0)
L

dū

dx̄
= α(uL − u0)

L2
d2ū

dx̄2 , ū(0) = 0, ū(1) = 1 .

Dropping the bars is common. We can then simplify to

du

dx
= ε

d2u

dx2 , u(0) = 0, u(1) = 1 . (4.13)

There are two competing effects in this equation: the advection term
transports signals to the right, while the diffusion term transports signals
to the left and the right. The value u(0) = 0 is transported through the
domain if ε is small, and u ≈ 0 except in the vicinity of x = 1, where
u(1) = 1 and the diffusion transports some information about u(1) = 1 to
the left. For large ε, diffusion dominates and the u takes on the “average”
value, i.e., u gets a linear variation from 0 to 1 throughout the domain.

It turns out that we can find an exact solution to the differential
equation problem and also to many of its discretizations. This is one
reason why this model problem has been so successful in designing and
investigating numerical methods for mixed convection/advection and
diffusion. The exact solution reads

ue(x) = ex/ε − 1
e1/ε − 1 .

The forthcoming plots illustrates this function for various values of ε.

4.2.2 A centered finite difference scheme
The most obvious idea to solve (4.13) is to apply centered differences:

[D2xu = εDxDxu]i
for i = 1, . . . , Nx − 1, with u0 = 0 and uNx = 1. Note that this is a
coupled system of algebraic equations involving u0, . . . , uNx .
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Written out, the scheme becomes a tridiagonal system

Ai−1,iui−1 + Ai,iui + Ai+1.iui+1 = 0,

for i = 1, . . . , Nx − 1

A0,0 = 1,

Ai−1,i = − 1
∆x
− ε 1

∆x2 ,

Ai,i = 2ε 1
∆x2 ,

Ai,i+1 = 1
∆x
− ε 1

∆x2 ,

ANx,Nx = 1 .

The right-hand side of the linear system is zero except bNx = 1.
Figure 4.14 shows reasonably accurate results with Nx = 20 and

Nx = 40 cells in x direction and a value of ε = 0.1. Decreasing ε
to 0.01 leads to oscillatory solutions as depicted in Figure 4.15. This
is, unfortunately, a typical phenomenon in this type of problem: non-
physical oscillations arise for small ε unless the resolution Nx is big
enough. Exercise 4.1 develops a precise criterion: u is oscillation-free if

∆x ≤ 2
ε
.

If we take the present model as a simplified model for a viscous boundary
layer in real, industrial fluid flow applications, ε ∼ 10−6 and millions of
cells are required to resolve the boundary layer. Fortunately, this is not
strictly necessary as we have methods in the next section to overcome
the problem!

Solver
A suitable solver for doing the experiments is presented below.

import numpy as np

def solver(eps, Nx, method=’centered’):
"""
Solver for the two point boundary value problem u’=eps*u’’,
u(0)=0, u(1)=1.
"""



412 4 Advection-dominated equations

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.2

0.4

0.6

0.8

1.0

u

centered difference scheme, ε=0.1

Nx =20

exact

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.2

0.4

0.6

0.8

1.0

u

centered difference scheme, ε=0.1

Nx =40

exact

Fig. 4.14 Comparison of exact and numerical solution for ε = 0.1 and Nx = 20, 40 with
centered differences.
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Fig. 4.15 Comparison of exact and numerical solution for ε = 0.01 and Nx = 20, 40 with
centered differences.

x = np.linspace(0, 1, Nx+1) # Mesh points in space
# Make sure dx and dt are compatible with x and t
dx = x[1] - x[0]
u = np.zeros(Nx+1)

# Representation of sparse matrix and right-hand side
diagonal = np.zeros(Nx+1)
lower = np.zeros(Nx)
upper = np.zeros(Nx)
b = np.zeros(Nx+1)

# Precompute sparse matrix (scipy format)
if method == ’centered’:

diagonal[:] = 2*eps/dx**2
lower[:] = -1/dx - eps/dx**2
upper[:] = 1/dx - eps/dx**2

elif method == ’upwind’:
diagonal[:] = 1/dx + 2*eps/dx**2
lower[:] = 1/dx - eps/dx**2
upper[:] = - eps/dx**2
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# Insert boundary conditions
upper[0] = 0
lower[-1] = 0
diagonal[0] = diagonal[-1] = 1
b[-1] = 1.0

# Set up sparse matrix and solve
diags = [0, -1, 1]
import scipy.sparse
import scipy.sparse.linalg
A = scipy.sparse.diags(

diagonals=[diagonal, lower, upper],
offsets=[0, -1, 1], shape=(Nx+1, Nx+1),
format=’csr’)

u[:] = scipy.sparse.linalg.spsolve(A, b)
return u, x

4.2.3 Remedy: upwind finite difference scheme

The scheme can be stabilized by letting the advective transport term,
which is the dominating term, collect its information in the flow direction,
i.e., upstream or upwind of the point in question. So, instead of using a
centered difference

du

dx i
≈ ui+1 − ui−1

2∆x ,

we use the one-sided upwind difference

du

dx i
≈ ui − ui−1

2∆x ,

in case v > 0. For v < 0 we set

du

dx i
≈ ui+1 − ui

2∆x ,

On compact operator notation form, our upwind scheme can be expressed
as

[D−x u = εDxDxu]i
provided v > 0 (and ε > 0).
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We write out the equations and implement them as shown in the
program in Section 4.2.2. The results appear in Figures 4.16 and 4.17:
no more oscillations!
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Fig. 4.16 Comparison of exact and numerical solution for ε = 0.1 and Nx = 20, 40 with
upwind difference.
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Fig. 4.17 Comparison of exact and numerical solution for ε = 0.01 and Nx = 20, 40 with
upwind difference.

We see that the upwind scheme is always stable, but it gives a thicker
boundary layer when the centered scheme is also stable. Why the upwind
scheme is always stable is easy to understand as soon as we undertake
the mathematical analysis in Exercise 4.1. Moreover, the thicker layer
(seemingly larger diffusion) can be understood by doing Exercise 4.2.

Exact solution for this model problem
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It turns out that one can introduce a linear combination of the
centered and upwind differences for the first-derivative term in
this model problem. One can then adjust the weight in the linear
combination so that the numerical solution becomes identical to
the analytical solution of the differential equation problem at any
mesh point.

4.3 Time-dependent convection-diffusion equations

Now it is time to combine time-dependency, convection (advection) and
diffusion into one equation:

∂u

∂t
+ v

∂u

∂x
= α

∂2u

∂x2 . (4.14)

Analytical insight. The diffusion is now dominated by convection, a
wave, and diffusion, a loss of amplitude. One possible analytical solution
is a traveling Gaussian function

u(x, t) = B exp
(
−
(
x− vt

4at

))
.

This function moves with velocity v > 0 to the right (v < 0 to the left)
due to convection, but at the same time we have a damping e−16a2t2 from
diffusion.

4.3.1 Forward in time, centered in space scheme

The Forward Euler for the diffusion equation is a successful scheme, but it
has a very strict stability condition. The similar Forward in time, centered
in space strategy always gives unstable solutions for the advection PDE.
What happens when we have both diffusion and advection present at
once?

[Dtu+ vD2xu = αDxDxu+ f ]ni .

We expect that diffusion will stabilize the scheme, but that advection
will destabilize it.
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Another problem is non-physical oscillations, but not growing am-
plitudes, due to centered differences in the advection term. There will
hence be two types of instabilities to consider. Our analysis showed that
pure advection with centered differences in space needs some artificial
diffusion to become stable (and then it produces upwind differences for
the advection term). Adding more physical diffusion should further help
the numerics to stabilize the non-physical oscillations.

The scheme is quickly implemented, but suffers from the need for small
space and time steps, according to this reasoning. A better approach is
to get rid of the non-physical oscillations in space by simply applying an
upwind difference on the advection term.

4.3.2 Forward in time, upwind in space scheme

A good approximation for the pure advection equation is to use upwind
discretization of the advection term. We also know that centered dif-
ferences are good for the diffusion term, so let us combine these two
discretizations:

[Dtu+ vD−x u = αDxDxu+ f ]ni , (4.15)

for v > 0. Use vD+u if v < 0. In this case the physical diffusion and
the extra numerical diffusion v∆x/2 will stabilize the solution, but give
an overall too large reduction in amplitude compared with the exact
solution.

We may also interpret the upwind difference as artificial numerical
diffusion and centered differences in space everywhere, so the scheme can
be expressed as

[Dtu+ vD−2xu = α
v∆x

2 )DxDxu+ f ]ni . (4.16)

4.4 Two-dimensional advection-diffusion equations

4.5 Applications of advection equations

There are two major areas where advection and convection applications
arise: transport of a substance and heat transport in a fluid. To derive
the models, we may look at the similar derivations of diffusion models
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in Section 3.8, but change the assumption from a solid to fluid medium.
This gives rise to the extra advection or convection term v · ∇u. We
briefly show how this is done.

Normally, transport in a fluid is dominated by the fluid flow and not
diffusion, so we can neglect diffusion compared to advection or convection.
The end result is anyway an equation of the form

∂u

∂t
+ v · ∇u = 0 .

4.5.1 Transport of a substance

The diffusion of a substance in Section 3.8.1 takes place in a solid medium,
but in a fluid we can have two transport mechanisms: one by diffusion
and one by advection. The latter arises from the fact that the substance
particles are moved with the fluid velocity v such that the effective flux
now consists of two and not only one component as in (3.122):

q = −α∇c+ v .̧

Inserted in the equation ∇ · q = 0 we get the extra advection term
∇· (v)̧. Very often we deal with incompressible flows, ∇·v = 0 such that
the advective term becomes v · ∇c. The mass transport equation for a
substance then reads

∂c

∂t
+ v · ∇c = α∇2c . (4.17)

4.5.2 Transport of a heat

The derivation of the heat equation in Section 3.8.2 is limited to heat
transport in solid bodies. If we turn the attention to heat transport in
fluids, we get a material derivative of the internal energy in (3.124),

De

dt
= −∇ · q,

and more terms if work by stresses is also included, where

De

dt
= ∂e

∂t
+ v · ∇e,
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v being the velocity of the fluid. The convective term v ·∇e must therefore
be added to the governing equation, resulting typically in

%c

(
∂T

∂t
+ v · ∇T

)
= ∇ · (k∇T ) + f, (4.18)

where f is some external heating inside the medium.

4.6 Exercises

Exercise 4.1: Analyze 1D stationary convection-diffusion
problem

Explain the observations in the numerical experiments from Sections 4.2.2
and 4.2.3 by finding exact numerical solutions.

Hint. The difference equations allow solutions on the form Ai, where A
is an unknown constant and i is a mesh point counter. There are two
solutions for A, so the general solution is a linear combination of the two,
where the constants in the linear combination are determined from the
boundary conditions.
Filename: twopt_BVP_analysis1.

Exercise 4.2: Interpret upwind difference as artificial diffusion

Consider an upwind, one-sided difference approximation to a term du/dx
in a differential equation. Show that this formula can be expressed as a cen-
tered difference plus an artificial diffusion term of strength proportional to
∆x. This means that introducing an upwind difference also means intro-
ducing extra diffusion of order O(∆x). Filename: twopt_BVP_analysis2.
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5.1 Introduction of basic concepts

5.1.1 Linear versus nonlinear equations

Algebraic equations. A linear, scalar, algebraic equation in x has the
form

ax+ b = 0,

for arbitrary real constants a and b. The unknown is a number x. All
other algebraic equations, e.g., x2 +ax+ b = 0, are nonlinear. The typical
feature in a nonlinear algebraic equation is that the unknown appears in
products with itself, like x2 or ex = 1 + x+ 1

2x
2 + 1

3!x
3 + · · · .

We know how to solve a linear algebraic equation, x = −b/a, but
there are no general methods for finding the exact solutions of nonlinear
algebraic equations, except for very special cases (quadratic equations
constitute a primary example). A nonlinear algebraic equation may
have no solution, one solution, or many solutions. The tools for solving
nonlinear algebraic equations are iterative methods, where we construct a
series of linear equations, which we know how to solve, and hope that the
solutions of the linear equations converge to a solution of the nonlinear
equation we want to solve. Typical methods for nonlinear algebraic
equation equations are Newton’s method, the Bisection method, and the
Secant method.

© 2016, Hans Petter Langtangen, Svein Linge. Released under CC Attribution 4.0 license
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Differential equations. The unknown in a differential equation is a
function and not a number. In a linear differential equation, all terms
involving the unknown function are linear in the unknown function or its
derivatives. Linear here means that the unknown function, or a derivative
of it, is multiplied by a number or a known function. All other differential
equations are non-linear.

The easiest way to see if an equation is nonlinear, is to spot nonlinear
terms where the unknown function or its derivatives are multiplied by
each other. For example, in

u′(t) = −a(t)u(t) + b(t),

the terms involving the unknown function u are linear: u′ contains the
derivative of the unknown function multiplied by unity, and au contains
the unknown function multiplied by a known function. However,

u′(t) = u(t)(1− u(t)),

is nonlinear because of the term −u2 where the unknown function is
multiplied by itself. Also

∂u

∂t
+ u

∂u

∂x
= 0,

is nonlinear because of the term uux where the unknown function appears
in a product with its derivative. (Note here that we use different notations
for derivatives: u′ or du/dt for a function u(t) of one variable, ∂u∂t or ut
for a function of more than one variable.)

Another example of a nonlinear equation is

u′′ + sin(u) = 0,

because sin(u) contains products of u, which becomes clear if we expand
the function in a Taylor series:

sin(u) = u− 1
3u

3 + . . .

Mathematical proof of linearity
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To really prove mathematically that some differential equation in an
unknown u is linear, show for each term T (u) that with u = au1+bu2
for constants a and b,

T (au1 + bu2) = aT (u1) + bT (u2) .

For example, the term T (u) = (sin2 t)u′(t) is linear because

T (au1 + bu2) = (sin2 t)(au1(t) + bu2(t))
= a(sin2 t)u1(t) + b(sin2 t)u2(t)
= aT (u1) + bT (u2) .

However, T (u) = sin u is nonlinear because

T (au1 + bu2) = sin(au1 + bu2) 6= a sin u1 + b sin u2 .

5.1.2 A simple model problem

A series of forthcoming examples will explain how to tackle nonlinear
differential equations with various techniques. We start with the (scaled)
logistic equation as model problem:

u′(t) = u(t)(1− u(t)) . (5.1)

This is a nonlinear ordinary differential equation (ODE) which will be
solved by different strategies in the following. Depending on the chosen
time discretization of (5.1), the mathematical problem to be solved at
every time level will either be a linear algebraic equation or a nonlinear
algebraic equation. In the former case, the time discretization method
transforms the nonlinear ODE into linear subproblems at each time
level, and the solution is straightforward to find since linear algebraic
equations are easy to solve. However, when the time discretization leads
to nonlinear algebraic equations, we cannot (except in very rare cases)
solve these without turning to approximate, iterative solution methods.

The next subsections introduce various methods for solving nonlinear
differential equations, using (5.1) as model. We shall go through the
following set of cases:
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• explicit time discretization methods (with no need to solve nonlinear
algebraic equations)

• implicit Backward Euler time discretization, leading to nonlinear
algebraic equations solved by
– an exact analytical technique
– Picard iteration based on manual linearization
– a single Picard step
– Newton’s method

• implicit Crank-Nicolson time discretization and linearization via a
geometric mean formula

Thereafter, we compare the performance of the various approaches. De-
spite the simplicity of (5.1), the conclusions reveal typical features of the
various methods in much more complicated nonlinear PDE problems.

5.1.3 Linearization by explicit time discretization

Time discretization methods are divided into explicit and implicit meth-
ods. Explicit methods lead to a closed-form formula for finding new
values of the unknowns, while implicit methods give a linear or nonlinear
system of equations that couples (all) the unknowns at a new time level.
Here we shall demonstrate that explicit methods constitute an efficient
way to deal with nonlinear differential equations.

The Forward Euler method is an explicit method. When applied to
(5.1), sampled at t = tn, it results in

un+1 − un

∆t
= un(1− un),

which is a linear algebraic equation for the unknown value un+1 that we
can easily solve:

un+1 = un +∆tun(1− un) .

The nonlinearity in the original equation poses in this case no difficulty
in the discrete algebraic equation. Any other explicit scheme in time will
also give only linear algebraic equations to solve. For example, a typical
2nd-order Runge-Kutta method for (5.1) leads to the following formulas:
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u∗ = un +∆tun(1− un),

un+1 = un +∆t
1
2 (un(1− un) + u∗(1− u∗))) .

The first step is linear in the unknown u∗. Then u∗ is known in the next
step, which is linear in the unknown un+1 .

5.1.4 Exact solution of nonlinear algebraic equations

Switching to a Backward Euler scheme for (5.1),

un − un−1

∆t
= un(1− un), (5.2)

results in a nonlinear algebraic equation for the unknown value un. The
equation is of quadratic type:

∆t(un)2 + (1−∆t)un − un−1 = 0,

and may be solved exactly by the well-known formula for such equations.
Before we do so, however, we will introduce a shorter, and often cleaner,
notation for nonlinear algebraic equations at a given time level. The
notation is inspired by the natural notation (i.e., variable names) used
in a program, especially in more advanced partial differential equation
problems. The unknown in the algebraic equation is denoted by u, while
u(1) is the value of the unknown at the previous time level (in general, u(`)

is the value of the unknown ` levels back in time). The notation will be
frequently used in later sections. What is meant by u should be evident
from the context: u may be 1) the exact solution of the ODE/PDE
problem, 2) the numerical approximation to the exact solution, or 3) the
unknown solution at a certain time level.

The quadratic equation for the unknown un in (5.2) can, with the new
notation, be written

F (u) = ∆tu2 + (1−∆t)u− u(1) = 0 . (5.3)

The solution is readily found to be

u = 1
2∆t

(
−1 +∆t±

√
(1−∆t)2 − 4∆tu(1)

)
. (5.4)

Now we encounter a fundamental challenge with nonlinear algebraic
equations: the equation may have more than one solution. How do we
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pick the right solution? This is in general a hard problem. In the present
simple case, however, we can analyze the roots mathematically and
provide an answer. The idea is to expand the roots in a series in ∆t
and truncate after the linear term since the Backward Euler scheme will
introduce an error proportional to ∆t anyway. Using sympy we find the
following Taylor series expansions of the roots:

>>> import sympy as sym
>>> dt, u_1, u = sym.symbols(’dt u_1 u’)
>>> r1, r2 = sym.solve(dt*u**2 + (1-dt)*u - u_1, u) # find roots
>>> r1
(dt - sqrt(dt**2 + 4*dt*u_1 - 2*dt + 1) - 1)/(2*dt)
>>> r2
(dt + sqrt(dt**2 + 4*dt*u_1 - 2*dt + 1) - 1)/(2*dt)
>>> print r1.series(dt, 0, 2) # 2 terms in dt, around dt=0
-1/dt + 1 - u_1 + dt*(u_1**2 - u_1) + O(dt**2)
>>> print r2.series(dt, 0, 2)
u_1 + dt*(-u_1**2 + u_1) + O(dt**2)

We see that the r1 root, corresponding to a minus sign in front of the
square root in (5.4), behaves as 1/∆t and will therefore blow up as
∆t→ 0! Since we know that u takes on finite values, actually it is less
than or equal to 1, only the r2 root is of relevance in this case: as ∆t→ 0,
u→ u(1), which is the expected result.

For those who are not well experienced with approximating mathemat-
ical formulas by series expansion, an alternative method of investigation
is simply to compute the limits of the two roots as ∆t→ 0 and see if a
limit unreasonable:

>>> print r1.limit(dt, 0)
-oo
>>> print r2.limit(dt, 0)
u_1

5.1.5 Linearization

When the time integration of an ODE results in a nonlinear algebraic
equation, we must normally find its solution by defining a sequence of
linear equations and hope that the solutions of these linear equations con-
verge to the desired solution of the nonlinear algebraic equation. Usually,
this means solving the linear equation repeatedly in an iterative fashion.
Alternatively, the nonlinear equation can sometimes be approximated by
one linear equation, and consequently there is no need for iteration.
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Constructing a linear equation from a nonlinear one requires lineariza-
tion of each nonlinear term. This can be done manually as in Picard
iteration, or fully algorithmically as in Newton’s method. Examples will
best illustrate how to linearize nonlinear problems.

5.1.6 Picard iteration
Let us write (5.3) in a more compact form

F (u) = au2 + bu+ c = 0,

with a = ∆t, b = 1 − ∆t, and c = −u(1). Let u− be an available
approximation of the unknown u. Then we can linearize the term u2

simply by writing u−u. The resulting equation, F̂ (u) = 0, is now linear
and hence easy to solve:

F (u) ≈ F̂ (u) = au−u+ bu+ c = 0 .

Since the equation F̂ = 0 is only approximate, the solution u does not
equal the exact solution ue of the exact equation F (ue) = 0, but we can
hope that u is closer to ue than u− is, and hence it makes sense to repeat
the procedure, i.e., set u− = u and solve F̂ (u) = 0 again. There is no
guarantee that u is closer to ue than u−, but this approach has proven
to be effective in a wide range of applications.

The idea of turning a nonlinear equation into a linear one by using an
approximation u− of u in nonlinear terms is a widely used approach that
goes under many names: fixed-point iteration, the method of successive
substitutions, nonlinear Richardson iteration, and Picard iteration. We
will stick to the latter name.

Picard iteration for solving the nonlinear equation arising from the
Backward Euler discretization of the logistic equation can be written as

u = − c

au− + b
, u− ← u .

The ← symbols means assignment (we set u− equal to the value of u).
The iteration is started with the value of the unknown at the previous
time level: u− = u(1).

Some prefer an explicit iteration counter as superscript in the mathe-
matical notation. Let uk be the computed approximation to the solution
in iteration k. In iteration k + 1 we want to solve
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aukuk+1 + buk+1 + c = 0 ⇒ uk+1 = − c

auk + b
, k = 0, 1, . . .

Since we need to perform the iteration at every time level, the time level
counter is often also included:

aun,kun,k+1+bun,k+1−un−1 = 0 ⇒ un,k+1 = un

aun,k + b
, k = 0, 1, . . . ,

with the start value un,0 = un−1 and the final converged value un = un,k

for sufficiently large k.
However, we will normally apply a mathematical notation in our final

formulas that is as close as possible to what we aim to write in a computer
code and then it becomes natural to use u and u− instead of uk+1 and
uk or un,k+1 and un,k.

Stopping criteria. The iteration method can typically be terminated
when the change in the solution is smaller than a tolerance εu:

|u− u−| ≤ εu,

or when the residual in the equation is sufficiently small (< εr),

|F (u)| = |au2 + bu+ c| < εr .

A single Picard iteration. Instead of iterating until a stopping criterion
is fulfilled, one may iterate a specific number of times. Just one Picard
iteration is popular as this corresponds to the intuitive idea of approx-
imating a nonlinear term like (un)2 by un−1un. This follows from the
linearization u−un and the initial choice of u− = un−1 at time level tn. In
other words, a single Picard iteration corresponds to using the solution
at the previous time level to linearize nonlinear terms. The resulting
discretization becomes (using proper values for a, b, and c)

un − un−1

∆t
= un(1− un−1), (5.5)

which is a linear algebraic equation in the unknown un, making it easy
to solve for un without any need for any alternative notation.

We shall later refer to the strategy of taking one Picard step, or
equivalently, linearizing terms with use of the solution at the previous
time step, as the Picard1 method. It is a widely used approach in science
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and technology, but with some limitations if ∆t is not sufficiently small
(as will be illustrated later).

Notice
Equation (5.5) does not correspond to a “pure” finite difference
method where the equation is sampled at a point and derivatives
replaced by differences (because the un−1 term on the right-hand
side must then be un). The best interpretation of the scheme (5.5)
is a Backward Euler difference combined with a single (perhaps
insufficient) Picard iteration at each time level, with the value at
the previous time level as start for the Picard iteration.

5.1.7 Linearization by a geometric mean

We consider now a Crank-Nicolson discretization of (5.1). This means
that the time derivative is approximated by a centered difference,

[Dtu = u(1− u)]n+ 1
2 ,

written out as

un+1 − un

∆t
= un+ 1

2 − (un+ 1
2 )2 . (5.6)

The term un+ 1
2 is normally approximated by an arithmetic mean,

un+ 1
2 ≈ 1

2(un + un+1),

such that the scheme involves the unknown function only at the time
levels where we actually compute it. The same arithmetic mean applied
to the nonlinear term gives

(un+ 1
2 )2 ≈ 1

4(un + un+1)2,

which is nonlinear in the unknown un+1. However, using a geometric
mean for (un+ 1

2 )2 is a way of linearizing the nonlinear term in (5.6):

(un+ 1
2 )2 ≈ unun+1 .
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Using an arithmetic mean on the linear un+ 1
2 term in (5.6) and a geometric

mean for the second term, results in a linearized equation for the unknown
un+1:

un+1 − un

∆t
= 1

2(un + un+1) + unun+1,

which can readily be solved:

un+1 =
1 + 1

2∆t

1 +∆tun − 1
2∆t

un .

This scheme can be coded directly, and since there is no nonlinear
algebraic equation to iterate over, we skip the simplified notation with u
for un+1 and u(1) for un. The technique with using a geometric average
is an example of transforming a nonlinear algebraic equation to a linear
one, without any need for iterations.

The geometric mean approximation is often very effective for lineariz-
ing quadratic nonlinearities. Both the arithmetic and geometric mean
approximations have truncation errors of order ∆t2 and are therefore
compatible with the truncation error O(∆t2) of the centered difference
approximation for u′ in the Crank-Nicolson method.

Applying the operator notation for the means and finite differences,
the linearized Crank-Nicolson scheme for the logistic equation can be
compactly expressed as

[Dtu = ut + u2t,g]n+ 1
2 .

Remark
If we use an arithmetic instead of a geometric mean for the nonlinear
term in (5.6), we end up with a nonlinear term (un+1)2. This term
can be linearized as u−un+1 in a Picard iteration approach and in
particular as unun+1 in a Picard1 iteration approach. The latter
gives a scheme almost identical to the one arising from a geometric
mean (the difference in un+1 being 1

4∆tu
n(un+1 − un) ≈ 1

4∆t
2u′u,

i.e., a difference of size ∆t2).
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5.1.8 Newton’s method

The Backward Euler scheme (5.2) for the logistic equation leads to a
nonlinear algebraic equation (5.3). Now we write any nonlinear algebraic
equation in the general and compact form

F (u) = 0 .

Newton’s method linearizes this equation by approximating F (u) by its
Taylor series expansion around a computed value u− and keeping only
the linear part:

F (u) = F (u−) + F ′(u−)(u− u−) + 1
2F
′′(u−)(u− u−)2 + · · ·

≈ F (u−) + F ′(u−)(u− u−) = F̂ (u) .

The linear equation F̂ (u) = 0 has the solution

u = u− − F (u−)
F ′(u−) .

Expressed with an iteration index in the unknown, Newton’s method
takes on the more familiar mathematical form

uk+1 = uk − F (uk)
F ′(uk) , k = 0, 1, . . .

It can be shown that the error in iteration k + 1 of Newton’s method
is proportional to the square of the error in iteration k, a result referred
to as quadratic convergence. This means that for small errors the method
converges very fast, and in particular much faster than Picard iteration
and other iteration methods. (The proof of this result is found in most
textbooks on numerical analysis.) However, the quadratic convergence
appears only if uk is sufficiently close to the solution. Further away from
the solution the method can easily converge very slowly or diverge. The
reader is encouraged to do Exercise 5.3 to get a better understanding for
the behavior of the method.

Application of Newton’s method to the logistic equation discretized
by the Backward Euler method is straightforward as we have

F (u) = au2 + bu+ c, a = ∆t, b = 1−∆t, c = −u(1),

and then
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F ′(u) = 2au+ b .

The iteration method becomes

u = u− + a(u−)2 + bu− + c

2au− + b
, u− ← u . (5.7)

At each time level, we start the iteration by setting u− = u(1). Stopping
criteria as listed for the Picard iteration can be used also for Newton’s
method.

An alternative mathematical form, where we write out a, b, and c, and
use a time level counter n and an iteration counter k, takes the form

un,k+1 = un,k + ∆t(un,k)2 + (1−∆t)un,k − un−1

2∆tun,k + 1−∆t , un,0 = un−1, (5.8)

for k = 0, 1, . . .. A program implementation is much closer to (5.7) than
to (5.8), but the latter is better aligned with the established mathematical
notation used in the literature.

5.1.9 Relaxation

One iteration in Newton’s method or Picard iteration consists of solving a
linear problem F̂ (u) = 0. Sometimes convergence problems arise because
the new solution u of F̂ (u) = 0 is “too far away” from the previously
computed solution u−. A remedy is to introduce a relaxation, meaning
that we first solve F̂ (u∗) = 0 for a suggested value u∗ and then we take u
as a weighted mean of what we had, u−, and what our linearized equation
F̂ = 0 suggests, u∗:

u = ωu∗ + (1− ω)u− .

The parameter ω is known as a relaxation parameter, and a choice ω < 1
may prevent divergent iterations.

Relaxation in Newton’s method can be directly incorporated in the
basic iteration formula:

u = u− − ω F (u−)
F ′(u−) . (5.9)
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5.1.10 Implementation and experiments
The program logistic.py contains implementations of all the methods
described above. Below is an extract of the file showing how the Picard and
Newton methods are implemented for a Backward Euler discretization
of the logistic equation.

def BE_logistic(u0, dt, Nt, choice=’Picard’,
eps_r=1E-3, omega=1, max_iter=1000):

if choice == ’Picard1’:
choice = ’Picard’
max_iter = 1

u = np.zeros(Nt+1)
iterations = []
u[0] = u0
for n in range(1, Nt+1):

a = dt
b = 1 - dt
c = -u[n-1]

if choice == ’Picard’:

def F(u):
return a*u**2 + b*u + c

u_ = u[n-1]
k = 0
while abs(F(u_)) > eps_r and k < max_iter:

u_ = omega*(-c/(a*u_ + b)) + (1-omega)*u_
k += 1

u[n] = u_
iterations.append(k)

elif choice == ’Newton’:

def F(u):
return a*u**2 + b*u + c

def dF(u):
return 2*a*u + b

u_ = u[n-1]
k = 0
while abs(F(u_)) > eps_r and k < max_iter:

u_ = u_ - F(u_)/dF(u_)
k += 1

u[n] = u_
iterations.append(k)

return u, iterations

The Crank-Nicolson method utilizing a linearization based on the
geometric mean gives a simpler algorithm:

http://tinyurl.com/nu656p2/nonlin/logistic.py
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def CN_logistic(u0, dt, Nt):
u = np.zeros(Nt+1)
u[0] = u0
for n in range(0, Nt):

u[n+1] = (1 + 0.5*dt)/(1 + dt*u[n] - 0.5*dt)*u[n]
return u

Wemay run experiments with the model problem (5.1) and the different
strategies for dealing with nonlinearities as described above. For a quite
coarse time resolution, ∆t = 0.9, use of a tolerance εr = 0.1 in the
stopping criterion introduces an iteration error, especially in the Picard
iterations, that is visibly much larger than the time discretization error
due to a large ∆t. This is illustrated by comparing the upper two plots in
Figure 5.1. The one to the right has a stricter tolerance ε = 10−3, which
leads to all the curves corresponding to Picard and Newton iteration to
be on top of each other (and no changes can be visually observed by
reducing εr further). The reason why Newton’s method does much better
than Picard iteration in the upper left plot is that Newton’s method
with one step comes far below the εr tolerance, while the Picard iteration
needs on average 7 iterations to bring the residual down to εr = 10−1,
which gives insufficient accuracy in the solution of the nonlinear equation.
It is obvious that the Picard1 method gives significant errors in addition
to the time discretization unless the time step is as small as in the lower
right plot.

The BE exact curve corresponds to using the exact solution of the
quadratic equation at each time level, so this curve is only affected by the
Backward Euler time discretization. The CN gm curve corresponds to the
theoretically more accurate Crank-Nicolson discretization, combined with
a geometric mean for linearization. This curve appears more accurate,
especially if we take the plot in the lower right with a small ∆t and an
appropriately small εr value as the exact curve.

When it comes to the need for iterations, Figure 5.2 displays the
number of iterations required at each time level for Newton’s method
and Picard iteration. The smaller ∆t is, the better starting value we
have for the iteration, and the faster the convergence is. With ∆t = 0.9
Picard iteration requires on average 32 iterations per time step, but this
number is dramatically reduced as ∆t is reduced.

However, introducing relaxation and a parameter ω = 0.8 immediately
reduces the average of 32 to 7, indicating that for the large ∆t = 0.9,
Picard iteration takes too long steps. An approximately optimal value for
ω in this case is 0.5, which results in an average of only 2 iterations! An
even more dramatic impact of ω appears when ∆t = 1: Picard iteration
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does not convergence in 1000 iterations, but ω = 0.5 again brings the
average number of iterations down to 2.
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Fig. 5.1 Impact of solution strategy and time step length on the solution.

Remark. The simple Crank-Nicolson method with a geometric mean for
the quadratic nonlinearity gives visually more accurate solutions than
the Backward Euler discretization. Even with a tolerance of εr = 10−3,
all the methods for treating the nonlinearities in the Backward Euler
discretization give graphs that cannot be distinguished. So for accuracy
in this problem, the time discretization is much more crucial than εr.
Ideally, one should estimate the error in the time discretization, as the
solution progresses, and set εr accordingly.

5.1.11 Generalization to a general nonlinear ODE

Let us see how the various methods in the previous sections can be
applied to the more generic model
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Fig. 5.2 Comparison of the number of iterations at various time levels for Picard and
Newton iteration.

u′ = f(u, t), (5.10)

where f is a nonlinear function of u.
Explicit time discretization. Explicit ODE methods like the Forward
Euler scheme, Runge-Kutta methods, Adams-Bashforth methods all
evaluate f at time levels where u is already computed, so nonlinearities
in f do not pose any difficulties.
Backward Euler discretization. Approximating u′ by a backward dif-
ference leads to a Backward Euler scheme, which can be written as

F (un) = un −∆t f(un, tn)− un−1 = 0,

or alternatively

F (u) = u−∆t f(u, tn)− u(1) = 0 .

A simple Picard iteration, not knowing anything about the nonlinear
structure of f , must approximate f(u, tn) by f(u−, tn):
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F̂ (u) = u−∆t f(u−, tn)− u(1) .

The iteration starts with u− = u(1) and proceeds with repeating

u∗ = ∆t f(u−, tn) + u(1), u = ωu∗ + (1− ω)u−, u− ← u,

until a stopping criterion is fulfilled.

Explicit vs implicit treatment of nonlinear terms

Evaluating f for a known u− is referred to as explicit treatment
of f , while if f(u, t) has some structure, say f(u, t) = u3, parts
of f can involve the known u, as in the manual linearization like
(u−)2u, and then the treatment of f is “more implicit” and “less
explicit”. This terminology is inspired by time discretization of
u′ = f(u, t), where evaluating f for known u values gives explicit
schemes, while treating f or parts of f implicitly, makes f contribute
to the unknown terms in the equation at the new time level.

Explicit treatment of f usually means stricter conditions on ∆t
to achieve stability of time discretization schemes. The same applies
to iteration techniques for nonlinear algebraic equations: the “less”
we linearize f (i.e., the more we keep of u in the original formula),
the faster the convergence may be.

We may say that f(u, t) = u3 is treated explicitly if we evaluate f
as (u−)3, partially implicit if we linearize as (u−)2u and fully implicit
if we represent f by u3. (Of course, the fully implicit representation
will require further linearization, but with f(u, t) = u2 a fully
implicit treatment is possible if the resulting quadratic equation is
solved with a formula.)

For the ODE u′ = −u3 with f(u, t) = −u3 and coarse time
resolution ∆t = 0.4, Picard iteration with (u−)2u requires 8 itera-
tions with εr = 10−3 for the first time step, while (u−)3 leads to 22
iterations. After about 10 time steps both approaches are down to
about 2 iterations per time step, but this example shows a potential
of treating f more implicitly.

A trick to treat f implicitly in Picard iteration is to evaluate it as
f(u−, t)u/u−. For a polynomial f , f(u, t) = um, this corresponds to
(u−)mu/u−1 = (u−)m−1u. Sometimes this more implicit treatment
has no effect, as with f(u, t) = exp(−u) and f(u, t) = ln(1 + u),
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but with f(u, t) = sin(2(u + 1)), the f(u−, t)u/u− trick leads to
7, 9, and 11 iterations during the first three steps, while f(u−, t)
demands 17, 21, and 20 iterations. (Experiments can be done with
the code ODE_Picard_tricks.py.)

Newton’s method applied to a Backward Euler discretization of u′ =
f(u, t) requires the computation of the derivative

F ′(u) = 1−∆t∂f
∂u

(u, tn) .

Starting with the solution at the previous time level, u− = u(1), we can
just use the standard formula

u = u− − ω F (u−)
F ′(u−) = u− − ωu

− −∆t f(u−, tn)− u(1)

1−∆t ∂∂uf(u−, tn)
. (5.11)

Crank-Nicolson discretization. The standard Crank-Nicolson scheme
with arithmetic mean approximation of f takes the form

un+1 − un

∆t
= 1

2(f(un+1, tn+1) + f(un, tn)) .

We can write the scheme as a nonlinear algebraic equation

F (u) = u− u(1) −∆t12f(u, tn+1)−∆t12f(u(1), tn) = 0 . (5.12)

A Picard iteration scheme must in general employ the linearization

F̂ (u) = u− u(1) −∆t12f(u−, tn+1)−∆t12f(u(1), tn),

while Newton’s method can apply the general formula (5.11) with F (u)
given in (5.12) and

F ′(u) = 1− 1
2∆t

∂f

∂u
(u, tn+1) .

5.1.12 Systems of ODEs
We may write a system of ODEs

http://tinyurl.com/nu656p2/nonlin/ODE_Picard_tricks.py
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d

dt
u0(t) = f0(u0(t), u1(t), . . . , uN (t), t),

d

dt
u1(t) = f1(u0(t), u1(t), . . . , uN (t), t),

...
d

dt
um(t) = fm(u0(t), u1(t), . . . , uN (t), t),

as

u′ = f(u, t), u(0) = U0, (5.13)

if we interpret u as a vector u = (u0(t), u1(t), . . . , uN (t)) and f as a
vector function with components (f0(u, t), f1(u, t), . . . , fN (u, t)).

Most solution methods for scalar ODEs, including the Forward and
Backward Euler schemes and the Crank-Nicolson method, generalize
in a straightforward way to systems of ODEs simply by using vector
arithmetics instead of scalar arithmetics, which corresponds to applying
the scalar scheme to each component of the system. For example, here is
a backward difference scheme applied to each component,

un0 − un−1
0

∆t
= f0(un, tn),

un1 − un−1
1

∆t
= f1(un, tn),
...

unN − un−1
N

∆t
= fN (un, tn),

which can be written more compactly in vector form as

un − un−1

∆t
= f(un, tn) .

This is a system of algebraic equations,

un −∆t f(un, tn)− un−1 = 0,

or written out
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un0 −∆t f0(un, tn)− un−1
0 = 0,

...
unN −∆t fN (un, tn)− un−1

N = 0 .

Example. We shall address the 2× 2 ODE system for oscillations of a
pendulum subject to gravity and air drag. The system can be written as

ω̇ = − sin θ − βω|ω|, (5.14)
θ̇ = ω, (5.15)

where β is a dimensionless parameter (this is the scaled, dimensionless
version of the original, physical model). The unknown components of the
system are the angle θ(t) and the angular velocity ω(t). We introduce
u0 = ω and u1 = θ, which leads to

u′0 = f0(u, t) = − sin u1 − βu0|u0|,
u′1 = f1(u, t) = u0 .

A Crank-Nicolson scheme reads

un+1
0 − un0
∆t

= − sin un+ 1
2

1 − βun+ 1
2

0 |un+ 1
2

0 |

≈ − sin
(1

2(un+1
1 + u1n)

)
− β 1

4(un+1
0 + un0 )|un+1

0 + un0 |,

(5.16)
un+1

1 − un1
∆t

= u
n+ 1

2
0 ≈ 1

2(un+1
0 + un0 ) . (5.17)

This is a coupled system of two nonlinear algebraic equations in two
unknowns un+1

0 and un+1
1 .

Using the notation u0 and u1 for the unknowns un+1
0 and un+1

1 in
this system, writing u

(1)
0 and u

(1)
1 for the previous values un0 and un1 ,

multiplying by ∆t and moving the terms to the left-hand sides, gives
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u0 − u(1)
0 +∆t sin

(1
2(u1 + u

(1)
1 )
)

+ 1
4∆tβ(u0 + u

(1)
0 )|u0 + u

(1)
0 | = 0,

(5.18)

u1 − u(1)
1 −

1
2∆t(u0 + u

(1)
0 ) = 0 .

(5.19)

Obviously, we have a need for solving systems of nonlinear algebraic
equations, which is the topic of the next section.

5.2 Systems of nonlinear algebraic equations

Implicit time discretization methods for a system of ODEs, or a PDE,
lead to systems of nonlinear algebraic equations, written compactly as

F (u) = 0,

where u is a vector of unknowns u = (u0, . . . , uN ), and F is a vector
function: F = (F0, . . . , FN ). The system at the end of Section 5.1.12 fits
this notation with N = 2, F0(u) given by the left-hand side of (5.18),
while F1(u) is the left-hand side of (5.19).

Sometimes the equation system has a special structure because of the
underlying problem, e.g.,

A(u)u = b(u),

with A(u) as an (N + 1)× (N + 1) matrix function of u and b as a vector
function: b = (b0, . . . , bN ).

We shall next explain how Picard iteration and Newton’s method can
be applied to systems like F (u) = 0 and A(u)u = b(u). The exposition
has a focus on ideas and practical computations. More theoretical con-
siderations, including quite general results on convergence properties of
these methods, can be found in Kelley [8].

5.2.1 Picard iteration

We cannot apply Picard iteration to nonlinear equations unless there is
some special structure. For the commonly arising case A(u)u = b(u) we
can linearize the product A(u)u to A(u−)u and b(u) as b(u−). That is,
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we use the most previously computed approximation in A and b to arrive
at a linear system for u:

A(u−)u = b(u−) .

A relaxed iteration takes the form

A(u−)u∗ = b(u−), u = ωu∗ + (1− ω)u− .

In other words, we solve a system of nonlinear algebraic equations as a
sequence of linear systems.

Algorithm for relaxed Picard iteration

Given A(u)u = b(u) and an initial guess u−, iterate until conver-
gence:

1. solve A(u−)u∗ = b(u−) with respect to u∗
2. u = ωu∗ + (1− ω)u−
3. u− ← u

“Until convergence” means that the iteration is stopped when the
change in the unknown, ||u − u−||, or the residual ||A(u)u − b||, is
sufficiently small, see Section 5.2.3 for more details.

5.2.2 Newton’s method
The natural starting point for Newton’s method is the general nonlinear
vector equation F (u) = 0. As for a scalar equation, the idea is to approx-
imate F around a known value u− by a linear function F̂ , calculated
from the first two terms of a Taylor expansion of F . In the multi-variate
case these two terms become

F (u−) + J(u−) · (u− u−),

where J is the Jacobian of F , defined by

Ji,j = ∂Fi
∂uj

.

So, the original nonlinear system is approximated by
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F̂ (u) = F (u−) + J(u−) · (u− u−) = 0,

which is linear in u and can be solved in a two-step procedure: first
solve Jδu = −F (u−) with respect to the vector δu and then update
u = u− + δu. A relaxation parameter can easily be incorporated:

u = ω(u− + δu) + (1− ω)u− = u− + ωδu .

Algorithm for Newton’s method

Given F (u) = 0 and an initial guess u−, iterate until convergence:

1. solve Jδu = −F (u−) with respect to δu
2. u = u− + ωδu
3. u− ← u

For the special system with structure A(u)u = b(u),

Fi =
∑
k

Ai,k(u)uk − bi(u),

one gets

Ji,j =
∑
k

∂Ai,k
∂uj

uk + Ai,j −
∂bi
∂uj

. (5.20)

We realize that the Jacobian needed in Newton’s method consists of
A(u−) as in the Picard iteration plus two additional terms arising from
the differentiation. Using the notation A′(u) for ∂A/∂u (a quantity with
three indices: ∂Ai,k/∂uj), and b′(u) for ∂b/∂u (a quantity with two
indices: ∂bi/∂uj), we can write the linear system to be solved as

(A+ A′u+ b′)δu = −Au+ b,

or

(A(u−) + A′(u−)u− + b′(u−))δu = −A(u−)u− + b(u−) .

Rearranging the terms demonstrates the difference from the system
solved in each Picard iteration:
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A(u−)(u− + δu)− b(u−)︸ ︷︷ ︸
Picard system

+ γ(A′(u−)u− + b′(u−))δu = 0 .

Here we have inserted a parameter γ such that γ = 0 gives the Picard
system and γ = 1 gives the Newton system. Such a parameter can be
handy in software to easily switch between the methods.

Combined algorithm for Picard and Newton iteration

Given A(u), b(u), and an initial guess u−, iterate until convergence:

1. solve (A+ γ(A′(u−)u− + b′(u−)))δu = −A(u−)u− + b(u−) with
respect to δu

2. u = u− + ωδu
3. u− ← u

γ = 1 gives a Newton method while γ = 0 corresponds to Picard
iteration.

5.2.3 Stopping criteria

Let || · || be the standard Euclidean vector norm. Four termination criteria
are much in use:

• Absolute change in solution: ||u− u−|| ≤ εu
• Relative change in solution: ||u − u−|| ≤ εu||u0||, where u0 denotes

the start value of u− in the iteration
• Absolute residual: ||F (u)|| ≤ εr
• Relative residual: ||F (u)|| ≤ εr||F (u0)||

To prevent divergent iterations to run forever, one terminates the itera-
tions when the current number of iterations k exceeds a maximum value
kmax.

The relative criteria are most used since they are not sensitive to
the characteristic size of u. Nevertheless, the relative criteria can be
misleading when the initial start value for the iteration is very close
to the solution, since an unnecessary reduction in the error measure is
enforced. In such cases the absolute criteria work better. It is common
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to combine the absolute and relative measures of the size of the residual,
as in

||F (u)|| ≤ εrr||F (u0)||+ εra, (5.21)

where εrr is the tolerance in the relative criterion and εra is the tolerance
in the absolute criterion. With a very good initial guess for the iteration
(typically the solution of a differential equation at the previous time
level), the term ||F (u0)|| is small and εra is the dominating tolerance.
Otherwise, εrr||F (u0)|| and the relative criterion dominates.

With the change in solution as criterion we can formulate a combined
absolute and relative measure of the change in the solution:

||δu|| ≤ εur||u0||+ εua, (5.22)

The ultimate termination criterion, combining the residual and the
change in solution with a test on the maximum number of iterations, can
be expressed as

||F (u)|| ≤ εrr||F (u0)||+ εra or ||δu|| ≤ εur||u0||+ εua or k > kmax .
(5.23)

5.2.4 Example: A nonlinear ODE model from epidemiology

The simplest model spreading of a disease, such as a flu, takes the form
of a 2× 2 ODE system

S′ = −βSI, (5.24)
I ′ = βSI − νI, (5.25)

where S(t) is the number of people who can get ill (susceptibles) and
I(t) is the number of people who are ill (infected). The constants β > 0
and ν > 0 must be given along with initial conditions S(0) and I(0).

Implicit time discretization. A Crank-Nicolson scheme leads to a 2× 2
system of nonlinear algebraic equations in the unknowns Sn+1 and In+1:
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Sn+1 − Sn

∆t
= −β[SI]n+ 1

2 ≈ −β2 (SnIn + Sn+1In+1), (5.26)

In+1 − In

∆t
= β[SI]n+ 1

2 − νIn+ 1
2 ≈ β

2 (SnIn + Sn+1In+1)− ν

2 (In + In+1) .
(5.27)

Introducing S for Sn+1, S(1) for Sn, I for In+1, I(1) for In, we can rewrite
the system as

FS(S, I) = S − S(1) + 1
2∆tβ(S(1)I(1) + SI) = 0, (5.28)

FI(S, I) = I − I(1) − 1
2∆tβ(S(1)I(1) + SI) + 1

2∆tν(I(1) + I) = 0 .
(5.29)

A Picard iteration. We assume that we have approximations S− and I−
to S and I, respectively. A way of linearizing the only nonlinear term SI
is to write I−S in the FS = 0 equation and S−I in the FI = 0 equation,
which also decouples the equations. Solving the resulting linear equations
with respect to the unknowns S and I gives

S =
S(1) − 1

2∆tβS
(1)I(1)

1 + 1
2∆tβI

− ,

I =
I(1) + 1

2∆tβS
(1)I(1) − 1

2∆tνI
(1)

1− 1
2∆tβS

− + 1
2∆tν

.

Before a new iteration, we must update S− ← S and I− ← I.

Newton’s method. The nonlinear system (5.28)-(5.29) can be written
as F (u) = 0 with F = (FS , FI) and u = (S, I). The Jacobian becomes

J =
(

∂
∂SFS

∂
∂IFS

∂
∂SFI

∂
∂IFI

)
=
(

1 + 1
2∆tβI

1
2∆tβS

−1
2∆tβI 1− 1

2∆tβS + 1
2∆tν

)
.

The Newton system J(u−)δu = −F (u−) to be solved in each iteration is
then
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1 + 1

2∆tβI
− 1

2∆tβS
−

−1
2∆tβI

− 1− 1
2∆tβS

− + 1
2∆tν

)(
δS
δI

)
=(

S− − S(1) + 1
2∆tβ(S(1)I(1) + S−I−)

I− − I(1) − 1
2∆tβ(S(1)I(1) + S−I−) + 1

2∆tν(I(1) + I−)

)

Remark. For this particular system of ODEs, explicit time integration
methods work very well. Even a Forward Euler scheme is fine, but (as also
experienced more generally) the 4-th order Runge-Kutta method is an
excellent balance between high accuracy, high efficiency, and simplicity.

5.3 Linearization at the differential equation level

The attention is now turned to nonlinear partial differential equations
(PDEs) and application of the techniques explained above for ODEs. The
model problem is a nonlinear diffusion equation for u(x, t):

∂u

∂t
= ∇ · (α(u)∇u) + f(u), x ∈ Ω, t ∈ (0, T ], (5.30)

−α(u)∂u
∂n

= g, x ∈ ∂ΩN , t ∈ (0, T ], (5.31)

u = u0, x ∈ ∂ΩD, t ∈ (0, T ] . (5.32)

In the present section, our aim is to discretize this problem in time and
then present techniques for linearizing the time-discrete PDE problem
“at the PDE level” such that we transform the nonlinear stationary PDE
problem at each time level into a sequence of linear PDE problems, which
can be solved using any method for linear PDEs. This strategy avoids
the solution of systems of nonlinear algebraic equations. In Section 5.4
we shall take the opposite (and more common) approach: discretize the
nonlinear problem in time and space first, and then solve the resulting
nonlinear algebraic equations at each time level by the methods of
Section 5.2. Very often, the two approaches are mathematically identical,
so there is no preference from a computational efficiency point of view.
The details of the ideas sketched above will hopefully become clear
through the forthcoming examples.
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5.3.1 Explicit time integration

The nonlinearities in the PDE are trivial to deal with if we choose an
explicit time integration method for (5.30), such as the Forward Euler
method:

[D+
t u = ∇ · (α(u)∇u) + f(u)]n,

or written out,

un+1 − un

∆t
= ∇ · (α(un)∇un) + f(un),

which is a linear equation in the unknown un+1 with solution

un+1 = un +∆t∇ · (α(un)∇un) +∆tf(un) .

The disadvantage with this discretization is the strict stability criterion
∆t ≤ h2/(6 maxα) for the case f = 0 and a standard 2nd-order finite
difference discretization in 3D space with mesh cell sizes h = ∆x = ∆y =
∆z.

5.3.2 Backward Euler scheme and Picard iteration

A Backward Euler scheme for (5.30) reads

[D−t u = ∇ · (α(u)∇u) + f(u)]n .

Written out,

un − un−1

∆t
= ∇ · (α(un)∇un) + f(un) . (5.33)

This is a nonlinear PDE for the unknown function un(x). Such a PDE
can be viewed as a time-independent PDE where un−1(x) is a known
function.

We introduce a Picard iteration with k as iteration counter. A typical
linearization of the ∇ · (α(un)∇un) term in iteration k + 1 is to use
the previously computed un,k approximation in the diffusion coefficient:
α(un,k). The nonlinear source term is treated similarly: f(un,k). The
unknown function un,k+1 then fulfills the linear PDE

un,k+1 − un−1

∆t
= ∇ · (α(un,k)∇un,k+1) + f(un,k) . (5.34)
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The initial guess for the Picard iteration at this time level can be taken
as the solution at the previous time level: un,0 = un−1.

We can alternatively apply the implementation-friendly notation where
u corresponds to the unknown we want to solve for, i.e., un,k+1 above,
and u− is the most recently computed value, un,k above. Moreover, u(1)

denotes the unknown function at the previous time level, un−1 above.
The PDE to be solved in a Picard iteration then looks like

u− u(1)

∆t
= ∇ · (α(u−)∇u) + f(u−) . (5.35)

At the beginning of the iteration we start with the value from the previous
time level: u− = u(1), and after each iteration, u− is updated to u.

Remark on notation
The previous derivations of the numerical scheme for time discretiza-
tions of PDEs have, strictly speaking, a somewhat sloppy notation,
but it is much used and convenient to read. A more precise notation
must distinguish clearly between the exact solution of the PDE
problem, here denoted ue(x, t), and the exact solution of the spatial
problem, arising after time discretization at each time level, where
(5.33) is an example. The latter is here represented as un(x) and is
an approximation to ue(x, tn). Then we have another approximation
un,k(x) to un(x) when solving the nonlinear PDE problem for un
by iteration methods, as in (5.34).

In our notation, u is a synonym for un,k+1 and u(1) is a synonym
for un−1, inspired by what are natural variable names in a code.
We will usually state the PDE problem in terms of u and quickly
redefine the symbol u to mean the numerical approximation, while
ue is not explicitly introduced unless we need to talk about the
exact solution and the approximate solution at the same time.

5.3.3 Backward Euler scheme and Newton’s method

At time level n, we have to solve the stationary PDE (5.33). In the
previous section, we saw how this can be done with Picard iterations.
Another alternative is to apply the idea of Newton’s method in a clever
way. Normally, Newton’s method is defined for systems of algebraic
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equations, but the idea of the method can be applied at the PDE level
too.

Linearization via Taylor expansions. Let un,k be an approximation to
the unknown un. We seek a better approximation on the form

un = un,k + δu . (5.36)

The idea is to insert (5.36) in (5.33), Taylor expand the nonlinearities
and keep only the terms that are linear in δu (which makes (5.36) an
approximation for un). Then we can solve a linear PDE for the correction
δu and use (5.36) to find a new approximation

un,k+1 = un,k + δu

to un. Repeating this procedure gives a sequence un,k+1, k = 0, 1, . . .
that hopefully converges to the goal un.

Let us carry out all the mathematical details for the nonlinear diffusion
PDE discretized by the Backward Euler method. Inserting (5.36) in (5.33)
gives

un,k + δu− un−1

∆t
= ∇·(α(un,k+δu)∇(un,k+δu))+f(un,k+δu) . (5.37)

We can Taylor expand α(un,k + δu) and f(un,k + δu):

α(un,k + δu) = α(un,k) + dα

du
(un,k)δu+O(δu2) ≈ α(un,k) + α′(un,k)δu,

f(un,k + δu) = f(un,k) + df

du
(un,k)δu+O(δu2) ≈ f(un,k) + f ′(un,k)δu .

Inserting the linear approximations of α and f in (5.37) results in

un,k + δu− un−1

∆t
= ∇ · (α(un,k)∇un,k) + f(un,k)+

∇ · (α(un,k)∇δu) +∇ · (α′(un,k)δu∇un,k)+
∇ · (α′(un,k)δu∇δu) + f ′(un,k)δu . (5.38)

The term α′(un,k)δu∇δu is of order δu2 and therefore omitted since
we expect the correction δu to be small (δu � δu2). Reorganizing the
equation gives a PDE for δu that we can write in short form as
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δF (δu;un,k) = −F (un,k),

where

F (un,k) = un,k − un−1

∆t
−∇ · (α(un,k)∇un,k) + f(un,k), (5.39)

δF (δu;un,k) = − 1
∆t

δu+∇ · (α(un,k)∇δu)+

∇ · (α′(un,k)δu∇un,k) + f ′(un,k)δu . (5.40)

Note that δF is a linear function of δu, and F contains only terms that
are known, such that the PDE for δu is indeed linear.

Observations
The notational form δF = −F resembles the Newton system
Jδu = −F for systems of algebraic equations, with δF as Jδu.
The unknown vector in a linear system of algebraic equations enters
the system as a linear operator in terms of a matrix-vector product
(Jδu), while at the PDE level we have a linear differential operator
instead (δF ).

Similarity with Picard iteration. We can rewrite the PDE for δu in a
slightly different way too if we define un,k + δu as un,k+1.

un,k+1 − un−1

∆t
= ∇ · (α(un,k)∇un,k+1) + f(un,k)

+∇ · (α′(un,k)δu∇un,k) + f ′(un,k)δu . (5.41)

Note that the first line is the same PDE as arises in the Picard iteration,
while the remaining terms arise from the differentiations that are an
inherent ingredient in Newton’s method.

Implementation. For coding we want to introduce u for un, u− for un,k
and u(1) for un−1. The formulas for F and δF are then more clearly
written as
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F (u−) = u− − u(1)

∆t
−∇ · (α(u−)∇u−) + f(u−), (5.42)

δF (δu;u−) = − 1
∆t

δu+∇ · (α(u−)∇δu)+

∇ · (α′(u−)δu∇u−) + f ′(u−)δu . (5.43)

The form that orders the PDE as the Picard iteration terms plus the
Newton method’s derivative terms becomes

u− u(1)

∆t
= ∇ · (α(u−)∇u) + f(u−)+

γ(∇ · (α′(u−)(u− u−)∇u−) + f ′(u−)(u− u−)) . (5.44)

The Picard and full Newton versions correspond to γ = 0 and γ = 1,
respectively.
Derivation with alternative notation. Some may prefer to derive the
linearized PDE for δu using the more compact notation. We start with
inserting un = u− + δu to get

u− + δu− un−1

∆t
= ∇ · (α(u− + δu)∇(u− + δu)) + f(u− + δu) .

Taylor expanding,

α(u− + δu) ≈ α(u−) + α′(u−)δu,
f(u− + δu) ≈ f(u−) + f ′(u−)δu,

and inserting these expressions gives a less cluttered PDE for δu:

u− + δu− un−1

∆t
= ∇ · (α(u−)∇u−) + f(u−)+

∇ · (α(u−)∇δu) +∇ · (α′(u−)δu∇u−)+
∇ · (α′(u−)δu∇δu) + f ′(u−)δu .

5.3.4 Crank-Nicolson discretization
A Crank-Nicolson discretization of (5.30) applies a centered difference at
tn+ 1

2
:
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[Dtu = ∇ · (α(u)∇u) + f(u)]n+ 1
2 .

The standard technique is to apply an arithmetic average for quantities
defined between two mesh points, e.g.,

un+ 1
2 ≈ 1

2(un + un+1) .

However, with nonlinear terms we have many choices of formulating an
arithmetic mean:

[f(u)]n+ 1
2 ≈ f(1

2(un + un+1)) = [f(ut)]n+ 1
2 , (5.45)

[f(u)]n+ 1
2 ≈ 1

2(f(un) + f(un+1)) = [f(u)t]n+ 1
2 , (5.46)

[α(u)∇u]n+ 1
2 ≈ α(1

2(un + un+1))∇(1
2(un + un+1)) = [α(ut)∇ut]n+ 1

2 ,

(5.47)

[α(u)∇u]n+ 1
2 ≈ 1

2(α(un) + α(un+1))∇(1
2(un + un+1)) = [α(u)t∇ut]n+ 1

2 ,

(5.48)

[α(u)∇u]n+ 1
2 ≈ 1

2(α(un)∇un + α(un+1)∇un+1) = [α(u)∇ut]n+ 1
2 .

(5.49)

A big question is whether there are significant differences in accuracy
between taking the products of arithmetic means or taking the arithmetic
mean of products. Exercise 5.6 investigates this question, and the answer
is that the approximation is O(∆t2) in both cases.

5.4 1D stationary nonlinear differential equations

Section 5.3 presented methods for linearizing time-discrete PDEs directly
prior to discretization in space. We can alternatively carry out the
discretization in space of the time-discrete nonlinear PDE problem and
get a system of nonlinear algebraic equations, which can be solved by
Picard iteration or Newton’s method as presented in Section 5.2. This
latter approach will now be described in detail.

We shall work with the 1D problem
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− (α(u)u′)′ + au = f(u), x ∈ (0, L), α(u(0))u′(0) = C, u(L) = D .
(5.50)

The problem (5.50) arises from the stationary limit of a diffusion
equation,

∂u

∂t
= ∂

∂x

(
α(u)∂u

∂x

)
− au+ f(u), (5.51)

as t → ∞ and ∂u/∂t → 0. Alternatively, the problem (5.50) arises at
each time level from implicit time discretization of (5.51). For example,
a Backward Euler scheme for (5.51) leads to

un − un−1

∆t
= d

dx

(
α(un)du

n

dx

)
− aun + f(un) . (5.52)

Introducing u(x) for un(x), u(1) for un−1, and defining f(u) in (5.50) to
be f(u) in (5.52) plus un−1/∆t, gives (5.50) with a = 1/∆t.

5.4.1 Finite difference discretization

The nonlinearity in the differential equation (5.50) poses no more difficulty
than a variable coefficient, as in the term (α(x)u′)′. We can therefore use
a standard finite difference approach to discretizing the Laplace term
with a variable coefficient:

[−DxαDxu+ au = f ]i .

Writing this out for a uniform mesh with points xi = i∆x, i = 0, . . . , Nx,
leads to

− 1
∆x2

(
αi+ 1

2
(ui+1 − ui)− αi− 1

2
(ui − ui−1)

)
+ aui = f(ui) . (5.53)

This equation is valid at all the mesh points i = 0, 1, . . . , Nx − 1. At
i = Nx we have the Dirichlet condition ui = 0. The only difference from
the case with (α(x)u′)′ and f(x) is that now α and f are functions of u
and not only of x: (α(u(x))u′)′ and f(u(x)).

The quantity αi+ 1
2
, evaluated between two mesh points, needs a com-

ment. Since α depends on u and u is only known at the mesh points, we
need to express αi+ 1

2
in terms of ui and ui+1. For this purpose we use

an arithmetic mean, although a harmonic mean is also common in this
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context if α features large jumps. There are two choices of arithmetic
means:

αi+ 1
2
≈ α(1

2(ui + ui+1) = [α(ux)]i+ 1
2 , (5.54)

αi+ 1
2
≈ 1

2(α(ui) + α(ui+1)) = [α(u)x]i+ 1
2 (5.55)

Equation (5.53) with the latter approximation then looks like

− 1
2∆x2 ((α(ui) + α(ui+1))(ui+1 − ui)− (α(ui−1) + α(ui))(ui − ui−1))

+ aui = f(ui), (5.56)

or written more compactly,

[−Dxα
xDxu+ au = f ]i .

At mesh point i = 0 we have the boundary condition α(u)u′ = C,
which is discretized by

[α(u)D2xu = C]0,

meaning

α(u0)u1 − u−1

2∆x = C . (5.57)

The fictitious value u−1 can be eliminated with the aid of (5.56) for i = 0.
Formally, (5.56) should be solved with respect to ui−1 and that value
(for i = 0) should be inserted in (5.57), but it is algebraically much easier
to do it the other way around. Alternatively, one can use a ghost cell
[−∆x, 0] and update the u−1 value in the ghost cell according to (5.57)
after every Picard or Newton iteration. Such an approach means that we
use a known u−1 value in (5.56) from the previous iteration.

5.4.2 Solution of algebraic equations

The structure of the equation system. The nonlinear algebraic equa-
tions (5.56) are of the form A(u)u = b(u) with
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Ai,i = 1
2∆x2 (α(ui−1) + 2α(ui)α(ui+1)) + a,

Ai,i−1 = − 1
2∆x2 (α(ui−1) + α(ui)),

Ai,i+1 = − 1
2∆x2 (α(ui) + α(ui+1)),

bi = f(ui) .

The matrix A(u) is tridiagonal: Ai,j = 0 for j > i+ 1 and j < i− 1.
The above expressions are valid for internal mesh points 1 ≤ i ≤ Nx−1.

For i = 0 we need to express ui−1 = u−1 in terms of u1 using (5.57):

u−1 = u1 −
2∆x
α(u0)C . (5.58)

This value must be inserted in A0,0. The expression for Ai,i+1 applies for
i = 0, and Ai,i−1 does not enter the system when i = 0.

Regarding the last equation, its form depends on whether we include
the Dirichlet condition u(L) = D, meaning uNx = D, in the nonlinear
algebraic equation system or not. Suppose we choose (u0, u1, . . . , uNx−1)
as unknowns, later referred to as systems without Dirichlet conditions.
The last equation corresponds to i = Nx − 1. It involves the boundary
value uNx , which is substituted by D. If the unknown vector includes the
boundary value, (u0, u1, . . . , uNx), later referred to as system including
Dirichlet conditions, the equation for i = Nx−1 just involves the unknown
uNx , and the final equation becomes uNx = D, corresponding to Ai,i = 1
and bi = D for i = Nx.

Picard iteration. The obvious Picard iteration scheme is to use previ-
ously computed values of ui in A(u) and b(u), as described more in detail
in Section 5.2. With the notation u− for the most recently computed
value of u, we have the system F (u) ≈ F̂ (u) = A(u−)u − b(u−), with
F = (F0, F1, . . . , Fm), u = (u0, u1, . . . , um). The index m is Nx if the
system includes the Dirichlet condition as a separate equation and Nx−1
otherwise. The matrix A(u−) is tridiagonal, so the solution procedure
is to fill a tridiagonal matrix data structure and the right-hand side
vector with the right numbers and call a Gaussian elimination routine
for tridiagonal linear systems.

Mesh with two cells. It helps on the understanding of the details to
write out all the mathematics in a specific case with a small mesh, say
just two cells (Nx = 2). We use u−i for the i-th component in u−.
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The starting point is the basic expressions for the nonlinear equations
at mesh point i = 0 and i = 1 are

A0,−1u−1 + A0,0u0 + A0,1u1 = b0, (5.59)
A1,0u0 + A1,1u1 + A1,2u2 = b1 . (5.60)

Equation (5.59) written out reads

1
2∆x2 (− (α(u−1) + α(u0))u−1 +

(α(u−1) + 2α(u0) + α(u1))u0−
(α(u0) + α(u1)))u1 + au0 = f(u0) .

We must then replace u−1 by (5.58). With Picard iteration we get

1
2∆x2 (− (α(u−−1) + 2α(u−0 + α(u−1 ))u1 +

(α(u−−1) + 2α(u−0 ) + α(u−1 ))u0 + au0

= f(u−0 )− 1
α(u−0 )∆x

(α(u−−1) + α(u−0 ))C,

where

u−−1 = u−1 −
2∆x
α(u−0 )

C .

Equation (5.60) contains the unknown u2 for which we have a Dirichlet
condition. In case we omit the condition as a separate equation, (5.60)
with Picard iteration becomes

1
2∆x2 (− (α(u−0 ) + α(u−1 ))u0 +

(α(u−0 ) + 2α(u−1 ) + α(u−2 ))u1−
(α(u−1 ) + α(u−2 )))u2 + au1 = f(u−1 ) .

We must now move the u2 term to the right-hand side and replace all
occurrences of u2 by D:
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1
2∆x2 (− (α(u−0 ) + α(u−1 ))u0 +

(α(u−0 ) + 2α(u−1 ) + α(D))u1 + au1

= f(u−1 ) + 1
2∆x2 (α(u−1 ) + α(D))D .

The two equations can be written as a 2× 2 system:(
B0,0 B0,1
B1,0 B1,1

)(
u0
u1

)
=
(
d0
d1

)
,

where

B0,0 = 1
2∆x2 (α(u−−1) + 2α(u−0 ) + α(u−1 )) + a (5.61)

B0,1 = − 1
2∆x2 (α(u−−1) + 2α(u−0 ) + α(u−1 )), (5.62)

B1,0 = − 1
2∆x2 (α(u−0 ) + α(u−1 )), (5.63)

B1,1 = 1
2∆x2 (α(u−0 ) + 2α(u−1 ) + α(D)) + a, (5.64)

d0 = f(u−0 )− 1
α(u−0 )∆x

(α(u−−1) + α(u−0 ))C, (5.65)

d1 = f(u−1 ) + 1
2∆x2 (α(u−1 ) + α(D))D . (5.66)

The system with the Dirichlet condition becomesB0,0 B0,1 0
B1,0 B1,1 B1,2

0 0 1


u0
u1
u2

 =

d0
d1
D

 ,
with

B1,1 = 1
2∆x2 (α(u−0 ) + 2α(u−1 ) + α(u2)) + a, (5.67)

B1,2 = − 1
2∆x2 (α(u−1 ) + α(u2))), (5.68)

d1 = f(u−1 ) . (5.69)

Other entries are as in the 2× 2 system.
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Newton’s method. The Jacobian must be derived in order to use
Newton’s method. Here it means that we need to differentiate F (u) =
A(u)u − b(u) with respect to the unknown parameters u0, u1, . . . , um
(m = Nx or m = Nx − 1, depending on whether the Dirichlet condition
is included in the nonlinear system F (u) = 0 or not). Nonlinear equation
number i has the structure

Fi = Ai,i−1(ui−1, ui)ui−1+Ai,i(ui−1, ui, ui+1)ui+Ai,i+1(ui, ui+1)ui+1−bi(ui) .

Computing the Jacobian requires careful differentiation. For example,

∂

∂ui
(Ai,i(ui−1, ui, ui+1)ui) = ∂Ai,i

∂ui
ui + Ai,i

∂ui
∂ui

= ∂

∂ui
( 1
2∆x2 (α(ui−1) + 2α(ui) + α(ui+1)) + a)ui+

1
2∆x2 (α(ui−1) + 2α(ui) + α(ui+1)) + a

= 1
2∆x2 (2α′(ui)ui + α(ui−1) + 2α(ui) + α(ui+1)) + a .

The complete Jacobian becomes

Ji,i = ∂Fi
∂ui

= ∂Ai,i−1

∂ui
ui−1 + ∂Ai,i

∂ui
ui + Ai,i + ∂Ai,i+1

∂ui
ui+1 −

∂bi
∂ui

= 1
2∆x2 (−α′(ui)ui−1 + 2α′(ui)ui + α(ui−1) + 2α(ui) + α(ui+1))+

a− 1
2∆x2α

′(ui)ui+1 − b′(ui),

Ji,i−1 = ∂Fi
∂ui−1

= ∂Ai,i−1

∂ui−1
ui−1 + Ai−1,i + ∂Ai,i

∂ui−1
ui −

∂bi
∂ui−1

= 1
2∆x2 (−α′(ui−1)ui−1 − (α(ui−1) + α(ui)) + α′(ui−1)ui),

Ji,i+1 = ∂Ai,i+1

∂ui−1
ui+1 + Ai+1,i + ∂Ai,i

∂ui+1
ui −

∂bi
∂ui+1

= 1
2∆x2 (−α′(ui+1)ui+1 − (α(ui) + α(ui+1)) + α′(ui+1)ui) .

The explicit expression for nonlinear equation number i, Fi(u0, u1, . . .),
arises from moving the f(ui) term in (5.56) to the left-hand side:
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Fi = − 1
2∆x2 ((α(ui) + α(ui+1))(ui+1 − ui)− (α(ui−1) + α(ui))(ui − ui−1))

+ aui − f(ui) = 0 . (5.70)

At the boundary point i = 0, u−1 must be replaced using the formula
(5.58). When the Dirichlet condition at i = Nx is not a part of the
equation system, the last equation Fm = 0 for m = Nx − 1 involves the
quantity uNx−1 which must be replaced by D. If uNx is treated as an
unknown in the system, the last equation Fm = 0 has m = Nx and reads

FNx(u0, . . . , uNx) = uNx −D = 0 .

Similar replacement of u−1 and uNx must be done in the Jacobian for
the first and last row. When uNx is included as an unknown, the last
row in the Jacobian must help implement the condition δuNx = 0, since
we assume that u contains the right Dirichlet value at the beginning of
the iteration (uNx = D), and then the Newton update should be zero for
i = 0, i.e., δuNx = 0. This also forces the right-hand side to be bi = 0,
i = Nx.

We have seen, and can see from the present example, that the linear
system in Newton’s method contains all the terms present in the system
that arises in the Picard iteration method. The extra terms in Newton’s
method can be multiplied by a factor such that it is easy to program
one linear system and set this factor to 0 or 1 to generate the Picard or
Newton system.

5.5 Multi-dimensional nonlinear PDE problems

The fundamental ideas in the derivation of Fi and Ji,j in the 1D model
problem are easily generalized to multi-dimensional problems. Neverthe-
less, the expressions involved are slightly different, with derivatives in x
replaced by ∇, so we present some examples below in detail.

5.5.1 Finite difference discretization

A typical diffusion equation
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ut = ∇ · (α(u)∇u) + f(u),

can be discretized by (e.g.) a Backward Euler scheme, which in 2D can
be written

[D−t u = Dxα(u)xDxu+Dyα(u)yDyu+ f(u)]ni,j .

We do not dive into the details of handling boundary conditions now.
Dirichlet and Neumann conditions are handled as in a corresponding
linear, variable-coefficient diffusion problems.

Writing the scheme out, putting the unknown values on the left-
hand side and known values on the right-hand side, and introducing
∆x = ∆y = h to save some writing, one gets

uni,j −
∆t

h2 (1
2(α(uni,j) + α(uni+1,j))(uni+1,j − uni,j)

− 1
2(α(uni−1,j) + α(uni,j))(uni,j − uni−1,j)

+ 1
2(α(uni,j) + α(uni,j+1))(uni,j+1 − uni,j)

− 1
2(α(uni,j−1) + α(uni,j))(uni,j − uni−1,j−1))−∆tf(uni,j) = un−1

i,j

This defines a nonlinear algebraic system on the form A(u)u = b(u).

Picard iteration. The most recently computed values u− of un can
be used in α and f for a Picard iteration, or equivalently, we solve
A(u−)u = b(u−). The result is a linear system of the same type as arising
from ut = ∇ · (α(x)∇u) + f(x, t).

The Picard iteration scheme can also be expressed in operator notation:

[D−t u = Dxα(u−)xDxu+Dyα(u−)yDyu+ f(u−)]ni,j .

Newton’s method. As always, Newton’s method is technically more
involved than Picard iteration. We first define the nonlinear algebraic
equations to be solved, drop the superscript n (use u for un), and intro-
duce u(1) for un−1:
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Fi,j = ui,j −
∆t

h2 (
1
2(α(ui,j) + α(ui+1,j))(ui+1,j − ui,j)−
1
2(α(ui−1,j) + α(ui,j))(ui,j − ui−1,j)+
1
2(α(ui,j) + α(ui,j+1))(ui,j+1 − ui,j)−
1
2(α(ui,j−1) + α(ui,j))(ui,j − ui−1,j−1))−∆t f(ui,j)− u(1)

i,j = 0 .

It is convenient to work with two indices i and j in 2D finite difference
discretizations, but it complicates the derivation of the Jacobian, which
then gets four indices. (Make sure you really understand the 1D version
of this problem as treated in Section 5.4.1.) The left-hand expression of
an equation Fi,j = 0 is to be differentiated with respect to each of the
unknowns ur,s (recall that this is short notation for unr,s), r ∈ Ix, s ∈ Iy:

Ji,j,r,s = ∂Fi,j
∂ur,s

.

The Newton system to be solved in each iteration can be written as∑
r∈Ix

∑
s∈Iy

Ji,j,r,sδur,s = −Fi,j , i ∈ Ix, j ∈ Iy .

Given i and j, only a few r and s indices give nonzero contribution to
the Jacobian since Fi,j contains ui±1,j , ui,j±1, and ui,j . This means that
Ji,j,r,s has nonzero contributions only if r = i± 1, s = j ± 1, as well as
r = i and s = j. The corresponding terms in Ji,j,r,s are Ji,j,i−1,j , Ji,j,i+1,j ,
Ji,j,i,j−1, Ji,j,i,j+1, and Ji,j,i,j . Therefore, the left-hand side of the Newton
system,

∑
r

∑
s Ji,j,r,sδur,s collapses to

Ji,j,r,sδur,s = Ji,j,i,jδui,j + Ji,j,i−1,jδui−1,j + Ji,j,i+1,jδui+1,j + Ji,j,i,j−1δui,j−1

+ Ji,j,i,j+1δui,j+1

The specific derivatives become
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Ji,j,i−1,j = ∂Fi,j
∂ui−1,j

= ∆t

h2 (α′(ui−1,j)(ui,j − ui−1,j) + α(ui−1,j)(−1)),

Ji,j,i+1,j = ∂Fi,j
∂ui+1,j

= ∆t

h2 (−α′(ui+1,j)(ui+1,j − ui,j)− α(ui−1,j)),

Ji,j,i,j−1 = ∂Fi,j
∂ui,j−1

= ∆t

h2 (α′(ui,j−1)(ui,j − ui,j−1) + α(ui,j−1)(−1)),

Ji,j,i,j+1 = ∂Fi,j
∂ui,j+1

= ∆t

h2 (−α′(ui,j+1)(ui,j+1 − ui,j)− α(ui,j−1)) .

The Ji,j,i,j entry has a few more terms and is left as an exercise. Inserting
the most recent approximation u− for u in the J and F formulas and
then forming Jδu = −F gives the linear system to be solved in each
Newton iteration. Boundary conditions will affect the formulas when any
of the indices coincide with a boundary value of an index.

5.5.2 Continuation methods

Picard iteration or Newton’s method may diverge when solving PDEs
with severe nonlinearities. Relaxation with ω < 1 may help, but in
highly nonlinear problems it can be necessary to introduce a continuation
parameter Λ in the problem: Λ = 0 gives a version of the problem that
is easy to solve, while Λ = 1 is the target problem. The idea is then to
increase Λ in steps, Λ0 = 0, Λ1 < · · · < Λn = 1, and use the solution from
the problem with Λi−1 as initial guess for the iterations in the problem
corresponding to Λi.

The continuation method is easiest to understand through an example.
Suppose we intend to solve

−∇ · (||∇u||q∇u) = f,

which is an equation modeling the flow of a non-Newtonian fluid through a
channel or pipe. For q = 0 we have the Poisson equation (corresponding to
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a Newtonian fluid) and the problem is linear. A typical value for pseudo-
plastic fluids may be qn = −0.8. We can introduce the continuation
parameter Λ ∈ [0, 1] such that q = qnΛ. Let {Λ`}n`=0 be the sequence of
Λ values in [0, 1], with corresponding q values {q`}n`=0. We can then solve
a sequence of problems

−∇ ·
(
||∇u`||q`∇u

`
)

= f, ` = 0, . . . , n,

where the initial guess for iterating on u` is the previously computed
solution u`−1. If a particular Λ` leads to convergence problems, one may
try a smaller increase in Λ: Λ∗ = 1

2(Λ`−1 + Λ`), and repeat halving the
step in Λ until convergence is reestablished.

5.6 Operator splitting methods

Operator splitting is a natural and old idea. When a PDE or system of
PDEs contains different terms expressing different physics, it is natural
to use different numerical methods for different physical processes. This
can optimize and simplify the overall solution process. The idea was
especially popularized in the context of the Navier-Stokes equations and
reaction-diffusion PDEs. Common names for the technique are operator
splitting, fractional step methods, and split-step methods. We shall stick
to the former name. In the context of nonlinear differential equations,
operator splitting can be used to isolate nonlinear terms and simplify
the solution methods.

A related technique, often known as dimensional splitting or alternating
direction implicit (ADI) methods, is to split the spatial dimensions and
solve a 2D or 3D problem as two or three consecutive 1D problems, but
this type of splitting is not to be further considered here.

5.6.1 Ordinary operator splitting for ODEs

Consider first an ODE where the right-hand side is split into two terms:

u′ = f0(u) + f1(u) . (5.71)

In case f0 and f1 are linear functions of u, f0 = au and f1 = bu, we have
u(t) = Ie(a+b)t, if u(0) = I. When going one time step of length ∆t from
tn to tn+1, we have
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u(tn+1) = u(tn)e(a+b)∆t .

This expression can be also be written as

u(tn+1) = u(tn)ea∆teb∆t,

or

u∗ = u(tn)ea∆t, (5.72)
u(tn+1) = u∗eb∆t (5.73)

The first step (5.72) means solving u′ = f0 over a time interval ∆t with
u(tn) as start value. The second step (5.73) means solving u′ = f1 over
a time interval ∆t with the value at the end of the first step as start
value. That is, we progress the solution in two steps and solve two ODEs
u′ = f0 and u′ = f1. The order of the equations is not important. From
the derivation above we see that solving u′ = f1 prior to u′ = f0 can
equally well be done.

The technique is exact if the ODEs are linear. For nonlinear ODEs
it is only an approximate method with error ∆t. The technique can be
extended to an arbitrary number of steps; i.e., we may split the PDE
system into any number of subsystems. Examples will illuminate this
principle.

5.6.2 Strang splitting for ODEs

The accuracy of the splitting method in Section 5.6.1 can be improved
from O(∆t) to O(∆t2) using so-called Strang splitting, where we take
half a step with the f0 operator, a full step with the f1 operator, and
finally half another step with the f0 operator. During a time interval ∆t
the algorithm can be written as follows.

du∗

dt
= f0(u∗), u∗(tn) = u(tn), t ∈ [tn, tn + 1

2∆t],
du∗∗∗

dt
= f1(u∗∗∗), u∗∗∗(tn) = u∗(tn+ 1

2
), t ∈ [tn, tn +∆t],

du∗∗

dt
= f0(u∗∗), u∗∗(tn+ 1

2
) = u∗∗∗(tn+1), t ∈ [tn + 1

2∆t, tn +∆t] .
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The global solution is set as u(tn+1) = u∗∗(tn+1).
There is no use in combining higher-order methods with ordinary

splitting since the error due to splitting is O(∆t), but for Strang splitting
it makes sense to use schemes of order O(∆t2).

With the notation introduced for Strang splitting, we may express
ordinary first-order splitting as

du∗

dt
= f0(u∗), u∗(tn) = u(tn), t ∈ [tn, tn +∆t],

du∗∗

dt
= f1(u∗∗), u∗∗(tn) = u∗(tn+1), t ∈ [tn, tn +∆t],

with global solution set as u(tn+1) = u∗∗(tn+1).

5.6.3 Example: Logistic growth

Let us split the (scaled) logistic equation

u′ = u(1− u), u(0) = 0.1,

with solution u = (9e−t + 1)−1, into

u′ = u− u2 = f0(u) + f1(u), f0(u) = u, f1(u) = −u2 .

We solve u′ = f0(u) and u′ = f1(u) by a Forward Euler step. In addition,
we add a method where we solve u′ = f0(u) analytically, since the equa-
tion is actually u′ = u with solution et. The software that accompanies
the following methods is the file split_logistic.py.

Splitting techniques. Ordinary splitting takes a Forward Euler step for
each of the ODEs according to

u∗,n+1 − u∗,n

∆t
= f0(u∗,n), u∗,n = u(tn), t ∈ [tn, tn +∆t], (5.74)

u∗∗,n+1 − u∗∗,n

∆t
= f1(u∗∗,n), u∗∗,n = u∗,n+1, t ∈ [tn, tn +∆t],

(5.75)

with u(tn+1) = u∗∗,n+1.
Strang splitting takes the form

http://tinyurl.com/nu656p2/nonlin/split_logistic.py
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u∗,n+ 1
2 − u∗,n

1
2∆t

= f0(u∗,n), u∗,n = u(tn), t ∈ [tn, tn + 1
2∆t],

(5.76)
u∗∗∗,n+1 − u∗∗∗,n

∆t
= f1(u∗∗∗,n), u∗∗∗,n = u∗,n+ 1

2 , t ∈ [tn, tn +∆t],
(5.77)

u∗∗,n+1 − u∗∗,n+ 1
2

1
2∆t

= f0(u∗∗,n+ 1
2 ), u∗∗,n+ 1

2 = u∗∗∗,n+1, t ∈ [tn + 1
2∆t, tn +∆t] .

(5.78)

Verbose implementation. The following function computes four solu-
tions arising from the Forward Euler method, ordinary splitting, Strang
splitting, as well as Strang splitting with exact treatment of u′ = f0(u):

import numpy as np

def solver(dt, T, f, f_0, f_1):
"""
Solve u’=f by the Forward Euler method and by ordinary and
Strang splitting: f(u) = f_0(u) + f_1(u).
"""
Nt = int(round(T/float(dt)))
t = np.linspace(0, Nt*dt, Nt+1)
u_FE = np.zeros(len(t))
u_split1 = np.zeros(len(t)) # 1st-order splitting
u_split2 = np.zeros(len(t)) # 2nd-order splitting
u_split3 = np.zeros(len(t)) # 2nd-order splitting w/exact f_0

# Set initial values
u_FE[0] = 0.1
u_split1[0] = 0.1
u_split2[0] = 0.1
u_split3[0] = 0.1

for n in range(len(t)-1):
# Forward Euler method
u_FE[n+1] = u_FE[n] + dt*f(u_FE[n])

# --- Ordinary splitting ---
# First step
u_s_n = u_split1[n]
u_s = u_s_n + dt*f_0(u_s_n)
# Second step
u_ss_n = u_s
u_ss = u_ss_n + dt*f_1(u_ss_n)
u_split1[n+1] = u_ss
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# --- Strang splitting ---
# First step
u_s_n = u_split2[n]
u_s = u_s_n + dt/2.*f_0(u_s_n)
# Second step
u_sss_n = u_s
u_sss = u_sss_n + dt*f_1(u_sss_n)
# Third step
u_ss_n = u_sss
u_ss = u_ss_n + dt/2.*f_0(u_ss_n)
u_split2[n+1] = u_ss

# --- Strang splitting using exact integrator for u’=f_0 ---
# First step
u_s_n = u_split3[n]
u_s = u_s_n*np.exp(dt/2.) # exact
# Second step
u_sss_n = u_s
u_sss = u_sss_n + dt*f_1(u_sss_n)
# Third step
u_ss_n = u_sss
u_ss = u_ss_n*np.exp(dt/2.) # exact
u_split3[n+1] = u_ss

return u_FE, u_split1, u_split2, u_split3, t

Compact implementation. We have used quite many lines for the steps
in the splitting methods. Many will prefer to condense the code a bit, as
done here:

# Ordinary splitting
u_s = u_split1[n] + dt*f_0(u_split1[n])
u_split1[n+1] = u_s + dt*f_1(u_s)

# Strang splitting
u_s = u_split2[n] + dt/2.*f_0(u_split2[n])
u_sss = u_s + dt*f_1(u_s)
u_split2[n+1] = u_sss + dt/2.*f_0(u_sss)

# Strang splitting using exact integrator for u’=f_0
u_s = u_split3[n]*np.exp(dt/2.) # exact
u_ss = u_s + dt*f_1(u_s)
u_split3[n+1] = u_ss*np.exp(dt/2.)

Results. Figure 5.3 shows that the impact of splitting is significant.
Interestingly, however, the Forward Euler method applied to the entire
problem directly is much more accurate than any of the splitting schemes.
We also see that Strang splitting is definitely more accurate than ordinary
splitting and that it helps a bit to use an exact solution of u′ = f0(u).
With a large time step (∆t = 0.2, left plot in Figure 5.3), the asymptotic
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values are off by 20-30%. A more reasonable time step (∆t = 0.05, right
plot in Figure 5.3) gives better results, but still the asymptotic values
are up to 10% wrong.

As technique for solving nonlinear ODEs, we realize that the present
case study is not particularly promising, as the Forward Euler method
both linearizes the original problem and provides a solution that is much
more accurate than any of the splitting techniques. In complicated multi-
physics settings, on the other hand, splitting may be the only feasible
way to go, and sometimes you really need to apply different numerics to
different parts of a PDE problem. But in very simple problems, like the
logistic ODE, splitting is just an inferior technique. Still, the logistic ODE
is ideal for introducing all the mathematical details and for investigating
the behavior.
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Fig. 5.3 Effect of ordinary and Strang splitting for the logistic equation.

5.6.4 Reaction-diffusion equation
Consider a diffusion equation coupled to chemical reactions modeled by
a nonlinear term f(u):

∂u

∂t
= α∇2u+ f(u) .

This is a physical process composed of two individual processes: u is
the concentration of a substance that is locally generated by a chemical
reaction f(u), while u is spreading in space because of diffusion. There
are obviously two time scales: one for the chemical reaction and one for
diffusion. Typically, fast chemical reactions require much finer time step-
ping than slower diffusion processes. It could therefore be advantageous
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to split the two physical effects in separate models and use different
numerical methods for the two.

A natural spitting in the present case is

∂u∗

∂t
= α∇2u∗, (5.79)

∂u∗∗

∂t
= f(u∗∗) . (5.80)

Looking at these familiar problems, we may apply a θ rule (implicit)
scheme for (5.79) over one time step and avoid dealing with nonlinearities
by applying an explicit scheme for (5.80) over the same time step.

Suppose we have some solution u at time level tn. For flexibility, we
define a θ method for the diffusion part (5.79) by

[Dtu
∗ = α(DxDxu

∗ +DyDyu
∗)]n+θ .

We use un as initial condition for u∗.
The reaction part, which is defined at each mesh point (without

coupling values in different mesh points), can employ any scheme for
an ODE. Here we use an Adams-Bashforth method of order 2. Recall
that the overall accuracy of the splitting method is maximum O(∆t2)
for Strang splitting, otherwise it is just O(∆t). Higher-order methods for
ODEs will therefore be a waste of work. The 2nd-order Adams-Bashforth
method reads

u∗∗,n+1
i,j = u∗∗,ni,j + 1

2∆t
(
3f(u∗∗,ni,j , tn)− f(u∗∗,n−1

i,j , tn−1)
)
. (5.81)

We can use a Forward Euler step to start the method, i.e, compute u∗∗,1i,j .
The algorithm goes like this:

1. Solve the diffusion problem for one time step as usual.
2. Solve the reaction ODEs at each mesh point in [tn, tn +∆t], using the

diffusion solution in 1. as initial condition. The solution of the ODEs
constitute the solution of the original problem at the end of each time
step.

We may use a much smaller time step when solving the reaction part,
adapted to the dynamics of the problem u′ = f(u). This gives great
flexibility in splitting methods.
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5.6.5 Example: Reaction-Diffusion with linear reaction term

The methods above may be explored in detail through a specific compu-
tational example in which we compute the convergence rates associated
with four different solution approaches for the reaction-diffusion equation
with a linear reaction term, i.e. f(u) = −bu. The methods comprise
solving without splitting (just straight Forward Euler), ordinary splitting,
first order Strang splitting, and second order Strang splitting. In all four
methods, a standard centered difference approximation is used for the
spatial second derivative. The methods share the error model E = Chr,
while differing in the step h (being either dx2 or dx) and the convergence
rate r (being either 1 or 2).

All code commented below is found in the file split_diffu_react.py.
When executed, a function convergence_rates is called, from which all
convergence rate computations are handled:

def convergence_rates(scheme=’diffusion’):

F = 0.5 # Upper limit for FE (stability). For CN, this
# limit does not apply, but for simplicity, we
# choose F = 0.5 as the initial F value.

T = 1.2
a = 3.5
b = 1
L = 1.5
k = np.pi/L

def exact(x, t):
’’’exact sol. to: du/dt = a*d^2u/dx^2 - b*u’’’
return np.exp(-(a*k**2 + b)*t) * np.sin(k*x)

def f(u, t):
return -b*u

def I(x):
return exact(x, 0)

global error # error computed in the user action function
error = 0

# Convergence study
def action(u, x, t, n):

global error
if n == 1: # New simulation, - reset error

error = 0
else:

error = max(error, np.abs(u - exact(x, t[n])).max())

E = []

http://tinyurl.com/nu656p2/nonlin/split_diffu_react.py
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h = []
Nx_values = [10, 20, 40, 80] # i.e., dx halved each time
for Nx in Nx_values:

dx = L/Nx
if scheme == ’Strang_splitting_2ndOrder’:

print ’Strang splitting with 2nd order schemes...’
# In this case, E = C*h**r (with r = 2) and since
# h = dx = K*dt, the ratio dt/dx must be constant.
# To fulfill this demand, we must let F change
# when dx changes. From F = a*dt/dx**2, it follows
# that halving dx AND doubling F assures dt/dx const.
# Initially, we simply choose F = 0.5.

dt = F/a*dx**2
#print ’dt/dx:’, dt/dx
Nt = int(round(T/float(dt)))
t = np.linspace(0, Nt*dt, Nt+1) # global time
Strang_splitting_2ndOrder(I=I, a=a, b=b, f=f, L=L, dt=dt,

dt_Rfactor=1, F=F, t=t, T=T,
user_action=action)

h.append(dx)
# prepare for next iteration (make F match dx/2)
F = F*2 # assures dt/dx const. when dx = dx/2

else:
# In these cases, E = C*h**r (with r = 1) and since
# h = dx**2 = K*dt, the ratio dt/dx**2 must be constant.
# This is fulfilled by choosing F = 0.5 (for FE stability)
# and make sure that F, dx and dt comply to F = a*dt/dx**2.
dt = F/a*dx**2
Nt = int(round(T/float(dt)))
t = np.linspace(0, Nt*dt, Nt+1) # global time
if scheme == ’diffusion’:

print ’FE on whole eqn...’
diffusion_theta(I, a, f, L, dt, F, t, T,

step_no=0, theta=0,
u_L=0, u_R=0, user_action=action)

h.append(dx**2)
elif scheme == ’ordinary_splitting’:

print ’Ordinary splitting...’
ordinary_splitting(I=I, a=a, b=b, f=f, L=L, dt=dt,

dt_Rfactor=1, F=F, t=t, T=T,
user_action=action)

h.append(dx**2)
elif scheme == ’Strang_splitting_1stOrder’:

print ’Strang splitting with 1st order schemes...’
Strang_splitting_1stOrder(I=I, a=a, b=b, f=f, L=L, dt=dt,

dt_Rfactor=1, F=F, t=t, T=T,
user_action=action)

h.append(dx**2)
else:

print ’Unknown scheme requested!’
sys.exit(0)

#print ’dt/dx**2:’, dt/dx**2
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E.append(error)
Nx *= 2 # Nx doubled gives dx/2

print ’E:’, E
print ’h:’, h

# Convergence rates
r = [np.log(E[i]/E[i-1])/np.log(h[i]/h[i-1])

for i in range(1,len(Nx_values))]
print ’Computed rates:’, r

if __name__ == ’__main__’:

schemes = [’diffusion’,
’ordinary_splitting’,
’Strang_splitting_1stOrder’,
’Strang_splitting_2ndOrder’]

for scheme in schemes:
convergence_rates(scheme=scheme)

Now, with respect to the error (E = Chr), the Forward Euler scheme,
the ordinary splitting scheme and first order Strang splitting scheme
are all first order (r = 1), with a step h = ∆x2 = K−1∆t, where K is
some constant. This implies that the ratio ∆t

∆x2 must be held constant
during convergence rate calculations. Furthermore, the Fourier number
F = α∆t

∆x2 is upwards limited to F = 0.5, being the stability limit with
explicit schemes. Thus, in these cases, we use the fixed value of F and a
given (but changing) spatial resolution ∆x to compute the corresponding
value of ∆t according to the expression for F . This assures that ∆t

∆x2 is
kept constant. The loop in convergence_rates runs over a chosen set
of grid points (Nx_values) which gives a doubling of spatial resolution
with each iteration (∆x is halved).

For the second order Strang splitting scheme, we have r = 2 and a
step h = ∆x = K−1∆t, where K again is some constant. In this case, it
is thus the ratio ∆t

∆x that must be held constant during the convergence
rate calculations. From the expression for F , it is clear then that F
must change with each halving of ∆x. In fact, if F is doubled each time
∆x is halved, the ratio ∆t

∆x will be constant (this follows, e.g., from the
expression for F ). This us utilized in our code.

A solver diffusion_theta is used in each of the four solution ap-
proaches:

def diffusion_theta(I, a, f, L, dt, F, t, T, step_no, theta=0.5,
u_L=0, u_R=0, user_action=None):
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"""
Full solver for the model problem using the theta-rule
difference approximation in time (no restriction on F,
i.e., the time step when theta >= 0.5). Vectorized
implementation and sparse (tridiagonal) coefficient matrix.
Note that t always covers the whole global time interval, whether
splitting is the case or not. T, on the other hand, is
the end of the global time interval if there is no split,
but if splitting, we use T=dt. When splitting, step_no
keeps track of the time step number (for lookup in t).
"""

Nt = int(round(T/float(dt)))
dx = np.sqrt(a*dt/F)
Nx = int(round(L/dx))
x = np.linspace(0, L, Nx+1) # Mesh points in space
# Make sure dx and dt are compatible with x and t
dx = x[1] - x[0]
dt = t[1] - t[0]

u = np.zeros(Nx+1) # solution array at t[n+1]
u_1 = np.zeros(Nx+1) # solution at t[n]

# Representation of sparse matrix and right-hand side
diagonal = np.zeros(Nx+1)
lower = np.zeros(Nx)
upper = np.zeros(Nx)
b = np.zeros(Nx+1)

# Precompute sparse matrix (scipy format)
Fl = F*theta
Fr = F*(1-theta)
diagonal[:] = 1 + 2*Fl
lower[:] = -Fl #1
upper[:] = -Fl #1
# Insert boundary conditions
diagonal[0] = 1
upper[0] = 0
diagonal[Nx] = 1
lower[-1] = 0

diags = [0, -1, 1]
A = scipy.sparse.diags(

diagonals=[diagonal, lower, upper],
offsets=[0, -1, 1], shape=(Nx+1, Nx+1),
format=’csr’)

#print A.todense()

# Allow f to be None or 0
if f is None or f == 0:

f = lambda x, t: np.zeros((x.size)) \
if isinstance(x, np.ndarray) else 0

# Set initial condition
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if isinstance(I, np.ndarray): # I is an array
u_1 = np.copy(I)

else: # I is a function
for i in range(0, Nx+1):

u_1[i] = I(x[i])

if user_action is not None:
user_action(u_1, x, t, step_no+0)

# Time loop
for n in range(0, Nt):

b[1:-1] = u_1[1:-1] + \
Fr*(u_1[:-2] - 2*u_1[1:-1] + u_1[2:]) + \
dt*theta*f(u_1[1:-1], t[step_no+n+1]) + \
dt*(1-theta)*f(u_1[1:-1], t[step_no+n])

b[0] = u_L; b[-1] = u_R # boundary conditions
u[:] = scipy.sparse.linalg.spsolve(A, b)

if user_action is not None:
user_action(u, x, t, step_no+(n+1))

# Update u_1 before next step
u_1, u = u, u_1

# u is now contained in u_1 (swapping)
return u_1

For the no splitting approach with Forward Euler in time, this
solver handles both the diffusion and the reaction term. When splitting,
diffusion_theta takes care of the diffusion term only, while the reaction
term is handled either by a Forward Euler scheme in reaction_FE, or by
a second order Adams-Bashforth scheme from Odespy. The reaction_FE
function covers one complete time step dt during ordinary splitting, while
Strang splitting (both first and second order) applies it with dt/2 twice
during each time step dt. Since the reaction term typically represents a
much faster process than the diffusion term, a further refinement of the
time step is made possible in reaction_FE. It was implemented as

def reaction_FE(I, f, L, Nx, dt, dt_Rfactor, t, step_no,
user_action=None):

"""Reaction solver, Forward Euler method.
Note the at t covers the whole global time interval.
dt is either one complete,or one half, of the step in the
diffusion part, i.e. there is a local time interval
[0, dt] or [0, dt/2] that the reaction_FE
deals with each time it is called. step_no keeps
track of the (global) time step number (required
for lookup in t).
"""

u = np.copy(I)
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dt_local = dt/float(dt_Rfactor)
Nt_local = int(round(dt/float(dt_local)))
x = np.linspace(0, L, Nx+1)

for n in range(Nt_local):
time = t[step_no] + n*dt_local
u[1:Nx] = u[1:Nx] + dt_local*f(u[1:Nx], time)

# BC already inserted in diffusion step, i.e. no action here
return u

With the ordinary splitting approach, each time step dt is covered twice.
First computing the impact of the reaction term, then the contribution
from the diffusion term:

def ordinary_splitting(I, a, b, f, L, dt,
dt_Rfactor, F, t, T,
user_action=None):

’’’1st order scheme, i.e. Forward Euler is enough for both
the diffusion and the reaction part. The time step dt is
given for the diffusion step, while the time step for the
reaction part is found as dt/dt_Rfactor, where dt_Rfactor >= 1.
’’’
Nt = int(round(T/float(dt)))
dx = np.sqrt(a*dt/F)
Nx = int(round(L/dx))
x = np.linspace(0, L, Nx+1) # Mesh points in space
u = np.zeros(Nx+1)

# Set initial condition u(x,0) = I(x)
for i in range(0, Nx+1):

u[i] = I(x[i])

# In the following loop, each time step is "covered twice",
# first for reaction, then for diffusion
for n in range(0, Nt):

# Reaction step (potentially many smaller steps within dt)
u_s = reaction_FE(I=u, f=f, L=L, Nx=Nx,

dt=dt, dt_Rfactor=dt_Rfactor,
t=t, step_no=n,
user_action=None)

u = diffusion_theta(I=u_s, a=a, f=0, L=L, dt=dt, F=F,
t=t, T=dt, step_no=n, theta=0,
u_L=0, u_R=0, user_action=None)

if user_action is not None:
user_action(u, x, t, n+1)

return

For the two Strang splitting approaches, each time step dt is handled
by first computing the reaction step for (the first) dt/2, followed by
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a diffusion step dt, before the reaction step is treated once again for
(the remaining) dt/2. Since first order Strang splitting is no better than
first order accurate, both the reaction and diffusion steps are computed
explicitly. The solver was implemented as

def Strang_splitting_1stOrder(I, a, b, f, L, dt, dt_Rfactor,
F, t, T, user_action=None):

’’’Strang splitting while still using FE for the reaction
step and for the diffusion step. Gives 1st order scheme.
The time step dt is given for the diffusion step, while
the time step for the reaction part is found as
0.5*dt/dt_Rfactor, where dt_Rfactor >= 1. Introduce an
extra time mesh t2 for the reaction part, since it steps dt/2.
’’’
Nt = int(round(T/float(dt)))
t2 = np.linspace(0, Nt*dt, (Nt+1)+Nt) # Mesh points in diff
dx = np.sqrt(a*dt/F)
Nx = int(round(L/dx))
x = np.linspace(0, L, Nx+1)
u = np.zeros(Nx+1)

# Set initial condition u(x,0) = I(x)
for i in range(0, Nx+1):

u[i] = I(x[i])

for n in range(0, Nt):
# Reaction step (1/2 dt: from t_n to t_n+1/2)
# (potentially many smaller steps within dt/2)
u_s = reaction_FE(I=u, f=f, L=L, Nx=Nx,

dt=dt/2.0, dt_Rfactor=dt_Rfactor,
t=t2, step_no=2*n,
user_action=None)

# Diffusion step (1 dt: from t_n to t_n+1)
u_sss = diffusion_theta(I=u_s, a=a, f=0, L=L, dt=dt, F=F,

t=t, T=dt, step_no=n, theta=0,
u_L=0, u_R=0, user_action=None)

# Reaction step (1/2 dt: from t_n+1/2 to t_n+1)
# (potentially many smaller steps within dt/2)
u = reaction_FE(I=u_sss, f=f, L=L, Nx=Nx,

dt=dt/2.0, dt_Rfactor=dt_Rfactor,
t=t2, step_no=2*n+1,
user_action=None)

if user_action is not None:
user_action(u, x, t, n+1)

return

The second order version of the Strang splitting approach utilizes a
second order Adams-Bashforth solver for the reaction part and a Crank-
Nicolson scheme for the diffusion part. The solver has the same structure
as the one for first order Strang splitting and was implemented as
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def Strang_splitting_2ndOrder(I, a, b, f, L, dt, dt_Rfactor,
F, t, T, user_action=None):

’’’Strang splitting using Crank-Nicolson for the diffusion
step (theta-rule) and Adams-Bashforth 2 for the reaction step.
Gives 2nd order scheme. Introduce an extra time mesh t2 for
the reaction part, since it steps dt/2.
’’’
import odespy
Nt = int(round(T/float(dt)))
t2 = np.linspace(0, Nt*dt, (Nt+1)+Nt) # Mesh points in diff
dx = np.sqrt(a*dt/F)
Nx = int(round(L/dx))
x = np.linspace(0, L, Nx+1)
u = np.zeros(Nx+1)

# Set initial condition u(x,0) = I(x)
for i in range(0, Nx+1):

u[i] = I(x[i])

reaction_solver = odespy.AdamsBashforth2(f)

for n in range(0, Nt):
# Reaction step (1/2 dt: from t_n to t_n+1/2)
# (potentially many smaller steps within dt/2)
reaction_solver.set_initial_condition(u)
t_points = np.linspace(0, dt/2.0, dt_Rfactor+1)
u_AB2, t_ = reaction_solver.solve(t_points) # t_ not needed
u_s = u_AB2[-1,:] # pick sol at last point in time

# Diffusion step (1 dt: from t_n to t_n+1)
u_sss = diffusion_theta(I=u_s, a=a, f=0, L=L, dt=dt, F=F,

t=t, T=dt, step_no=n, theta=0.5,
u_L=0, u_R=0, user_action=None)

# Reaction step (1/2 dt: from t_n+1/2 to t_n+1)
# (potentially many smaller steps within dt/2)
reaction_solver.set_initial_condition(u_sss)
t_points = np.linspace(0, dt/2.0, dt_Rfactor+1)
u_AB2, t_ = reaction_solver.solve(t_points) # t_ not needed
u = u_AB2[-1,:] # pick sol at last point in time

if user_action is not None:
user_action(u, x, t, n+1)

return

When executing split_diffu_react.py, we find that the estimated
convergence rates are as expected. The second order Strang splitting gives
the least error (about 4e−5) and has second order convergence (r = 2),
while the remaining three approaches have first order convergence (r = 1).
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5.6.6 Analysis of the splitting method

Let us address a linear PDE problem for which we can develop analytical
solutions of the discrete equations, with and without splitting, and discuss
these. Choosing f(u) = −βu for a constant β gives a linear problem. We
use the Forward Euler method for both the PDE and ODE problems.

We seek a 1D Fourier wave component solution of the problem, as-
suming homogeneous Dirichlet conditions at x = 0 and x = L:

u = e−αk
2t−βt sin kx, k = π

L
.

This component fits the 1D PDE problem (f = 0). On complex form we
can write

u = e−αk
2t−βt+ikx,

where i =
√
−1 and the imaginary part is taken as the physical solution.

We refer to Section 3.3 and to the book [9] for a discussion of exact
numerical solutions to diffusion and decay problems, respectively. The key
idea is to search for solutions Aneikx and determine A. For the diffusion
problem solved by a Forward Euler method one has

A = 1− 4F sinp,

where F = α∆t/∆x2 is the mesh Fourier number and p = k∆x/2 is a
dimensionless number reflecting the spatial resolution (number of points
per wave length in space). For the decay problem u′ = −βu, we have
A = 1− q, where q is a dimensionless parameter reflecting the resolution
in the decay problem: q = β∆t.

The original model problem can also be discretized by a Forward Euler
scheme,

[D+
t u = αDxDxu− βu]ni .

Assuming Aneikx we find that

uni = (1− 4F sinp−q)n sin kx .

We are particularly interested in what happens at one time step. That is,

uni = (1− 4F sin2 p)un−1
i .

In the two stage algorithm, we first compute the diffusion step
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u∗,n+1
i = (1− 4F sin2 p)un−1

i .

Then we use this as input to the decay algorithm and arrive at

u∗∗,n+1 = (1− q)u∗,n+1 = (1− q)(1− 4F sin2 p)un−1
i .

The splitting approximation over one step is therefore

E = 1− 4F sinp−q − (1− q)(1− 4F sin2 p) = −q(2− F sin2 p))

5.7 Exercises

Problem 5.1: Determine if equations are nonlinear or not

Classify each term in the following equations as linear or nonlinear.
Assume that u, u, and p are unknown functions and that all other
symbols are known quantities.

1. mu′′ + β|u′|u′ + cu = F (t)
2. ut = αuxx
3. utt = c2∇2u
4. ut = ∇ · (α(u)∇u) + f(x, y)
5. ut + f(u)x = 0
6. ut + u · ∇u = −∇p+ r∇2u, ∇ · u = 0 (u is a vector field)
7. u′ = f(u, t)
8. ∇2u = λeu

Filename: nonlinear_vs_linear.

Problem 5.2: Derive and investigate a generalized logistic
model

The logistic model for population growth is derived by assuming a
nonlinear growth rate,

u′ = a(u)u, u(0) = I, (5.82)

and the logistic model arises from the simplest possible choice of a(u):
r(u) = %(1 − u/M), where M is the maximum value of u that the
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environment can sustain, and % is the growth under unlimited access to
resources (as in the beginning when u is small). The idea is that a(u) ∼ %
when u is small and that a(t)→ 0 as u→M .

An a(u) that generalizes the linear choice is the polynomial form

a(u) = %(1− u/M)p, (5.83)

where p > 0 is some real number.

a) Formulate a Forward Euler, Backward Euler, and a Crank-Nicolson
scheme for (5.82).

Hint. Use a geometric mean approximation in the Crank-Nicolson scheme:
[a(u)u]n+1/2 ≈ a(un)un+1.

b) Formulate Picard and Newton iteration for the Backward Euler
scheme in a).

c) Implement the numerical solution methods from a) and b). Use
logistic.py to compare the case p = 1 and the choice (5.83).

d) Implement unit tests that check the asymptotic limit of the solutions:
u→M as t→∞.

Hint. You need to experiment to find what “infinite time” is (increases
substantially with p) and what the appropriate tolerance is for testing
the asymptotic limit.

e) Perform experiments with Newton and Picard iteration for the model
(5.83). See how sensitive the number of iterations is to ∆t and p.
Filename: logistic_p.

Problem 5.3: Experience the behavior of Newton’s method

The program Newton_demo.py illustrates graphically each step in New-
ton’s method and is run like

Terminal

Terminal> python Newton_demo.py f dfdx x0 xmin xmax

Use this program to investigate potential problems with Newton’s method
when solving e−0.5x2 cos(πx) = 0. Try a starting point x0 = 0.8 and
x0 = 0.85 and watch the different behavior. Just run

http://tinyurl.com/nu656p2/nonlin/logistic.py
http://tinyurl.com/nu656p2/nonlin/Newton_demo.py
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Terminal

Terminal> python Newton_demo.py ’0.2 + exp(-0.5*x**2)*cos(pi*x)’ \
’-x*exp(-x**2)*cos(pi*x) - pi*exp(-x**2)*sin(pi*x)’ \
0.85 -3 3

and repeat with 0.85 replaced by 0.8.

Exercise 5.4: Compute the Jacobian of a 2× 2 system

Write up the system (5.18)-(5.19) in the form F (u) = 0, F = (F0, F1),
u = (u0, u1), and compute the Jacobian Ji,j = ∂Fi/∂uj .

Problem 5.5: Solve nonlinear equations arising from a
vibration ODE

Consider a nonlinear vibration problem

mu′′ + bu′|u′|+ s(u) = F (t), (5.84)

where m > 0 is a constant, b ≥ 0 is a constant, s(u) a possibly nonlinear
function of u, and F (t) is a prescribed function. Such models arise from
Newton’s second law of motion in mechanical vibration problems where
s(u) is a spring or restoring force, mu′′ is mass times acceleration, and
bu′|u′| models water or air drag.

a) Rewrite the equation for u as a system of two first-order ODEs, and
discretize this system by a Crank-Nicolson (centered difference) method.
With v = u′, we get a nonlinear term vn+ 1

2 |vn+ 1
2 |. Use a geometric

average for vn+ 1
2 .

b) Formulate a Picard iteration method to solve the system of nonlinear
algebraic equations.

c) Explain how to apply Newton’s method to solve the nonlinear equa-
tions at each time level. Derive expressions for the Jacobian and the
right-hand side in each Newton iteration.
Filename: nonlin_vib.
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Exercise 5.6: Find the truncation error of arithmetic mean of
products

In Section 5.3.4 we introduce alternative arithmetic means of a product.
Say the product is P (t)Q(t) evaluated at t = tn+ 1

2
. The exact value is

[PQ]n+ 1
2 = P n+ 1

2Qn+ 1
2

There are two obvious candidates for evaluating [PQ]n+ 1
2 as a mean of

values of P and Q at tn and tn+1. Either we can take the arithmetic
mean of each factor P and Q,

[PQ]n+ 1
2 ≈ 1

2(P n + P n+1)1
2(Qn +Qn+1), (5.85)

or we can take the arithmetic mean of the product PQ:

[PQ]n+ 1
2 ≈ 1

2(P nQn + P n+1Qn+1) . (5.86)

The arithmetic average of P (tn+ 1
2
) is O(∆t2):

P (tn+ 1
2
) = 1

2(P n + P n+1) +O(∆t2) .

A fundamental question is whether (5.85) and (5.86) have different orders
of accuracy in ∆t = tn+1 − tn. To investigate this question, expand
quantities at tn+1 and tn in Taylor series around tn+ 1

2
, and subtract the

true value [PQ]n+ 1
2 from the approximations (5.85) and (5.86) to see

what the order of the error terms are.

Hint. You may explore sympy for carrying out the tedious calculations.
A general Taylor series expansion of P (t+ 1

2∆t) around t involving just
a general function P (t) can be created as follows:

>>> from sympy import *
>>> t, dt = symbols(’t dt’)
>>> P = symbols(’P’, cls=Function)
>>> P(t).series(t, 0, 4)
P(0) + t*Subs(Derivative(P(_x), _x), (_x,), (0,)) +
t**2*Subs(Derivative(P(_x), _x, _x), (_x,), (0,))/2 +
t**3*Subs(Derivative(P(_x), _x, _x, _x), (_x,), (0,))/6 + O(t**4)
>>> P_p = P(t).series(t, 0, 4).subs(t, dt/2)
>>> P_p
P(0) + dt*Subs(Derivative(P(_x), _x), (_x,), (0,))/2 +
dt**2*Subs(Derivative(P(_x), _x, _x), (_x,), (0,))/8 +
dt**3*Subs(Derivative(P(_x), _x, _x, _x), (_x,), (0,))/48 + O(dt**4)
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The error of the arithmetic mean, 1
2(P (−1

2∆t) + P (−1
2∆t)) for t = 0 is

then

>>> P_m = P(t).series(t, 0, 4).subs(t, -dt/2)
>>> mean = Rational(1,2)*(P_m + P_p)
>>> error = simplify(expand(mean) - P(0))
>>> error
dt**2*Subs(Derivative(P(_x), _x, _x), (_x,), (0,))/8 + O(dt**4)

Use these examples to investigate the error of (5.85) and (5.86) for
n = 0. (Choosing n = 0 is necessary for not making the expressions too
complicated for sympy, but there is of course no lack of generality by
using n = 0 rather than an arbitrary n - the main point is the product
and addition of Taylor series.)
Filename: product_arith_mean.

Problem 5.7: Newton’s method for linear problems

Suppose we have a linear system F (u) = Au− b = 0. Apply Newton’s
method to this system, and show that the method converges in one
iteration. Filename: Newton_linear.

Problem 5.8: Discretize a 1D problem with a nonlinear
coefficient

We consider the problem

((1 + u2)u′)′ = 1, x ∈ (0, 1), u(0) = u(1) = 0 . (5.87)

Discretize (5.87) by a centered finite difference method on a uniform
mesh. Filename: nonlin_1D_coeff_discretize.

Problem 5.9: Linearize a 1D problem with a nonlinear
coefficient

We have a two-point boundary value problem

((1 + u2)u′)′ = 1, x ∈ (0, 1), u(0) = u(1) = 0 . (5.88)

a) Construct a Picard iteration method for (5.88) without discretizing
in space.



5.7 Exercises 483

b) Apply Newton’s method to (5.88) without discretizing in space.

c) Discretize (5.88) by a centered finite difference scheme. Construct a
Picard method for the resulting system of nonlinear algebraic equations.

d) Discretize (5.88) by a centered finite difference scheme. Define the
system of nonlinear algebraic equations, calculate the Jacobian, and set
up Newton’s method for solving the system.
Filename: nonlin_1D_coeff_linearize.

Problem 5.10: Finite differences for the 1D Bratu problem

We address the so-called Bratu problem

u′′ + λeu = 0, x ∈ (0, 1), u(0) = u(1) = 0, (5.89)

where λ is a given parameter and u is a function of x. This is a widely used
model problem for studying numerical methods for nonlinear differential
equations. The problem (5.89) has an exact solution

ue(x) = −2 ln
(

cosh((x− 1
2)θ/2)

cosh(θ/4)

)
,

where θ solves

θ =
√

2λ cosh(θ/4) .

There are two solutions of (5.89) for 0 < λ < λc and no solution for
λ > λc. For λ = λc there is one unique solution. The critical value λc
solves

1 =
√

2λc
1
4 sinh(θ(λc)/4) .

A numerical value is λc = 3.513830719.

a) Discretize (5.89) by a centered finite difference method.

b) Set up the nonlinear equations Fi(u0, u1, . . . , uNx) = 0 from a). Cal-
culate the associated Jacobian.

c) Implement a solver that can compute u(x) using Newton’s method.
Plot the error as a function of x in each iteration.
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d) Investigate whether Newton’s method gives second-order convergence
by computing ||ue−u||/||ue−u−||2 in each iteration, where u is solution
in the current iteration and u− is the solution in the previous iteration.
Filename: nonlin_1D_Bratu_fd.

Problem 5.11: Discretize a nonlinear 1D heat conduction
PDE by finite differences

We address the 1D heat conduction PDE

%c(T )Tt = (k(T )Tx)x,

for x ∈ [0, L], where % is the density of the solid material, c(T ) is the
heat capacity, T is the temperature, and k(T ) is the heat conduction
coefficient. T (x, 0) = I(x), and ends are subject to a cooling law:

k(T )Tx|x=0 = h(T )(T − Ts), −k(T )Tx|x=L = h(T )(T − Ts),

where h(T ) is a heat transfer coefficient and Ts is the given surrounding
temperature.
a) Discretize this PDE in time using either a Backward Euler or Crank-
Nicolson scheme.
b) Formulate a Picard iteration method for the time-discrete problem
(i.e., an iteration method before discretizing in space).
c) Formulate a Newton method for the time-discrete problem in b).
d) Discretize the PDE by a finite difference method in space. Derive the
matrix and right-hand side of a Picard iteration method applied to the
space-time discretized PDE.
e) Derive the matrix and right-hand side of a Newton method applied
to the discretized PDE in d).
Filename: nonlin_1D_heat_FD.

Problem 5.12: Differentiate a highly nonlinear term

The operator ∇· (α(u)∇u) with α(u) = |∇u|q appears in several physical
problems, especially flow of Non-Newtonian fluids. The expression |∇u|
is defined as the Euclidean norm of a vector: |∇u|2 = ∇u · ∇u. In a
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Newton method one has to carry out the differentiation ∂α(u)/∂cj , for
u =

∑
k ckψk. Show that

∂

∂uj
|∇u|q = q|∇u|q−2∇u · ∇ψj .

Filename: nonlin_differentiate.

Exercise 5.13: Crank-Nicolson for a nonlinear 3D diffusion
equation

Redo Section 5.5.1 when a Crank-Nicolson scheme is used to discretize
the equations in time and the problem is formulated for three spatial
dimensions.
Hint. Express the Jacobian as Ji,j,k,r,s,t = ∂Fi,j,k/∂ur,s,t and observe,
as in the 2D case, that Ji,j,k,r,s,t is very sparse: Ji,j,k,r,s,t 6= 0 only for
r = i± i, s = j ± 1, and t = k ± 1 as well as r = i, s = j, and t = k.
Filename: nonlin_heat_FD_CN_2D.

Problem 5.14: Find the sparsity of the Jacobian

Consider a typical nonlinear Laplace term like ∇ · α(u)∇u discretized by
centered finite differences. Explain why the Jacobian corresponding to
this term has the same sparsity pattern as the matrix associated with
the corresponding linear term α∇2u.
Hint. Set up the unknowns that enter the difference equation at a point
(i, j) in 2D or (i, j, k) in 3D, and identify the nonzero entries of the
Jacobian that can arise from such a type of difference equation.
Filename: nonlin_sparsity_Jacobian.

Problem 5.15: Investigate a 1D problem with a continuation
method

Flow of a pseudo-plastic power-law fluid between two flat plates can be
modeled by

d

dx

(
µ0

∣∣∣∣dudx
∣∣∣∣n−1 du

dx

)
= −β, u′(0) = 0, u(H) = 0,
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where β > 0 and µ0 > 0 are constants. A target value of n may be
n = 0.2.

a) Formulate a Picard iteration method directly for the differential
equation problem.

b) Perform a finite difference discretization of the problem in each Picard
iteration. Implement a solver that can compute u on a mesh. Verify that
the solver gives an exact solution for n = 1 on a uniform mesh regardless
of the cell size.

c) Given a sequence of decreasing n values, solve the problem for each
n using the solution for the previous n as initial guess for the Picard
iteration. This is called a continuation method. Experiment with n =
(1, 0.6, 0.2) and n = (1, 0.9, 0.8, . . . , 0.2) and make a table of the number
of Picard iterations versus n.

d) Derive a Newton method at the differential equation level and dis-
cretize the resulting linear equations in each Newton iteration with the
finite difference method.

e) Investigate if Newton’s method has better convergence properties
than Picard iteration, both in combination with a continuation method.



Useful formulas A

A.1 Finite difference operator notation

© 2016, Hans Petter Langtangen, Svein Linge. Released under CC Attribution 4.0 license
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u′(tn) ≈ [Dtu]n = un+ 1
2 − un− 1

2

∆t
(A.1)

u′(tn) ≈ [D2tu]n = un+1 − un−1

2∆t (A.2)

u′(tn) = [D−t u]n = un − un−1

∆t
(A.3)

u′(tn) ≈ [D+
t u]n = un+1 − un

∆t
(A.4)

u′(tn+θ) = [D̄tu]n+θ = un+1 − un

∆t
(A.5)

u′(tn) ≈ [D2−
t u]n = 3un − 4un−1 + un−2

2∆t (A.6)

u′′(tn) ≈ [DtDtu]n = un+1 − 2un + un−1

∆t2
(A.7)

u(tn+ 1
2
) ≈ [ut]n+ 1

2 = 1
2(un+1 + un) (A.8)

u(tn+ 1
2
)2 ≈ [u2t,g]n+ 1

2 = un+1un (A.9)

u(tn+ 1
2
) ≈ [ut,h]n+ 1

2 = 2
1

un+1 + 1
un

(A.10)

u(tn+θ) ≈ [ut,θ]n+θ = θun+1 + (1− θ)un, (A.11)
tn+θ = θtn+1 + (1− θ)tn−1 (A.12)

Some may wonder why θ is absent on the right-hand side of (A.5).
The fraction is an approximation to the derivative at the point tn+θ =
θtn+1 + (1− theta)tn.

A.2 Truncation errors of finite difference approximations
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u′e(tn) = [Dtue]n +Rn = u
n+ 1

2e − un−
1
2e

∆t
+Rn,

Rn = − 1
24u

′′′
e (tn)∆t2 +O(∆t4) (A.13)

u′e(tn) = [D2tue]n +Rn = un+1
e − un−1

e
2∆t +Rn,

Rn = −1
6u
′′′
e (tn)∆t2 +O(∆t4) (A.14)

u′e(tn) = [D−t ue]n +Rn = une − un−1
e

∆t
+Rn,

Rn = −1
2u
′′
e(tn)∆t+O(∆t2) (A.15)

u′e(tn) = [D+
t ue]n +Rn = un+1

e − une
∆t

+Rn,

Rn = 1
2u
′′
e(tn)∆t+O(∆t2) (A.16)

u′e(tn+θ) = [D̄tue]n+θ +Rn+θ = un+1
e − une
∆t

+Rn+θ,

Rn+θ = −1
2(1− 2θ)u′′e(tn+θ)∆t+ 1

6((1− θ)3 − θ3)u′′′e (tn+θ)∆t2+

O(∆t3) (A.17)

u′e(tn) = [D2−
t ue]n +Rn = 3une − 4un−1

e + un−2
e

2∆t +Rn,

Rn = 1
3u
′′′
e (tn)∆t2 +O(∆t3) (A.18)

u′′e(tn) = [DtDtue]n +Rn = un+1
e − 2une + un−1

e
∆t2

+Rn,

Rn = − 1
12u

′′′′
e (tn)∆t2 +O(∆t4) (A.19)

ue(tn+θ) = [uet,θ]n+θ +Rn+θ = θun+1
e + (1− θ)une +Rn+θ,

Rn+θ = −1
2u
′′
e(tn+θ)∆t2θ(1− θ) +O(∆t3) . (A.20)

A.3 Finite differences of exponential functions

Complex exponentials. Let un = exp (iωn∆t) = eiωtn .
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[DtDtu]n = un
2
∆t

(cosω∆t− 1) = − 4
∆t

sin2
(
ω∆t

2

)
, (A.21)

[D+
t u]n = un

1
∆t

(exp (iω∆t)− 1), (A.22)

[D−t u]n = un
1
∆t

(1− exp (−iω∆t)), (A.23)

[Dtu]n = un
2
∆t

i sin
(
ω∆t

2

)
, (A.24)

[D2tu]n = un
1
∆t

i sin (ω∆t) . (A.25)

Real exponentials. Let un = exp (ωn∆t) = eωtn .

[DtDtu]n = un
2
∆t

(cosω∆t− 1) = − 4
∆t

sin2
(
ω∆t

2

)
, (A.26)

[D+
t u]n = un

1
∆t

(exp (iω∆t)− 1), (A.27)

[D−t u]n = un
1
∆t

(1− exp (−iω∆t)), (A.28)

[Dtu]n = un
2
∆t

i sin
(
ω∆t

2

)
, (A.29)

[D2tu]n = un
1
∆t

i sin (ω∆t) . (A.30)

A.4 Finite differences of tn

The following results are useful when checking if a polynomial term in a
solution fulfills the discrete equation for the numerical method.

[D+
t t]n = 1, (A.31)

[D−t t]n = 1, (A.32)
[Dtt]n = 1, (A.33)

[D2tt]n = 1, (A.34)
[DtDtt]n = 0 . (A.35)

The next formulas concern the action of difference operators on a t2
term.
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[D+
t t

2]n = (2n+ 1)∆t, (A.36)
[D−t t2]n = (2n− 1)∆t, (A.37)

[Dtt
2]n = 2n∆t, (A.38)

[D2tt
2]n = 2n∆t, (A.39)

[DtDtt
2]n = 2, (A.40)

Finally, we present formulas for a t3 term:

[D+
t t

3]n = 3(n∆t)2 + 3n∆t2 +∆t2, (A.41)
[D−t t3]n = 3(n∆t)2 − 3n∆t2 +∆t2, (A.42)

[Dtt
3]n = 3(n∆t)2 + 1

4∆t
2, (A.43)

[D2tt
3]n = 3(n∆t)2 +∆t2, (A.44)

[DtDtt
3]n = 6n∆t, (A.45)

A.4.1 Software
Application of finite difference operators to polynomials and exponential
functions, resulting in the formulas above, can easily be computed by
some sympy code (from the file lib.py):

from sympy import *
t, dt, n, w = symbols(’t dt n w’, real=True)

# Finite difference operators

def D_t_forward(u):
return (u(t + dt) - u(t))/dt

def D_t_backward(u):
return (u(t) - u(t-dt))/dt

def D_t_centered(u):
return (u(t + dt/2) - u(t-dt/2))/dt

def D_2t_centered(u):
return (u(t + dt) - u(t-dt))/(2*dt)

def D_t_D_t(u):
return (u(t + dt) - 2*u(t) + u(t-dt))/(dt**2)

http://tinyurl.com/nu656p2/formulas/lib.py
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op_list = [D_t_forward, D_t_backward,
D_t_centered, D_2t_centered, D_t_D_t]

def ft1(t):
return t

def ft2(t):
return t**2

def ft3(t):
return t**3

def f_expiwt(t):
return exp(I*w*t)

def f_expwt(t):
return exp(w*t)

func_list = [ft1, ft2, ft3, f_expiwt, f_expwt]

To see the results, one can now make a simple loop over the different
type of functions and the various operators associated with them:

for func in func_list:
for op in op_list:

f = func
e = op(f)
e = simplify(expand(e))
print e
if func in [f_expiwt, f_expwt]:

e = e/f(t)
e = e.subs(t, n*dt)
print expand(e)
print factor(simplify(expand(e)))



Truncation error analysis B

Truncation error analysis provides a widely applicable framework for
analyzing the accuracy of finite difference schemes. This type of analysis
can also be used for finite element and finite volume methods if the
discrete equations are written in finite difference form. The result of the
analysis is an asymptotic estimate of the error in the scheme on the form
Chr, where h is a discretization parameter (∆t, ∆x, etc.), r is a number,
known as the convergence rate, and C is a constant, typically dependent
on the derivatives of the exact solution.

Knowing r gives understanding of the accuracy of the scheme. But
maybe even more important, a powerful verification method for computer
codes is to check that the empirically observed convergence rates in
experiments coincide with the theoretical value of r found from truncation
error analysis.

The analysis can be carried out by hand, by symbolic software, and
also numerically. All three methods will be illustrated. From examining
the symbolic expressions of the truncation error we can add correction
terms to the differential equations in order to increase the numerical
accuracy.

In general, the term truncation error refers to the discrepancy that
arises from performing a finite number of steps to approximate a process
with infinitely many steps. The term is used in a number of contexts,
including truncation of infinite series, finite precision arithmetic, finite
differences, and differential equations. We shall be concerned with com-
puting truncation errors arising in finite difference formulas and in finite
difference discretizations of differential equations.

© 2016, Hans Petter Langtangen, Svein Linge. Released under CC Attribution 4.0 license
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B.1 Overview of truncation error analysis

B.1.1 Abstract problem setting

Consider an abstract differential equation

L(u) = 0,

where L(u) is some formula involving the unknown u and its derivatives.
One example is L(u) = u′(t)+a(t)u(t)−b(t), where a and b are constants
or functions of time. We can discretize the differential equation and obtain
a corresponding discrete model, here written as

L∆(u) = 0 .

The solution u of this equation is the numerical solution. To distinguish
the numerical solution from the exact solution of the differential equation
problem, we denote the latter by ue and write the differential equation
and its discrete counterpart as

L(ue) = 0,
L∆(u) = 0 .

Initial and/or boundary conditions can usually be left out of the trunca-
tion error analysis and are omitted in the following.

The numerical solution u is, in a finite difference method, computed
at a collection of mesh points. The discrete equations represented by the
abstract equation L∆(u) = 0 are usually algebraic equations involving u
at some neighboring mesh points.

B.1.2 Error measures

A key issue is how accurate the numerical solution is. The ultimate way
of addressing this issue would be to compute the error ue−u at the mesh
points. This is usually extremely demanding. In very simplified problem
settings we may, however, manage to derive formulas for the numerical
solution u, and therefore closed form expressions for the error ue − u.
Such special cases can provide considerable insight regarding accuracy
and stability, but the results are established for special problems.
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The error ue−u can be computed empirically in special cases where we
know ue. Such cases can be constructed by the method of manufactured
solutions, where we choose some exact solution ue = v and fit a source
term f in the governing differential equation L(ue) = f such that ue = v
is a solution (i.e., f = L(v)). Assuming an error model of the form
Chr, where h is the discretization parameter, such as ∆t or ∆x, one can
estimate the convergence rate r. This is a widely applicable procedure,
but the validity of the results is, strictly speaking, tied to the chosen test
problems.

Another error measure arises by asking to what extent the exact
solution ue fits the discrete equations. Clearly, ue is in general not a
solution of L∆(u) = 0, but we can define the residual

R = L∆(ue),

and investigate how close R is to zero. A small R means intuitively that
the discrete equations are close to the differential equation, and then we
are tempted to think that un must also be close to ue(tn).

The residual R is known as the truncation error of the finite difference
scheme L∆(u) = 0. It appears that the truncation error is relatively
straightforward to compute by hand or symbolic software without special-
izing the differential equation and the discrete model to a special case. The
resulting R is found as a power series in the discretization parameters.
The leading-order terms in the series provide an asymptotic measure
of the accuracy of the numerical solution method (as the discretization
parameters tend to zero). An advantage of truncation error analysis, com-
pared to empirical estimation of convergence rates, or detailed analysis
of a special problem with a mathematical expression for the numerical
solution, is that the truncation error analysis reveals the accuracy of the
various building blocks in the numerical method and how each building
block impacts the overall accuracy. The analysis can therefore be used
to detect building blocks with lower accuracy than the others.

Knowing the truncation error or other error measures is important for
verification of programs by empirically establishing convergence rates.
The forthcoming text will provide many examples on how to compute
truncation errors for finite difference discretizations of ODEs and PDEs.
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B.2 Truncation errors in finite difference formulas

The accuracy of a finite difference formula is a fundamental issue when
discretizing differential equations. We shall first go through a particular
example in detail and thereafter list the truncation error in the most
common finite difference approximation formulas.

B.2.1 Example: The backward difference for u′(t)

Consider a backward finite difference approximation of the first-order
derivative u′:

[D−t u]n = un − un−1

∆t
≈ u′(tn) . (B.1)

Here, un means the value of some function u(t) at a point tn, and
[D−t u]n is the discrete derivative of u(t) at t = tn. The discrete derivative
computed by a finite difference is, in general, not exactly equal to the
derivative u′(tn). The error in the approximation is

Rn = [D−t u]n − u′(tn) . (B.2)

The common way of calculating Rn is to

1. expand u(t) in a Taylor series around the point where the derivative
is evaluated, here tn,

2. insert this Taylor series in (B.2), and
3. collect terms that cancel and simplify the expression.

The result is an expression for Rn in terms of a power series in ∆t. The
error Rn is commonly referred to as the truncation error of the finite
difference formula.

The Taylor series formula often found in calculus books takes the form

f(x+ h) =
∞∑
i=0

1
i!
dif

dxi
(x)hi .

In our application, we expand the Taylor series around the point where
the finite difference formula approximates the derivative. The Taylor
series of un at tn is simply u(tn), while the Taylor series of un−1 at tn
must employ the general formula,
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u(tn−1) = u(t−∆t) =
∞∑
i=0

1
i!
diu

dti
(tn)(−∆t)i

= u(tn)− u′(tn)∆t+ 1
2u
′′(tn)∆t2 +O(∆t3),

where O(∆t3) means a power-series in ∆t where the lowest power is ∆t3.
We assume that ∆t is small such that ∆tp � ∆tq if p is smaller than q.
The details of higher-order terms in ∆t are therefore not of much interest.
Inserting the Taylor series above in the right-hand side of1 (B.2) gives
rise to some algebra:

[D−t u]n − u′(tn) = u(tn)− u(tn−1)
∆t

− u′(tn)

=
u(tn)− (u(tn)− u′(tn)∆t+ 1

2u
′′(tn)∆t2 +O(∆t3))

∆t
− u′(tn)

= −1
2u
′′(tn)∆t+O(∆t2)),

which is, according to (B.2), the truncation error:

Rn = −1
2u
′′(tn)∆t+O(∆t2)) . (B.3)

The dominating term for small ∆t is −1
2u
′′(tn)∆t, which is proportional

to ∆t, and we say that the truncation error is of first order in ∆t.

B.2.2 Example: The forward difference for u′(t)

We can analyze the approximation error in the forward difference

u′(tn) ≈ [D+
t u]n = un+1 − un

∆t
,

by writing
Rn = [D+

t u]n − u′(tn),

and expanding un+1 in a Taylor series around tn,

u(tn+1) = u(tn) + u′(tn)∆t+ 1
2u
′′(tn)∆t2 +O(∆t3) .

The result becomes
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R = 1
2u
′′(tn)∆t+O(∆t2),

showing that also the forward difference is of first order.

B.2.3 Example: The central difference for u′(t)

For the central difference approximation,

u′(tn) ≈ [Dtu]n, [Dtu]n = un+ 1
2 − un− 1

2

∆t
,

we write

Rn = [Dtu]n − u′(tn),

and expand u(tn+ 1
2
) and u(tn− 1

2
in Taylor series around the point tn

where the derivative is evaluated. We have

u(tn+ 1
2
) =u(tn) + u′(tn)1

2∆t+ 1
2u
′′(tn)(1

2∆t)
2+

1
6u
′′′(tn)(1

2∆t)
3 + 1

24u
′′′′(tn)(1

2∆t)
4+

1
120u

′′′′(tn)(1
2∆t)

5 +O(∆t6),

u(tn− 1
2
) =u(tn)− u′(tn)1

2∆t+ 1
2u
′′(tn)(1

2∆t)
2−

1
6u
′′′(tn)(1

2∆t)
3 + 1

24u
′′′′(tn)(1

2∆t)
4−

1
120u

′′′′′(tn)(1
2∆t)

5 +O(∆t6) .

Now,

u(tn+ 1
2
)−u(tn− 1

2
) = u′(tn)∆t+ 1

24u
′′′(tn)∆t3+ 1

960u
′′′′′(tn)∆t5+O(∆t7) .

By collecting terms in [Dtu]n − u′(tn) we find the truncation error to be

Rn = 1
24u

′′′(tn)∆t2 +O(∆t4), (B.4)

with only even powers of∆t. Since R ∼ ∆t2 we say the centered difference
is of second order in ∆t.
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B.2.4 Overview of leading-order error terms in finite
difference formulas

Here we list the leading-order terms of the truncation errors associated
with several common finite difference formulas for the first and second
derivatives.

[Dtu]n = un+ 1
2 − un− 1

2

∆t
= u′(tn) +Rn, (B.5)

Rn = 1
24u

′′′(tn)∆t2 +O(∆t4) (B.6)

[D2tu]n = un+1 − un−1

2∆t = u′(tn) +Rn, (B.7)

Rn = 1
6u
′′′(tn)∆t2 +O(∆t4) (B.8)

[D−t u]n = un − un−1

∆t
= u′(tn) +Rn, (B.9)

Rn = −1
2u
′′(tn)∆t+O(∆t2) (B.10)

[D+
t u]n = un+1 − un

∆t
= u′(tn) +Rn, (B.11)

Rn = 1
2u
′′(tn)∆t+O(∆t2) (B.12)

[D̄tu]n+θ = un+1 − un

∆t
= u′(tn+θ) +Rn+θ, (B.13)

Rn+θ = 1
2(1− 2θ)u′′(tn+θ)∆t−

1
6((1− θ)3 − θ3)u′′′(tn+θ)∆t2 +O(∆t3)

(B.14)

[D2−
t u]n = 3un − 4un−1 + un−2

2∆t = u′(tn) +Rn, (B.15)

Rn = −1
3u
′′′(tn)∆t2 +O(∆t3) (B.16)

[DtDtu]n = un+1 − 2un + un−1

∆t2
= u′′(tn) +Rn, (B.17)

Rn = 1
12u

′′′′(tn)∆t2 +O(∆t4) (B.18)

It will also be convenient to have the truncation errors for various
means or averages. The weighted arithmetic mean leads to
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[ut,θ]n+θ = θun+1 + (1− θ)un = u(tn+θ) +Rn+θ, (B.19)

Rn+θ = 1
2u
′′(tn+θ)∆t2θ(1− θ) +O(∆t3) . (B.20)

The standard arithmetic mean follows from this formula when θ = 1
2 .

Expressed at point tn we get

[ut]n = 1
2(un− 1

2 + un+ 1
2 ) = u(tn) +Rn, (B.21)

Rn = 1
8u
′′(tn)∆t2 + 1

384u
′′′′(tn)∆t4 +O(∆t6) . (B.22)

The geometric mean also has an error O(∆t2):

[u2t,g]n = un−
1
2un+ 1

2 = (un)2 +Rn, (B.23)

Rn = −1
4u
′(tn)2∆t2 + 1

4u(tn)u′′(tn)∆t2 +O(∆t4) . (B.24)

The harmonic mean is also second-order accurate:

[ut,h]n = un = 2
1

un−
1
2

+ 1
un+ 1

2

+Rn+ 1
2 , (B.25)

Rn = −u
′(tn)2

4u(tn)∆t
2 + 1

8u
′′(tn)∆t2 . (B.26)

B.2.5 Software for computing truncation errors

We can use sympy to aid calculations with Taylor series. The derivatives
can be defined as symbols, say D3f for the 3rd derivative of some func-
tion f . A truncated Taylor series can then be written as f + D1f*h +
D2f*h**2/2. The following class takes some symbol f for the function in
question and makes a list of symbols for the derivatives. The __call__
method computes the symbolic form of the series truncated at num_terms
terms.

import sympy as sym

class TaylorSeries:
"""Class for symbolic Taylor series."""
def __init__(self, f, num_terms=4):
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self.f = f
self.N = num_terms
# Introduce symbols for the derivatives
self.df = [f]
for i in range(1, self.N+1):

self.df.append(sym.Symbol(’D%d%s’ % (i, f.name)))

def __call__(self, h):
"""Return the truncated Taylor series at x+h."""
terms = self.f
for i in range(1, self.N+1):

terms += sym.Rational(1, sym.factorial(i))*self.df[i]*h**i
return terms

We may, for example, use this class to compute the truncation error
of the Forward Euler finite difference formula:

>>> from truncation_errors import TaylorSeries
>>> from sympy import *
>>> u, dt = symbols(’u dt’)
>>> u_Taylor = TaylorSeries(u, 4)
>>> u_Taylor(dt)
D1u*dt + D2u*dt**2/2 + D3u*dt**3/6 + D4u*dt**4/24 + u
>>> FE = (u_Taylor(dt) - u)/dt
>>> FE
(D1u*dt + D2u*dt**2/2 + D3u*dt**3/6 + D4u*dt**4/24)/dt
>>> simplify(FE)
D1u + D2u*dt/2 + D3u*dt**2/6 + D4u*dt**3/24

The truncation error consists of the terms after the first one (u′).
The module file trunc/truncation_errors.py contains another class

DiffOp with symbolic expressions for most of the truncation errors listed
in the previous section. For example:

>>> from truncation_errors import DiffOp
>>> from sympy import *
>>> u = Symbol(’u’)
>>> diffop = DiffOp(u, independent_variable=’t’)
>>> diffop[’geometric_mean’]
-D1u**2*dt**2/4 - D1u*D3u*dt**4/48 + D2u**2*dt**4/64 + ...
>>> diffop[’Dtm’]
D1u + D2u*dt/2 + D3u*dt**2/6 + D4u*dt**3/24
>>> >>> diffop.operator_names()
[’geometric_mean’, ’harmonic_mean’, ’Dtm’, ’D2t’, ’DtDt’,
’weighted_arithmetic_mean’, ’Dtp’, ’Dt’]

The indexing of diffop applies names that correspond to the operators:
Dtp for D+

t , Dtm for D−t , Dt for Dt, D2t for D2t, DtDt for DtDt.

http://tinyurl.com/nu656p2/trunc/truncation_errors.py
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B.3 Exponential decay ODEs

We shall now compute the truncation error of a finite difference scheme
for a differential equation. Our first problem involves the following the
linear ODE modeling exponential decay,

u′(t) = −au(t) . (B.27)

B.3.1 Forward Euler scheme

We begin with the Forward Euler scheme for discretizing (B.27):

[D+
t u = −au]n . (B.28)

The idea behind the truncation error computation is to insert the exact
solution ue of the differential equation problem (B.27) in the discrete
equations (B.28) and find the residual that arises because ue does not
solve the discrete equations. Instead, ue solves the discrete equations
with a residual Rn:

[D+
t ue + aue = R]n . (B.29)

From (B.11)-(B.12) it follows that

[D+
t ue]n = u′e(tn) + 1

2u
′′
e(tn)∆t+O(∆t2),

which inserted in (B.29) results in

u′e(tn) + 1
2u
′′
e(tn)∆t+O(∆t2) + aue(tn) = Rn .

Now, u′e(tn) + aune = 0 since ue solves the differential equation. The
remaining terms constitute the residual:

Rn = 1
2u
′′
e(tn)∆t+O(∆t2) . (B.30)

This is the truncation error Rn of the Forward Euler scheme.
Because Rn is proportional to ∆t, we say that the Forward Euler

scheme is of first order in ∆t. However, the truncation error is just one
error measure, and it is not equal to the true error une − un. For this
simple model problem we can compute a range of different error measures
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for the Forward Euler scheme, including the true error une − un, and all
of them have dominating terms proportional to ∆t.

B.3.2 Crank-Nicolson scheme

For the Crank-Nicolson scheme,

[Dtu = −au]n+ 1
2 , (B.31)

we compute the truncation error by inserting the exact solution of the
ODE and adding a residual R,

[Dtue + aue
t = R]n+ 1

2 . (B.32)

The term [Dtue]n+ 1
2 is easily computed from (B.5)-(B.6) by replacing n

with n+ 1
2 in the formula,

[Dtue]n+ 1
2 = u′e(tn+ 1

2
) + 1

24u
′′′
e (tn+ 1

2
)∆t2 +O(∆t4) .

The arithmetic mean is related to u(tn+ 1
2
) by (B.21)-(B.22) so

[auet]n+ 1
2 = ue(tn+ 1

2
) + 1

8u
′′
e(tn)∆t2 + +O(∆t4) .

Inserting these expressions in (B.32) and observing that u′e(tn+ 1
2
) +

au
n+ 1

2e = 0, because ue(t) solves the ODE u′(t) = −au(t) at any point t,
we find that

Rn+ 1
2 =

( 1
24u

′′′
e (tn+ 1

2
) + 1

8u
′′
e(tn)

)
∆t2 +O(∆t4) (B.33)

Here, the truncation error is of second order because the leading term in
R is proportional to ∆t2.

At this point it is wise to redo some of the computations above
to establish the truncation error of the Backward Euler scheme, see
Exercise B.7.

B.3.3 The θ-rule

We may also compute the truncation error of the θ-rule,

[D̄tu = −aut,θ]n+θ .
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Our computational task is to find Rn+θ in

[D̄tue + aue
t,θ = R]n+θ .

From (B.13)-(B.14) and (B.19)-(B.20) we get expressions for the terms
with ue. Using that u′e(tn+θ) + aue(tn+θ) = 0, we end up with

Rn+θ =(1
2 − θ)u

′′
e(tn+θ)∆t+ 1

2θ(1− θ)u
′′
e(tn+θ)∆t2+

1
2(θ2 − θ + 3)u′′′e (tn+θ)∆t2 +O(∆t3) (B.34)

For θ = 1
2 the first-order term vanishes and the scheme is of second order,

while for θ 6= 1
2 we only have a first-order scheme.

B.3.4 Using symbolic software

The previously mentioned truncation_error module can be used to
automate the Taylor series expansions and the process of collecting terms.
Here is an example on possible use:

from truncation_error import DiffOp
from sympy import *

def decay():
u, a = symbols(’u a’)
diffop = DiffOp(u, independent_variable=’t’,

num_terms_Taylor_series=3)
D1u = diffop.D(1) # symbol for du/dt
ODE = D1u + a*u # define ODE

# Define schemes
FE = diffop[’Dtp’] + a*u
CN = diffop[’Dt’ ] + a*u
BE = diffop[’Dtm’] + a*u
theta = diffop[’barDt’] + a*diffop[’weighted_arithmetic_mean’]
theta = sm.simplify(sm.expand(theta))
# Residuals (truncation errors)
R = {’FE’: FE-ODE, ’BE’: BE-ODE, ’CN’: CN-ODE,

’theta’: theta-ODE}
return R

The returned dictionary becomes

decay: {
’BE’: D2u*dt/2 + D3u*dt**2/6,
’FE’: -D2u*dt/2 + D3u*dt**2/6,
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’CN’: D3u*dt**2/24,
’theta’: -D2u*a*dt**2*theta**2/2 + D2u*a*dt**2*theta/2 -

D2u*dt*theta + D2u*dt/2 + D3u*a*dt**3*theta**3/3 -
D3u*a*dt**3*theta**2/2 + D3u*a*dt**3*theta/6 +
D3u*dt**2*theta**2/2 - D3u*dt**2*theta/2 + D3u*dt**2/6,

}

The results are in correspondence with our hand-derived expressions.

B.3.5 Empirical verification of the truncation error

The task of this section is to demonstrate how we can compute the
truncation error R numerically. For example, the truncation error of the
Forward Euler scheme applied to the decay ODE u′ = −ua is

Rn = [D+
t ue + aue]n . (B.35)

If we happen to know the exact solution ue(t), we can easily evaluate
Rn from the above formula.

To estimate how R varies with the discretization parameter ∆t, which
has been our focus in the previous mathematical derivations, we first
make the assumption that R = C∆tr for appropriate constants C and
r and small enough ∆t. The rate r can be estimated from a series
of experiments where ∆t is varied. Suppose we have m experiments
(∆ti, Ri), i = 0, . . . ,m−1. For two consecutive experiments (∆ti−1, Ri−1)
and (∆ti, Ri), a corresponding ri−1 can be estimated by

ri−1 = ln(Ri−1/Ri)
ln(∆ti−1/∆ti)

, (B.36)

for i = 1, . . . ,m − 1. Note that the truncation error Ri varies through
the mesh, so (B.36) is to be applied pointwise. A complicating issue is
that Ri and Ri−1 refer to different meshes. Pointwise comparisons of
the truncation error at a certain point in all meshes therefore requires
any computed R to be restricted to the coarsest mesh and that all finer
meshes contain all the points in the coarsest mesh. Suppose we have N0
intervals in the coarsest mesh. Inserting a superscript n in (B.36), where
n counts mesh points in the coarsest mesh, n = 0, . . . , N0, leads to the
formula

rni−1 = ln(Rni−1/R
n
i )

ln(∆ti−1/∆ti)
. (B.37)
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Experiments are most conveniently defined by N0 and a number of
refinements m. Suppose each mesh has twice as many cells Ni as the
previous one:

Ni = 2iN0, ∆ti = TN−1
i ,

where [0, T ] is the total time interval for the computations. Suppose the
computed Ri values on the mesh with Ni intervals are stored in an array
R[i] (R being a list of arrays, one for each mesh). Restricting this Ri
function to the coarsest mesh means extracting every Ni/N0 point and
is done as follows:

stride = N[i]/N_0
R[i] = R[i][::stride]

The quantity R[i][n] now corresponds to Rni .
In addition to estimating r for the pointwise values of R = C∆tr, we

may also consider an integrated quantity on mesh i,

RI,i =
(
∆ti

Ni∑
n=0

(Rni )2
) 1

2

≈
∫ T

0
Ri(t)dt . (B.38)

The sequence RI,i, i = 0, . . . ,m− 1, is also expected to behave as C∆tr,
with the same r as for the pointwise quantity R, as ∆t→ 0.

The function below computes the Ri and RI,i quantities, plots them
and compares with the theoretically derived truncation error (R_a) if
available.

import numpy as np
import scitools.std as plt

def estimate(truncation_error, T, N_0, m, makeplot=True):
"""
Compute the truncation error in a problem with one independent
variable, using m meshes, and estimate the convergence
rate of the truncation error.

The user-supplied function truncation_error(dt, N) computes
the truncation error on a uniform mesh with N intervals of
length dt::

R, t, R_a = truncation_error(dt, N)

where R holds the truncation error at points in the array t,
and R_a are the corresponding theoretical truncation error
values (None if not available).

The truncation_error function is run on a series of meshes
with 2**i*N_0 intervals, i=0,1,...,m-1.
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The values of R and R_a are restricted to the coarsest mesh.
and based on these data, the convergence rate of R (pointwise)
and time-integrated R can be estimated empirically.
"""
N = [2**i*N_0 for i in range(m)]

R_I = np.zeros(m) # time-integrated R values on various meshes
R = [None]*m # time series of R restricted to coarsest mesh
R_a = [None]*m # time series of R_a restricted to coarsest mesh
dt = np.zeros(m)
legends_R = []; legends_R_a = [] # all legends of curves

for i in range(m):
dt[i] = T/float(N[i])
R[i], t, R_a[i] = truncation_error(dt[i], N[i])

R_I[i] = np.sqrt(dt[i]*np.sum(R[i]**2))

if i == 0:
t_coarse = t # the coarsest mesh

stride = N[i]/N_0
R[i] = R[i][::stride] # restrict to coarsest mesh
R_a[i] = R_a[i][::stride]

if makeplot:
plt.figure(1)
plt.plot(t_coarse, R[i], log=’y’)
legends_R.append(’N=%d’ % N[i])
plt.hold(’on’)

plt.figure(2)
plt.plot(t_coarse, R_a[i] - R[i], log=’y’)
plt.hold(’on’)
legends_R_a.append(’N=%d’ % N[i])

if makeplot:
plt.figure(1)
plt.xlabel(’time’)
plt.ylabel(’pointwise truncation error’)
plt.legend(legends_R)
plt.savefig(’R_series.png’)
plt.savefig(’R_series.pdf’)
plt.figure(2)
plt.xlabel(’time’)
plt.ylabel(’pointwise error in estimated truncation error’)
plt.legend(legends_R_a)
plt.savefig(’R_error.png’)
plt.savefig(’R_error.pdf’)

# Convergence rates
r_R_I = convergence_rates(dt, R_I)
print ’R integrated in time; r:’,
print ’ ’.join([’%.1f’ % r for r in r_R_I])
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R = np.array(R) # two-dim. numpy array
r_R = [convergence_rates(dt, R[:,n])[-1]

for n in range(len(t_coarse))]

The first makeplot block demonstrates how to build up two figures in
parallel, using plt.figure(i) to create and switch to figure number i.
Figure numbers start at 1. A logarithmic scale is used on the y axis since
we expect that R as a function of time (or mesh points) is exponential.
The reason is that the theoretical estimate (B.30) contains u′′e , which for
the present model goes like e−at. Taking the logarithm makes a straight
line.

The code follows closely the previously stated mathematical formulas,
but the statements for computing the convergence rates might deserve
an explanation. The generic help function convergence_rate(h, E)
computes and returns ri−1, i = 1, . . . ,m− 1 from (B.37), given ∆ti in h
and Rni in E:

def convergence_rates(h, E):
from math import log
r = [log(E[i]/E[i-1])/log(h[i]/h[i-1])

for i in range(1, len(h))]
return r

Calling r_R_I = convergence_rates(dt, R_I) computes the se-
quence of rates r0, r1, . . . , rm−2 for the model RI ∼ ∆tr, while the
statements

R = np.array(R) # two-dim. numpy array
r_R = [convergence_rates(dt, R[:,n])[-1]

for n in range(len(t_coarse))]

compute the final rate rm−2 for Rn ∼ ∆tr at each mesh point tn in
the coarsest mesh. This latter computation deserves more explanation.
Since R[i][n] holds the estimated truncation error Rni on mesh i, at
point tn in the coarsest mesh, R[:,n] picks out the sequence Rni for
i = 0, . . . ,m− 1. The convergence_rate function computes the rates at
tn, and by indexing [-1] on the returned array from convergence_rate,
we pick the rate rm−2, which we believe is the best estimation since it is
based on the two finest meshes.

The estimate function is available in a module trunc_empir.py. Let
us apply this function to estimate the truncation error of the Forward
Euler scheme. We need a function decay_FE(dt, N) that can compute
(B.35) at the points in a mesh with time step dt and N intervals:

import numpy as np
import trunc_empir

http://tinyurl.com/nu656p2/trunc/trunc_empir.py
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def decay_FE(dt, N):
dt = float(dt)
t = np.linspace(0, N*dt, N+1)
u_e = I*np.exp(-a*t) # exact solution, I and a are global
u = u_e # naming convention when writing up the scheme
R = np.zeros(N)

for n in range(0, N):
R[n] = (u[n+1] - u[n])/dt + a*u[n]

# Theoretical expression for the trunction error
R_a = 0.5*I*(-a)**2*np.exp(-a*t)*dt

return R, t[:-1], R_a[:-1]

if __name__ == ’__main__’:
I = 1; a = 2 # global variables needed in decay_FE
trunc_empir.estimate(decay_FE, T=2.5, N_0=6, m=4, makeplot=True)

The estimated rates for the integrated truncation error RI become
1.1, 1.0, and 1.0 for this sequence of four meshes. All the rates for
Rn, computed as r_R, are also very close to 1 at all mesh points. The
agreement between the theoretical formula (B.30) and the computed
quantity (ref(B.35)) is very good, as illustrated in Figures B.1 and B.2.
The program trunc_decay_FE.py was used to perform the simulations
and it can easily be modified to test other schemes (see also Exercise B.7).

B.3.6 Increasing the accuracy by adding correction terms

Now we ask the question: can we add terms in the differential equation
that can help increase the order of the truncation error? To be precise,
let us revisit the Forward Euler scheme for u′ = −au, insert the exact
solution ue, include a residual R, but also include new terms C:

[D+
t ue + aue = C +R]n . (B.39)

Inserting the Taylor expansions for [D+
t ue]n and keeping terms up to 3rd

order in ∆t gives the equation

1
2u
′′
e(tn)∆t− 1

6u
′′′
e (tn)∆t2 + 1

24u
′′′′
e (tn)∆t3 +O(∆t4) = Cn +Rn .

Can we find Cn such that Rn is O(∆t2)? Yes, by setting

http://tinyurl.com/nu656p2/trunc/trunc_decay_FE.py
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Fig. B.1 Estimated truncation error at mesh points for different meshes.

Fig. B.2 Difference between theoretical and estimated truncation error at mesh points
for different meshes.

Cn = 1
2u
′′
e(tn)∆t,
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we manage to cancel the first-order term and

Rn = 1
6u
′′′
e (tn)∆t2 +O(∆t3) .

The correction term Cn introduces 1
2∆tu

′′ in the discrete equation,
and we have to get rid of the derivative u′′. One idea is to approximate
u′′ by a second-order accurate finite difference formula, u′′ ≈ (un+1 −
2un + un−1)/∆t2, but this introduces an additional time level with un−1.
Another approach is to rewrite u′′ in terms of u′ or u using the ODE:

u′ = −au ⇒ u′′ = −au′ = −a(−au) = a2u .

This means that we can simply set Cn = 1
2a

2∆tun. We can then either
solve the discrete equation

[D+
t u = −au+ 1

2a
2∆tu]n, (B.40)

or we can equivalently discretize the perturbed ODE

u′ = −âu, â = a(1− 1
2a∆t), (B.41)

by a Forward Euler method. That is, we replace the original coefficient a
by the perturbed coefficient â. Observe that â→ a as ∆t→ 0.

The Forward Euler method applied to (B.41) results in

[D+
t u = −a(1− 1

2a∆t)u]n .

We can control our computations and verify that the truncation error of
the scheme above is indeed O(∆t2).

Another way of revealing the fact that the perturbed ODE leads to a
more accurate solution is to look at the amplification factor. Our scheme
can be written as

un+1 = Aun, A = 1− â∆t = 1− p+ 1
2p

2, p = a∆t,

The amplification factor A as a function of p = a∆t is seen to be the first
three terms of the Taylor series for the exact amplification factor e−p.
The Forward Euler scheme for u = −au gives only the first two terms
1− p of the Taylor series for e−p. That is, using â increases the order of
the accuracy in the amplification factor.



512 B Truncation error analysis

Instead of replacing u′′ by a2u, we use the relation u′′ = −au′ and add
a term −1

2a∆tu
′ in the ODE:

u′ = −au− 1
2a∆tu

′ ⇒
(

1 + 1
2a∆t

)
u′ = −au .

Using a Forward Euler method results in(
1 + 1

2a∆t
)
un+1 − un

∆t
= −aun,

which after some algebra can be written as

un+1 =
1− 1

2a∆t

1 + 1
2a∆t

un .

This is the same formula as the one arising from a Crank-Nicolson scheme
applied to u′ = −au! It now recommended to do Exercise B.7 and repeat
the above steps to see what kind of correction term is needed in the
Backward Euler scheme to make it second order.

The Crank-Nicolson scheme is a bit more challenging to analyze, but
the ideas and techniques are the same. The discrete equation reads

[Dtu = −au]n+ 1
2 ,

and the truncation error is defined through

[Dtue + aue
t = C +R]n+ 1

2 ,

where we have added a correction term. We need to Taylor expand both
the discrete derivative and the arithmetic mean with aid of (B.5)-(B.6)
and (B.21)-(B.22), respectively. The result is

1
24u

′′′
e (tn+ 1

2
)∆t2 +O(∆t4) + a

8u
′′
e(tn+ 1

2
)∆t2 +O(∆t4) = Cn+ 1

2 +Rn+ 1
2 .

The goal now is to make Cn+ 1
2 cancel the ∆t2 terms:

Cn+ 1
2 = 1

24u
′′′
e (tn+ 1

2
)∆t2 + a

8u
′′
e(tn)∆t2 .

Using u′ = −au, we have that u′′ = a2u, and we find that u′′′ = −a3u.
We can therefore solve the perturbed ODE problem
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u′ = −âu, â = a(1− 1
12a

2∆t2),

by the Crank-Nicolson scheme and obtain a method that is of fourth order
in ∆t. Exercise B.7 encourages you to implement these correction terms
and calculate empirical convergence rates to verify that higher-order
accuracy is indeed obtained in real computations.

B.3.7 Extension to variable coefficients

Let us address the decay ODE with variable coefficients,

u′(t) = −a(t)u(t) + b(t),

discretized by the Forward Euler scheme,

[D+
t u = −au+ b]n . (B.42)

The truncation error R is as always found by inserting the exact solution
ue(t) in the discrete scheme:

[D+
t ue + aue − b = R]n . (B.43)

Using (B.11)-(B.12),

u′e(tn)− 1
2u
′′
e(tn)∆t+O(∆t2) + a(tn)ue(tn)− b(tn) = Rn .

Because of the ODE,

u′e(tn) + a(tn)ue(tn)− b(tn) = 0,

so we are left with the result

Rn = −1
2u
′′
e(tn)∆t+O(∆t2) . (B.44)

We see that the variable coefficients do not pose any additional difficulties
in this case. Exercise B.7 takes the analysis above one step further to
the Crank-Nicolson scheme.
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B.3.8 Exact solutions of the finite difference equations

Having a mathematical expression for the numerical solution is very
valuable in program verification since we then know the exact numbers
that the program should produce. Looking at the various formulas for
the truncation errors in (B.5)-(B.6) and (B.25)-(B.26) in Section B.2.4,
we see that all but two of the R expressions contain a second or higher
order derivative of ue. The exceptions are the geometric and harmonic
means where the truncation error involves u′e and even ue in case of the
harmonic mean. So, apart from these two means, choosing ue to be a
linear function of t, ue = ct + d for constants c and d, will make the
truncation error vanish since u′′e = 0. Consequently, the truncation error
of a finite difference scheme will be zero since the various approximations
used will all be exact. This means that the linear solution is an exact
solution of the discrete equations.

In a particular differential equation problem, the reasoning above
can be used to determine if we expect a linear ue to fulfill the discrete
equations. To actually prove that this is true, we can either compute
the truncation error and see that it vanishes, or we can simply insert
ue(t) = ct + d in the scheme and see that it fulfills the equations. The
latter method is usually the simplest. It will often be necessary to add
some source term to the ODE in order to allow a linear solution.

Many ODEs are discretized by centered differences. From Section B.2.4
we see that all the centered difference formulas have truncation er-
rors involving u′′′e or higher-order derivatives. A quadratic solution, e.g.,
ue(t) = t2 + ct + d, will then make the truncation errors vanish. This
observation can be used to test if a quadratic solution will fulfill the
discrete equations. Note that a quadratic solution will not obey the
equations for a Crank-Nicolson scheme for u′ = −au + b because the
approximation applies an arithmetic mean, which involves a truncation
error with u′′e .

B.3.9 Computing truncation errors in nonlinear problems

The general nonlinear ODE

u′ = f(u, t), (B.45)

can be solved by a Crank-Nicolson scheme
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[Dtu = f
t]n+ 1

2 . (B.46)

The truncation error is as always defined as the residual arising when
inserting the exact solution ue in the scheme:

[Dtue − f
t = R]n+ 1

2 . (B.47)

Using (B.21)-(B.22) for f t results in

[f t]n+ 1
2 = 1

2(f(une , tn) + f(un+1
e , tn+1))

= f(un+ 1
2e , tn+ 1

2
) + 1

8u
′′
e(tn+ 1

2
)∆t2 +O(∆t4) .

With (B.5)-(B.6) the discrete equations (B.47) lead to

u′e(tn+ 1
2
)+ 1

24u
′′′
e (tn+ 1

2
)∆t2−f(un+ 1

2e , tn+ 1
2
)−1

8u
′′
e(tn+ 1

2
)∆t2+O(∆t4) = Rn+ 1

2 .

Since u′e(tn+ 1
2
)− f(un+ 1

2e , tn+ 1
2
) = 0, the truncation error becomes

Rn+ 1
2 = ( 1

24u
′′′
e (tn+ 1

2
)− 1

8u
′′
e(tn+ 1

2
))∆t2 .

The computational techniques worked well even for this nonlinear ODE.

B.4 Vibration ODEs

B.4.1 Linear model without damping

The next example on computing the truncation error involves the follow-
ing ODE for vibration problems:

u′′(t) + ω2u(t) = 0 . (B.48)

Here, ω is a given constant.

The truncation error of a centered finite difference scheme. Us-
ing a standard, second-ordered, central difference for the second-order
derivative in time, we have the scheme

[DtDtu+ ω2u = 0]n . (B.49)
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Inserting the exact solution ue in this equation and adding a residual
R so that ue can fulfill the equation results in

[DtDtue + ω2ue = R]n . (B.50)

To calculate the truncation error Rn, we use (B.17)-(B.18), i.e.,

[DtDtue]n = u′′e(tn) + 1
12u

′′′′
e (tn)∆t2 +O(∆t4),

and the fact that u′′e(t) + ω2ue(t) = 0. The result is

Rn = 1
12u

′′′′
e (tn)∆t2 +O(∆t4) . (B.51)

The truncation error of approximating u′(0). The initial conditions for
(B.48) are u(0) = I and u′(0) = V . The latter involves a finite difference
approximation. The standard choice

[D2tu = V ]0,

where u−1 is eliminated with the aid of the discretized ODE for n = 0,
involves a centered difference with an O(∆t2) truncation error given by
(B.7)-(B.8). The simpler choice

[D+
t u = V ]0,

is based on a forward difference with a truncation error O(∆t). A central
question is if this initial error will impact the order of the scheme through-
out the simulation. Exercise B.7 asks you to perform an experiment to
investigate this question.

Truncation error of the equation for the first step. We have shown
that the truncation error of the difference used to approximate the initial
condition u′(0) = 0 is O(∆t2), but can also investigate the difference
equation used for the first step. In a truncation error setting, the right
way to view this equation is not to use the initial condition [D2tu = V ]0
to express u−1 = u1−2∆tV in order to eliminate u−1 from the discretized
differential equation, but the other way around: the fundamental equation
is the discretized initial condition [D2tu = V ]0 and we use the discretized
ODE [DtDt + ω2u = 0]0 to eliminate u−1 in the discretized initial
condition. From [DtDt + ω2u = 0]0 we have

u−1 = 2u0 − u1 −∆t2ω2u0,
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which inserted in [D2tu = V ]0 gives

u1 − u0

∆t
+ 1

2ω
2∆tu0 = V . (B.52)

The first term can be recognized as a forward difference such that the
equation can be written in operator notation as

[D+
t u+ 1

2ω
2∆tu = V ]0 .

The truncation error is defined as

[D+
t ue + 1

2ω
2∆tue − V = R]0 .

Using (B.11)-(B.12) with one more term in the Taylor series, we get that

u′e(0) + 1
2u
′′
e(0)∆t+ 1

6u
′′′
e (0)∆t2 +O(∆t3) + 1

2ω
2∆tue(0)− V = Rn .

Now, u′e(0) = V and u′′e(0) = −ω2ue(0) so we get

Rn = 1
6u
′′′
e (0)∆t2 +O(∆t3) .

There is another way of analyzing the discrete initial condition, because
eliminating u−1 via the discretized ODE can be expressed as

[D2tu+∆t(DtDtu− ω2u) = V ]0 . (B.53)

Writing out (B.53) shows that the equation is equivalent to (B.52). The
truncation error is defined by

[D2tue +∆t(DtDtue − ω2ue) = V +R]0 .

Replacing the difference via (B.7)-(B.8) and (B.17)-(B.18), as well as
using u′e(0) = V and u′′e(0) = −ω2ue(0), gives

Rn = 1
6u
′′′
e (0)∆t2 +O(∆t3) .

Computing correction terms. The idea of using correction terms to
increase the order of Rn can be applied as described in Section B.3.6.
We look at

[DtDtue + ω2ue = C +R]n,
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and observe that Cn must be chosen to cancel the ∆t2 term in Rn. That
is,

Cn = 1
12u

′′′′
e (tn)∆t2 .

To get rid of the 4th-order derivative we can use the differential equation:
u′′ = −ω2u, which implies u′′′′ = ω4u. Adding the correction term to the
ODE results in

u′′ + ω2(1− 1
12ω

2∆t2)u = 0 . (B.54)

Solving this equation by the standard scheme

[DtDtu+ ω2(1− 1
12ω

2∆t2)u = 0]n,

will result in a scheme with truncation error O(∆t4).
We can use another set of arguments to justify that (B.54) leads to a

higher-order method. Mathematical analysis of the scheme (B.49) reveals
that the numerical frequency ω̃ is (approximately as ∆t→ 0)

ω̃ = ω(1 + 1
24ω

2∆t2) .

One can therefore attempt to replace ω in the ODE by a slightly smaller
ω since the numerics will make it larger:

[u′′ + (ω(1− 1
24ω

2∆t2))2u = 0 .

Expanding the squared term and omitting the higher-order term ∆t4

gives exactly the ODE (B.54). Experiments show that un is computed
to 4th order in ∆t. You can confirm this by running a little program in
the vib directory:

from vib_undamped import convergence_rates, solver_adjust_w

r = convergence_rates(
m=5, solver_function=solver_adjust_w, num_periods=8)

One will see that the rates r lie around 4.
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B.4.2 Model with damping and nonlinearity

The model (B.48) can be extended to include damping βu′, a nonlinear
restoring (spring) force s(u), and some known excitation force F (t):

mu′′ + βu′ + s(u) = F (t) . (B.55)

The coefficient m usually represents the mass of the system. This gov-
erning equation can by discretized by centered differences:

[mDtDtu+ βD2tu+ s(u) = F ]n . (B.56)

The exact solution ue fulfills the discrete equations with a residual term:

[mDtDtue + βD2tue + s(ue) = F +R]n . (B.57)

Using (B.17)-(B.18) and (B.7)-(B.8) we get

[mDtDtue + βD2tue]n = mu′′e(tn) + βu′e(tn)+(
m

12u
′′′′
e (tn) + β

6 u
′′′
e (tn)

)
∆t2 +O(∆t4)

Combining this with the previous equation, we can collect the terms

mu′′e(tn) + βu′e(tn) + ω2ue(tn) + s(ue(tn))− F n,

and set this sum to zero because ue solves the differential equation. We
are left with the truncation error

Rn =
(
m

12u
′′′′
e (tn) + β

6 u
′′′
e (tn)

)
∆t2 +O(∆t4), (B.58)

so the scheme is of second order.
According to (B.58), we can add correction terms

Cn =
(
m

12u
′′′′
e (tn) + β

6 u
′′′
e (tn)

)
∆t2,

to the right-hand side of the ODE to obtain a fourth-order scheme.
However, expressing u′′′′ and u′′′ in terms of lower-order derivatives is
now harder because the differential equation is more complicated:
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u′′′ = 1
m

(F ′ − βu′′ − s′(u)u′),

u′′′′ = 1
m

(F ′′ − βu′′′ − s′′(u)(u′)2 − s′(u)u′′),

= 1
m

(F ′′ − β 1
m

(F ′ − βu′′ − s′(u)u′)− s′′(u)(u′)2 − s′(u)u′′) .

It is not impossible to discretize the resulting modified ODE, but it is
up to debate whether correction terms are feasible and the way to go.
Computing with a smaller ∆t is usually always possible in these problems
to achieve the desired accuracy.

B.4.3 Extension to quadratic damping

Instead of the linear damping term βu′ in (B.55) we now consider
quadratic damping β|u′|u′:

mu′′ + β|u′|u′ + s(u) = F (t) . (B.59)

A centered difference for u′ gives rise to a nonlinearity, which can be lin-
earized using a geometric mean: [|u′|u′]n ≈ |[u′]n− 1

2 |[u′]n+ 1
2 . The resulting

scheme becomes

[mDtDtu]n + β|[Dtu]n− 1
2 |[Dtu]n+ 1

2 + s(un) = F n . (B.60)

The truncation error is defined through

[mDtDtue]n + β|[Dtue]n−
1
2 |[Dtue]n+ 1

2 + s(une )− F n = Rn . (B.61)

We start with expressing the truncation error of the geometric mean.
According to (B.23)-(B.24),

|[Dtue]n−
1
2 |[Dtue]n+ 1

2 = [|Dtue|Dtue]n −
1
4u
′
e(tn)2∆t2+

1
4ue(tn)u′′e(tn)∆t2 +O(∆t4) .

Using (B.5)-(B.6) for the Dtue factors results in

[|Dtue|Dtue]n = |u′e+
1
24u

′′′
e (tn)∆t2+O(∆t4)|(u′e+

1
24u

′′′
e (tn)∆t2+O(∆t4))
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We can remove the absolute value since it essentially gives a factor 1 or
-1 only. Calculating the product, we have the leading-order terms

[DtueDtue]n = (u′e(tn))2 + 1
12ue(tn)u′′′e (tn)∆t2 +O(∆t4) .

With

m[DtDtue]n = mu′′e(tn) + m

12u
′′′′
e (tn)∆t2 +O(∆t4),

and using the differential equation on the form mu′′ + β(u′)2 + s(u) = F ,
we end up with

Rn = (m12u
′′′′
e (tn) + β

12ue(tn)u′′′e (tn))∆t2 +O(∆t4) .

This result demonstrates that we have second-order accuracy also with
quadratic damping. The key elements that lead to the second-order accu-
racy is that the difference approximations are O(∆t2) and the geometric
mean approximation is also O(∆t2).

B.4.4 The general model formulated as first-order ODEs
The second-order model (B.59) can be formulated as a first-order system,

v′ = 1
m

(F (t)− β|v|v − s(u)) , (B.62)

u′ = v . (B.63)

The system (B.63)-(B.63) can be solved either by a forward-backward
scheme (the Euler-Cromer method) or a centered scheme on a staggered
mesh.
A centered scheme on a staggered mesh. We now introduce a stag-
gered mesh where we seek u at mesh points tn and v at points tn+ 1

2
in

between the u points. The staggered mesh makes it easy to formulate
centered differences in the system (B.63)-(B.63):

[Dtu = v]n− 1
2 , (B.64)

[Dtv = 1
m

(F (t)− β|v|v − s(u))]n . (B.65)
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The term |vn|vn causes trouble since vn is not computed, only vn− 1
2 and

vn+ 1
2 . Using geometric mean, we can express |vn|vn in terms of known

quantities: |vn|vn ≈ |vn− 1
2 |vn+ 1

2 . We then have

[Dtu]n− 1
2 = vn−

1
2 , (B.66)

[Dtv]n = 1
m

(F (tn)− β|vn− 1
2 |vn+ 1

2 − s(un)) . (B.67)

The truncation error in each equation fulfills

[Dtue]n−
1
2 = ve(tn− 1

2
) +R

n− 1
2

u ,

[Dtve]n = 1
m

(F (tn)− β|ve(tn− 1
2
)|ve(tn+ 1

2
)− s(un)) +Rnv .

The truncation error of the centered differences is given by (B.5)-(B.6),
and the geometric mean approximation analysis can be taken from
(B.23)-(B.24). These results lead to

u′e(tn− 1
2
) + 1

24u
′′′
e (tn− 1

2
)∆t2 +O(∆t4) = ve(tn− 1

2
) +R

n− 1
2

u ,

and

v′e(tn) = 1
m

(F (tn)− β|ve(tn)|ve(tn) +O(∆t2)− s(un)) +Rnv .

The ODEs fulfilled by ue and ve are evident in these equations, and we
achieve second-order accuracy for the truncation error in both equations:

R
n− 1

2
u = O(∆t2), Rnv = O(∆t2) .

B.5 Wave equations

B.5.1 Linear wave equation in 1D

The standard, linear wave equation in 1D for a function u(x, t) reads

∂2u

∂t2
= c2∂

2u

∂x2 + f(x, t), x ∈ (0, L), t ∈ (0, T ], (B.68)
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where c is the constant wave velocity of the physical medium in [0, L].
The equation can also be more compactly written as

utt = c2uxx + f, x ∈ (0, L), t ∈ (0, T ], (B.69)

Centered, second-order finite differences are a natural choice for discretiz-
ing the derivatives, leading to

[DtDtu = c2DxDxu+ f ]ni . (B.70)

Inserting the exact solution ue(x, t) in (B.70) makes this function fulfill
the equation if we add the term R:

[DtDtue = c2DxDxue + f +R]ni (B.71)

Our purpose is to calculate the truncation error R. From (B.17)-(B.18)
we have that

[DtDtue]ni = ue,tt(xi, tn) + 1
12ue,tttt(xi, tn)∆t2 +O(∆t4),

when we use a notation taking into account that ue is a function of two
variables and that derivatives must be partial derivatives. The notation
ue,tt means ∂2ue/∂t2.

The same formula may also be applied to the x-derivative term:

[DxDxue]ni = ue,xx(xi, tn) + 1
12ue,xxxx(xi, tn)∆x2 +O(∆x4),

Equation (B.71) now becomes

ue,tt + 1
12ue,tttt(xi, tn)∆t2 = c2ue,xx + c2 1

12ue,xxxx(xi, tn)∆x2 + f(xi, tn)+

O(∆t4, ∆x4) +Rni .

Because ue fulfills the partial differential equation (PDE) (B.69), the
first, third, and fifth term cancel out, and we are left with

Rni = 1
12ue,tttt(xi, tn)∆t2 − c2 1

12ue,xxxx(xi, tn)∆x2 +O(∆t4, ∆x4),
(B.72)

showing that the scheme (B.70) is of second order in the time and space
mesh spacing.
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B.5.2 Finding correction terms

Can we add correction terms to the PDE and increase the order of Rni
in (B.72)? The starting point is

[DtDtue = c2DxDxue + f + C +R]ni (B.73)

From the previous analysis we simply get (B.72) again, but now with C:

Rni +Cn
i = 1

12ue,tttt(xi, tn)∆t2− c2 1
12ue,xxxx(xi, tn)∆x2 +O(∆t4, ∆x4) .

(B.74)
The idea is to let Cn

i cancel the ∆t2 and ∆x2 terms to make Rni =
O(∆t4, ∆x4):

Cn
i = 1

12ue,tttt(xi, tn)∆t2 − c2 1
12ue,xxxx(xi, tn)∆x2 .

Essentially, it means that we add a new term

C = 1
12
(
utttt∆t

2 − c2uxxxx∆x
2
)
,

to the right-hand side of the PDE. We must either discretize these
4th-order derivatives directly or rewrite them in terms of lower-order
derivatives with the aid of the PDE. The latter approach is more feasible.
From the PDE we have the operator equality

∂2

∂t2
= c2 ∂

2

∂x2 ,

so

utttt = c2uxxtt, uxxxx = c−2uttxx .

Assuming u is smooth enough, so that uxxtt = uttxx, these relations lead
to

C = 1
12((c2∆t2 −∆x2)uxx)tt .

A natural discretization is

Cn
i = 1

12((c2∆t2 −∆x2)[DxDxDtDtu]ni .

Writing out [DxDxDtDtu]ni as [DxDx(DtDtu)]ni gives
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1
∆t2

(
un+1
i+1 − 2uni+1 + un−1

i+1
∆x2 − 2

un+1
i − 2uni + un−1

i

∆x2 +
un+1
i−1 − 2uni−1 + un−1

i−1
∆x2

)
Now the unknown values un+1

i+1 , un+1
i , and un+1

i−1 are coupled, and we must
solve a tridiagonal system to find them. This is in principle straightfor-
ward, but it results in an implicit finite difference schemes, while we had
a convenient explicit scheme without the correction terms.

B.5.3 Extension to variable coefficients

Now we address the variable coefficient version of the linear 1D wave
equation,

∂2u

∂t2
= ∂

∂x

(
λ(x)∂u

∂x

)
,

or written more compactly as

utt = (λux)x . (B.75)

The discrete counterpart to this equation, using arithmetic mean for λ
and centered differences, reads

[DtDtu = Dxλ
x
Dxu]ni . (B.76)

The truncation error is the residual R in the equation

[DtDtue = Dxλ
x
Dxue +R]ni . (B.77)

The difficulty with (B.77) is how to compute the truncation error of the
term [Dxλ

x
Dxue]ni .

We start by writing out the outer operator:

[Dxλ
x
Dxue]ni = 1

∆x

(
[λxDxue]ni+ 1

2
− [λxDxue]ni− 1

2

)
. (B.78)

With the aid of (B.5)-(B.6) and (B.21)-(B.22) we have
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[Dxue]ni+ 1
2

= ue,x(xi+ 1
2
, tn) + 1

24ue,xxx(xi+ 1
2
, tn)∆x2 +O(∆x4),

[λx]i+ 1
2

= λ(xi+ 1
2
) + 1

8λ
′′(xi+ 1

2
)∆x2 +O(∆x4),

[λxDxue]ni+ 1
2

= (λ(xi+ 1
2
) + 1

8λ
′′(xi+ 1

2
)∆x2 +O(∆x4))×

(ue,x(xi+ 1
2
, tn) + 1

24ue,xxx(xi+ 1
2
, tn)∆x2 +O(∆x4))

= λ(xi+ 1
2
)ue,x(xi+ 1

2
, tn) + λ(xi+ 1

2
) 1
24ue,xxx(xi+ 1

2
, tn)∆x2+

ue,x(xi+ 1
2
)1
8λ
′′(xi+ 1

2
)∆x2 +O(∆x4)

= [λue,x]ni+ 1
2

+Gn
i+ 1

2
∆x2 +O(∆x4),

where we have introduced the short form

Gn
i+ 1

2
= ( 1

24ue,xxx(xi+ 1
2
, tn)λ((xi+ 1

2
) + ue,x(xi+ 1

2
, tn)1

8λ
′′(xi+ 1

2
))∆x2 .

Similarly, we find that

[λxDxue]ni− 1
2

= [λue,x]ni− 1
2

+Gn
i− 1

2
∆x2 +O(∆x4) .

Inserting these expressions in the outer operator (B.78) results in

[Dxλ
x
Dxue]ni = 1

∆x
([λxDxue]ni+ 1

2
− [λxDxue]ni− 1

2
)

= 1
∆x

([λue,x]ni+ 1
2

+Gn
i+ 1

2
∆x2 − [λue,x]ni− 1

2
−Gn

i− 1
2
∆x2 +O(∆x4))

= [Dxλue,x]ni + [DxG]ni∆x2 +O(∆x4) .

The reason for O(∆x4) in the remainder is that there are coefficients in
front of this term, say H∆x4, and the subtraction and division by ∆x
results in [DxH]ni∆x4.

We can now use (B.5)-(B.6) to express the Dx operator in [Dxλue,x]ni
as a derivative and a truncation error:

[Dxλue,x]ni = ∂

∂x
λ(xi)ue,x(xi, tn) + 1

24(λue,x)xxx(xi, tn)∆x2 +O(∆x4) .

Expressions like [DxG]ni∆x2 can be treated in an identical way,



B.5 Wave equations 527

[DxG]ni∆x2 = Gx(xi, tn)∆x2 + 1
24Gxxx(xi, tn)∆x4 +O(∆x4) .

There will be a number of terms with the ∆x2 factor. We lump these
now into O(∆x2). The result of the truncation error analysis of the
spatial derivative is therefore summarized as

[Dxλ
x
Dxue]ni = ∂

∂x
λ(xi)ue,x(xi, tn) +O(∆x2) .

After having treated the [DtDtue]ni term as well, we achieve

Rni = O(∆x2) + 1
12ue,tttt(xi, tn)∆t2 .

The main conclusion is that the scheme is of second-order in time and
space also in this variable coefficient case. The key ingredients for second
order are the centered differences and the arithmetic mean for λ: all
those building blocks feature second-order accuracy.

B.5.4 1D wave equation on a staggered mesh

B.5.5 Linear wave equation in 2D/3D

The two-dimensional extension of (B.68) takes the form

∂2u

∂t2
= c2

(
∂2u

∂x2 + ∂2u

∂y2

)
+f(x, y, t), (x, y) ∈ (0, L)×(0, H), t ∈ (0, T ],

(B.79)
where now c(x, y) is the constant wave velocity of the physical medium
[0, L]× [0, H]. In the compact notation, the PDE (B.79) can be written

utt = c2(uxx + uyy) + f(x, y, t), (x, y) ∈ (0, L)× (0, H), t ∈ (0, T ],
(B.80)

in 2D, while the 3D version reads

utt = c2(uxx + uyy + uzz) + f(x, y, z, t), (B.81)

for (x, y, z) ∈ (0, L)× (0, H)× (0, B) and t ∈ (0, T ].
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Approximating the second-order derivatives by the standard formulas
(B.17)-(B.18) yields the scheme

[DtDtu = c2(DxDxu+DyDyu) + f ]ni,j,k . (B.82)

The truncation error is found from

[DtDtue = c2(DxDxue +DyDyue) + f +R]n . (B.83)

The calculations from the 1D case can be repeated to the terms in the y
and z directions. Collecting terms that fulfill the PDE, we end up with

Rni,j,k = [ 1
12ue,tttt∆t

2 − c2 1
12
(
ue,xxxx∆x

2 + ue,yyyy∆x
2 + ue,zzzz∆z

2
)
]ni,j,k+

(B.84)
O(∆t4, ∆x4, ∆y4, ∆z4) .

B.6 Diffusion equations

B.6.1 Linear diffusion equation in 1D

The standard, linear, 1D diffusion equation takes the form

∂u

∂t
= α

∂2u

∂x2 + f(x, t), x ∈ (0, L), t ∈ (0, T ], (B.85)

where α > 0 is the constant diffusion coefficient. A more compact form
of the diffusion equation is ut = αuxx + f .

The spatial derivative in the diffusion equation, αuxx, is commonly
discretized as [DxDxu]ni . The time-derivative, however, can be treated
by a variety of methods.

The Forward Euler scheme in time. Let us start with the simple
Forward Euler scheme:

[D+
t u = αDxDxu+ f ]n .

The truncation error arises as the residual R when inserting the exact
solution ue in the discrete equations:

[D+
t ue = αDxDxue + f +R]ni .
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Now, using (B.11)-(B.12) and (B.17)-(B.18), we can transform the differ-
ence operators to derivatives:

ue,t(xi, tn) + 1
2ue,tt(tn)∆t+O(∆t2) = αue,xx(xi, tn)+

α

12ue,xxxx(xi, tn)∆x2 +O(∆x4) + f(xi, tn) +Rni .

The terms ue,t(xi, tn)−αue,xx(xi, tn)− f(xi, tn) vanish because ue solves
the PDE. The truncation error then becomes

Rni = 1
2ue,tt(tn)∆t+O(∆t2)− α

12ue,xxxx(xi, tn)∆x2 +O(∆x4) .

The Crank-Nicolson scheme in time. The Crank-Nicolson method
consists of using a centered difference for ut and an arithmetic average
of the uxx term:

[Dtu]n+ 1
2

i = α
1
2([DxDxu]ni + [DxDxu]n+1

i + f
n+ 1

2
i .

The equation for the truncation error is

[Dtue]
n+ 1

2
i = α

1
2([DxDxue]ni + [DxDxue]n+1

i ) + f
n+ 1

2
i +R

n+ 1
2

i .

To find the truncation error, we start by expressing the arithmetic average
in terms of values at time tn+ 1

2
. According to (B.21)-(B.22),

1
2([DxDxue]ni +[DxDxue]n+1

i ) = [DxDxue]
n+ 1

2
i +1

8[DxDxue,tt]
n+ 1

2
i ∆t2+O(∆t4) .

With (B.17)-(B.18) we can express the difference operator DxDxu in
terms of a derivative:

[DxDxue]
n+ 1

2
i = ue,xx(xi, tn+ 1

2
) + 1

12ue,xxxx(xi, tn+ 1
2
)∆x2 +O(∆x4) .

The error term from the arithmetic mean is similarly expanded,

1
8[DxDxue,tt]

n+ 1
2

i ∆t2 = 1
8ue,ttxx(xi, tn+ 1

2
)∆t2 +O(∆t2∆x2)
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The time derivative is analyzed using (B.5)-(B.6):

[Dtu]n+ 1
2

i = ue,t(xi, tn+ 1
2
) + 1

24ue,ttt(xi, tn+ 1
2
)∆t2 +O(∆t4) .

Summing up all the contributions and notifying that

ue,t(xi, tn+ 1
2
) = αue,xx(xi, tn+ 1

2
) + f(xi, tn+ 1

2
),

the truncation error is given by

R
n+ 1

2
i = 1

8ue,xx(xi, tn+ 1
2
)∆t2 + 1

12ue,xxxx(xi, tn+ 1
2
)∆x2+

1
24ue,ttt(xi, tn+ 1

2
)∆t2 + +O(∆x4) +O(∆t4) +O(∆t2∆x2)

B.6.2 Nonlinear diffusion equation in 1D

We address the PDE

∂u

∂t
= ∂

∂x

(
α(u)∂u

∂x

)
+ f(u),

with two potentially nonlinear coefficients q(u) and α(u). We use a
Backward Euler scheme with arithmetic mean for α(u),

[D−u = Dxα(u)xDxu+ f(u)]ni .

Inserting ue defines the truncation error R:

[D−ue = Dxα(ue)
x
Dxue + f(ue)]ni .

The most computationally challenging part is the variable coefficient
with α(u), but we can use the same setup as in Section B.5.3 and arrive
at a truncation error O(∆x2) for the x-derivative term. The nonlinear
term [f(ue)] =n

i = f(ue(xi, tn)) matches x and t derivatives of ue in the
PDE. We end up with

Rni = −1
2
∂2

∂t2
ue(xi, tn)∆t+O(∆x2) .
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B.7 Exercises

Exercise B.1: Truncation error of a weighted mean

Derive the truncation error of the weighted mean in (B.19)-(B.20).

Hint. Expand un+1
e and une around tn+θ.

Filename: trunc_weighted_mean.

Exercise B.2: Simulate the error of a weighted mean

We consider the weighted mean

ue(tn) ≈ θun+1
e + (1− θ)une .

Choose some specific function for ue(t) and compute the error in this
approximation for a sequence of decreasing ∆t = tn+1 − tn and for
θ = 0, 0.25, 0.5, 0.75, 1. Assuming that the error equals C∆tr, for some
constants C and r, compute r for the two smallest ∆t values for each
choice of θ and compare with the truncation error (B.19)-(B.20). Filename:
trunc_theta_avg.

Exercise B.3: Verify a truncation error formula

Set up a numerical experiment as explained in Section B.3.5 for verifying
the formulas (B.15)-(B.16). Filename: trunc_backward_2level.

Problem B.4: Truncation error of the Backward Euler scheme

Derive the truncation error of the Backward Euler scheme for the decay
ODE u′ = −au with constant a. Extend the analysis to cover the variable-
coefficient case u′ = −a(t)u+ b(t). Filename: trunc_decay_BE.

Exercise B.5: Empirical estimation of truncation errors

Use the ideas and tools from Section B.3.5 to estimate the rate of the
truncation error of the Backward Euler and Crank-Nicolson schemes
applied to the exponential decay model u′ = −au, u(0) = I.
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Hint. In the Backward Euler scheme, the truncation error can be esti-
mated at mesh points n = 1, . . . , N , while the truncation error must be
estimated at midpoints tn+ 1

2
, n = 0, . . . , N − 1 for the Crank-Nicolson

scheme. The truncation_error(dt, N) function to be supplied to the
estimate function needs to carefully implement these details and return
the right t array such that t[i] is the time point corresponding to the
quantities R[i] and R_a[i].
Filename: trunc_decay_BNCN.

Exercise B.6: Correction term for a Backward Euler scheme

Consider the model u′ = −au, u(0) = I. Use the ideas of Section B.3.6 to
add a correction term to the ODE such that the Backward Euler scheme
applied to the perturbed ODE problem is of second order in ∆t. Find
the amplification factor. Filename: trunc_decay_BE_corr.

Problem B.7: Verify the effect of correction terms

Make a program that solves u′ = −au, u(0) = I, by the θ-rule and
computes convergence rates. Adjust a such that it incorporates correction
terms. Run the program to verify that the error from the Forward and
Backward Euler schemes with perturbed a is O(∆t2), while the error
arising from the Crank-Nicolson scheme with perturbed a is O(∆t4).
Filename: trunc_decay_corr_verify.

Problem B.8: Truncation error of the Crank-Nicolson scheme

The variable-coefficient ODE u′ = −a(t)u + b(t) can be discretized in
two different ways by the Crank-Nicolson scheme, depending on whether
we use averages for a and b or compute them at the midpoint tn+ 1

2
:

[Dtu = −aut + b]n+ 1
2 , (B.86)

[Dtu = −au+ b
t]n+ 1

2 . (B.87)

Compute the truncation error in both cases. Filename: trunc_decay_CN_vc.
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Problem B.9: Truncation error of u′ = f(u, t)

Consider the general nonlinear first-order scalar ODE

u′(t) = f(u(t), t) .

Show that the truncation error in the Forward Euler scheme,

[D+
t u = f(u, t)]n,

and in the Backward Euler scheme,

[D−t u = f(u, t)]n,

both are of first order, regardless of what f is.
Showing the order of the truncation error in the Crank-Nicolson

scheme,
[Dtu = f(u, t)]n+ 1

2 ,

is somewhat more involved: Taylor expand une , un+1
e , f(une , tn), and

f(un+1
e , tn+1) around tn+ 1

2
, and use that

df

dt
= ∂f

∂u
u′ + ∂f

∂t
.

Check that the derived truncation error is consistent with previous results
for the case f(u, t) = −au. Filename: trunc_nonlinear_ODE.

Exercise B.10: Truncation error of [DtDtu]n

Derive the truncation error of the finite difference approximation (B.17)-
(B.18) to the second-order derivative. Filename: trunc_d2u.

Exercise B.11: Investigate the impact of approximating u′(0)

Section B.4.1 describes two ways of discretizing the initial condition
u′(0) = V for a vibration model u′′ + ω2u = 0: a centered difference
[D2tu = V ]0 or a forward difference [D+

t u = V ]0. The program vib_
undamped.py solves u′′ + ω2u = 0 with [D2tu = 0]0 and features a
function convergence_rates for computing the order of the error in
the numerical solution. Modify this program such that it applies the
forward difference [D+

t u = 0]0 and report how this simpler and more

http://tinyurl.com/nu656p2/vib/vib_undamped.py
http://tinyurl.com/nu656p2/vib/vib_undamped.py
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convenient approximation impacts the overall convergence rate of the
scheme. Filename: trunc_vib_ic_fw.

Problem B.12: Investigate the accuracy of a simplified
scheme

Consider the ODE

mu′′ + β|u′|u′ + s(u) = F (t) .

The term |u′|u′ quickly gives rise to nonlinearities and complicates the
scheme. Why not simply apply a backward difference to this term such
that it only involves known values? That is, we propose to solve

[mDtDtu+ β|D−t u|D−t u+ s(u) = F ]n .

Drop the absolute value for simplicity and find the truncation error of the
scheme. Perform numerical experiments with the scheme and compared
with the one based on centered differences. Can you illustrate the accuracy
loss visually in real computations, or is the asymptotic analysis here
mainly of theoretical interest? Filename: trunc_vib_bw_damping.



Software engineering; wave
equation model C

C.1 A 1D wave equation simulator

C.1.1 Mathematical model

Let ut, utt, ux, uxx denote derivatives of u with respect to the sub-
script, i.e., utt is a second-order time derivative and ux is a first-order
space derivative. The initial-boundary value problem implemented in the
wave1D_dn_vc.py code is

utt = (q(x)ux)x + f(x, t), x ∈ (0, L), t ∈ (0, T ] (C.1)
u(x, 0) = I(x), x ∈ [0, L] (C.2)
ut(x, 0) = V (t), x ∈ [0, L] (C.3)
u(0, t) = U0(t) or ux(0, t) = 0, t ∈ (0, T ] (C.4)
u(L, t) = UL(t) or ux(L, t) = 0, t ∈ (0, T ] (C.5)

We allow variable wave velocity c2(x) = q(x), and Dirichlet or homoge-
neous Neumann conditions at the boundaries.

C.1.2 Numerical discretization

The PDE is discretized by second-order finite differences in time and
space, with arithmetic mean for the variable coefficient

© 2016, Hans Petter Langtangen, Svein Linge. Released under CC Attribution 4.0 license
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[DtDtu = Dxq
xDxu+ f ]ni . (C.6)

The Neumann boundary conditions are discretized by

[D2xu]ni = 0,

at a boundary point i. The details of how the numerical scheme is worked
out are described in Sections 2.6 and 2.7.

C.1.3 A solver function

The general initial-boundary value problem (C.1)-(C.5) solved by finite
difference methods can be implemented as shown in the following solver
function (taken from the file wave1D_dn_vc.py). This function builds on
simpler versions described in Sections 2.3, 2.4 2.6, and 2.7. There are
several quite advanced constructs that will be commented upon later.
The code is lengthy, but that is because we provide a lot of flexibility
with respect to input arguments, boundary conditions, and optimization
(scalar versus vectorized loops).

def solver(
I, V, f, c, U_0, U_L, L, dt, C, T,
user_action=None, version=’scalar’,
stability_safety_factor=1.0):
"""Solve u_tt=(c^2*u_x)_x + f on (0,L)x(0,T]."""

# --- Compute time and space mesh ---
Nt = int(round(T/dt))
t = np.linspace(0, Nt*dt, Nt+1) # Mesh points in time

# Find max(c) using a fake mesh and adapt dx to C and dt
if isinstance(c, (float,int)):

c_max = c
elif callable(c):

c_max = max([c(x_) for x_ in np.linspace(0, L, 101)])
dx = dt*c_max/(stability_safety_factor*C)
Nx = int(round(L/dx))
x = np.linspace(0, L, Nx+1) # Mesh points in space
# Make sure dx and dt are compatible with x and t
dx = x[1] - x[0]
dt = t[1] - t[0]

# Make c(x) available as array
if isinstance(c, (float,int)):

c = np.zeros(x.shape) + c
elif callable(c):

# Call c(x) and fill array c
c_ = np.zeros(x.shape)

http://tinyurl.com/nu656p2/wave/wave1D/wave_dn_vc.py
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for i in range(Nx+1):
c_[i] = c(x[i])

c = c_

q = c**2
C2 = (dt/dx)**2; dt2 = dt*dt # Help variables in the scheme

# --- Wrap user-given f, I, V, U_0, U_L if None or 0 ---
if f is None or f == 0:

f = (lambda x, t: 0) if version == ’scalar’ else \
lambda x, t: np.zeros(x.shape)

if I is None or I == 0:
I = (lambda x: 0) if version == ’scalar’ else \

lambda x: np.zeros(x.shape)
if V is None or V == 0:

V = (lambda x: 0) if version == ’scalar’ else \
lambda x: np.zeros(x.shape)

if U_0 is not None:
if isinstance(U_0, (float,int)) and U_0 == 0:

U_0 = lambda t: 0
if U_L is not None:

if isinstance(U_L, (float,int)) and U_L == 0:
U_L = lambda t: 0

# --- Make hash of all input data ---
import hashlib, inspect
data = inspect.getsource(I) + ’_’ + inspect.getsource(V) + \

’_’ + inspect.getsource(f) + ’_’ + str(c) + ’_’ + \
(’None’ if U_0 is None else inspect.getsource(U_0)) + \
(’None’ if U_L is None else inspect.getsource(U_L)) + \
’_’ + str(L) + str(dt) + ’_’ + str(C) + ’_’ + str(T) + \
’_’ + str(stability_safety_factor)

hashed_input = hashlib.sha1(data).hexdigest()
if os.path.isfile(’.’ + hashed_input + ’_archive.npz’):

# Simulation is already run
return -1, hashed_input

# --- Allocate memomry for solutions ---
u = np.zeros(Nx+1) # Solution array at new time level
u_n = np.zeros(Nx+1) # Solution at 1 time level back
u_nm1 = np.zeros(Nx+1) # Solution at 2 time levels back

import time; t0 = time.clock() # CPU time measurement

# --- Valid indices for space and time mesh ---
Ix = range(0, Nx+1)
It = range(0, Nt+1)

# --- Load initial condition into u_n ---
for i in range(0,Nx+1):

u_n[i] = I(x[i])

if user_action is not None:
user_action(u_n, x, t, 0)
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# --- Special formula for the first step ---
for i in Ix[1:-1]:

u[i] = u_n[i] + dt*V(x[i]) + \
0.5*C2*(0.5*(q[i] + q[i+1])*(u_n[i+1] - u_n[i]) - \

0.5*(q[i] + q[i-1])*(u_n[i] - u_n[i-1])) + \
0.5*dt2*f(x[i], t[0])

i = Ix[0]
if U_0 is None:

# Set boundary values (x=0: i-1 -> i+1 since u[i-1]=u[i+1]
# when du/dn = 0, on x=L: i+1 -> i-1 since u[i+1]=u[i-1])
ip1 = i+1
im1 = ip1 # i-1 -> i+1
u[i] = u_n[i] + dt*V(x[i]) + \

0.5*C2*(0.5*(q[i] + q[ip1])*(u_n[ip1] - u_n[i]) - \
0.5*(q[i] + q[im1])*(u_n[i] - u_n[im1])) + \

0.5*dt2*f(x[i], t[0])
else:

u[i] = U_0(dt)

i = Ix[-1]
if U_L is None:

im1 = i-1
ip1 = im1 # i+1 -> i-1
u[i] = u_n[i] + dt*V(x[i]) + \

0.5*C2*(0.5*(q[i] + q[ip1])*(u_n[ip1] - u_n[i]) - \
0.5*(q[i] + q[im1])*(u_n[i] - u_n[im1])) + \

0.5*dt2*f(x[i], t[0])
else:

u[i] = U_L(dt)

if user_action is not None:
user_action(u, x, t, 1)

# Update data structures for next step
#u_nm1[:] = u_n; u_n[:] = u # safe, but slower
u_nm1, u_n, u = u_n, u, u_nm1

# --- Time loop ---
for n in It[1:-1]:

# Update all inner points
if version == ’scalar’:

for i in Ix[1:-1]:
u[i] = - u_nm1[i] + 2*u_n[i] + \

C2*(0.5*(q[i] + q[i+1])*(u_n[i+1] - u_n[i]) - \
0.5*(q[i] + q[i-1])*(u_n[i] - u_n[i-1])) + \

dt2*f(x[i], t[n])

elif version == ’vectorized’:
u[1:-1] = - u_nm1[1:-1] + 2*u_n[1:-1] + \
C2*(0.5*(q[1:-1] + q[2:])*(u_n[2:] - u_n[1:-1]) -

0.5*(q[1:-1] + q[:-2])*(u_n[1:-1] - u_n[:-2])) + \
dt2*f(x[1:-1], t[n])
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else:
raise ValueError(’version=%s’ % version)

# Insert boundary conditions
i = Ix[0]
if U_0 is None:

# Set boundary values
# x=0: i-1 -> i+1 since u[i-1]=u[i+1] when du/dn=0
# x=L: i+1 -> i-1 since u[i+1]=u[i-1] when du/dn=0
ip1 = i+1
im1 = ip1
u[i] = - u_nm1[i] + 2*u_n[i] + \

C2*(0.5*(q[i] + q[ip1])*(u_n[ip1] - u_n[i]) - \
0.5*(q[i] + q[im1])*(u_n[i] - u_n[im1])) + \

dt2*f(x[i], t[n])
else:

u[i] = U_0(t[n+1])

i = Ix[-1]
if U_L is None:

im1 = i-1
ip1 = im1
u[i] = - u_nm1[i] + 2*u_n[i] + \

C2*(0.5*(q[i] + q[ip1])*(u_n[ip1] - u_n[i]) - \
0.5*(q[i] + q[im1])*(u_n[i] - u_n[im1])) + \

dt2*f(x[i], t[n])
else:

u[i] = U_L(t[n+1])

if user_action is not None:
if user_action(u, x, t, n+1):

break

# Update data structures for next step
u_nm1, u_n, u = u_n, u, u_nm1

cpu_time = time.clock() - t0
return cpu_time, hashed_input

C.2 Saving large arrays in files

Numerical simulations produce large arrays as results and the software
needs to store these arrays on disk. Several methods are available in
Python. We recommend to use tailored solutions for large arrays and
not standard file storage tools such as pickle (cPickle for speed in
Python version 2) and shelve, because the tailored solutions have been
optimized for array data and are hence much faster than the standard
tools.
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C.2.1 Using savez to store arrays in files
Storing individual arrays. The numpy.storez function can store a
set of arrays to a named file in a zip archive. An associated func-
tion numpy.load can be used to read the file later. Basically, we call
numpy.storez(filename, **kwargs), where kwargs is a dictionary
containing array names as keys and the corresponding array objects
as values. Very often, the solution at a time point is given a natural
name where the name of the variable and the time level counter are
combined, e.g., u11 or v39. Suppose n is the time level counter and we
have two solution arrays, u and v, that we want to save to a zip archive.
The appropriate code is

import numpy as np
u_name = ’u%04d’ % n # array name
v_name = ’v%04d’ % n # array name
kwargs = {u_name: u, v_name: v} # keyword args for savez
fname = ’.mydata%04d.dat’ % n
np.savez(fname, **kwargs)
if n == 0: # store x once

np.savez(’.mydata_x.dat’, x=x)

Since the name of the array must be given as a keyword argument to
savez, and the name must be constructed as shown, it becomes a little
tricky to do the call, but with a dictionary kwargs and **kwargs, which
sends each key-value pair as individual keyword arguments, the task gets
accomplished.
Merging zip archives. Each separate call to np.savez creates a new
file (zip archive) with extension .npz. It is very convenient to collect
all results in one archive instead. This can be done by merging all the
individual .npz files into a single zip archive:

def merge_zip_archives(individual_archives, archive_name):
"""
Merge individual zip archives made with numpy.savez into
one archive with name archive_name.
The individual archives can be given as a list of names
or as a Unix wild chard filename expression for glob.glob.
The result of this function is that all the individual
archives are deleted and the new single archive made.
"""
import zipfile
archive = zipfile.ZipFile(

archive_name, ’w’, zipfile.ZIP_DEFLATED,
allowZip64=True)

if isinstance(individual_archives, (list,tuple)):
filenames = individual_archives

elif isinstance(individual_archives, str):
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filenames = glob.glob(individual_archives)

# Open each archive and write to the common archive
for filename in filenames:

f = zipfile.ZipFile(filename, ’r’,
zipfile.ZIP_DEFLATED)

for name in f.namelist():
data = f.open(name, ’r’)
# Save under name without .npy
archive.writestr(name[:-4], data.read())

f.close()
os.remove(filename)

archive.close()

Here we remark that savez automatically adds the .npz extension to
the names of the arrays we store. We do not want this extension in the
final archive.
Reading arrays from zip archives. Archives created by savez or the
merged archive we describe above with name of the form myarchive.npz,
can be conveniently read by the numpy.load function:

import numpy as np
array_names = np.load(‘myarchive.npz‘)
for array_name in array_names:

# array_names[array_name] is the array itself
# e.g. plot(array_names[’t’], array_names[array_name])

C.2.2 Using joblib to store arrays in files

The Python package joblib has nice functionality for efficient storage of
arrays on disk. The following class applies this functionality so that one
can save an array, or in fact any Python data structure (e.g., a dictionary
of arrays), to disk under a certain name. Later, we can retrieve the object
by use of its name. The name of the directory under which the arrays
are stored by joblib can be given by the user.

class Storage(object):
"""
Store large data structures (e.g. numpy arrays) efficiently
using joblib.

Use:

>>> from Storage import Storage
>>> storage = Storage(cachedir=’tmp_u01’, verbose=1)
>>> import numpy as np
>>> a = np.linspace(0, 1, 100000) # large array
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>>> b = np.linspace(0, 1, 100000) # large array
>>> storage.save(’a’, a)
>>> storage.save(’b’, b)
>>> # later
>>> a = storage.retrieve(’a’)
>>> b = storage.retrieve(’b’)
"""
def __init__(self, cachedir=’tmp’, verbose=1):

"""
Parameters
----------
cachedir: str

Name of directory where objects are stored in files.
verbose: bool, int

Let joblib and this class speak when storing files
to disk.

"""
import joblib
self.memory = joblib.Memory(cachedir=cachedir,

verbose=verbose)
self.verbose = verbose
self.retrieve = self.memory.cache(

self.retrieve, ignore=[’data’])
self.save = self.retrieve

def retrieve(self, name, data=None):
if self.verbose > 0:

print ’joblib save of’, name
return data

The retrive and save functions, which do the work, seem quite magic.
The idea is that joblib looks at the name parameter and saves the return
value data to disk if the name parameter has not been used in a previous
call. Otherwise, if name is already registered, joblib fetches the data
object from file and returns it (this is example of a memoize function,
see Section ??in [11]).

C.2.3 Using a hash to create a file or directory name

Array storage techniques like those outlined in Sections C.2.2 and C.2.1
demand the user to assign a name for the file(s) or directory where the
solution is to be stored. Ideally, this name should reflect parameters in
the problem such that one can recognize an already run simulation. One
technique is to make a hash string out of the input data. A hash string
is a 40-character long hexadecimal string that uniquely reflects another
potentially much longer string. (You may be used to hash strings from
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the Git version control system: every committed version of the files in
Git is recognized by a hash string.)

Suppose you have some input data in the form of functions, numpy
arrays, and other objects. To turn these input data into a string, we may
grab the source code of the functions, use a very efficient hash method
for potentially large arrays, and simply convert all other objects via str
to a string representation. The final string, merging all input data, is
then converted to an SHA1 hash string such that we represent the input
with a 40-character long string.

def myfunction(func1, func2, array1, array2, obj1, obj2):
# Convert arguments to hash
import inspect, joblib, hashlib
data = (inspect.getsource(func1),

inspect.getsource(func2),
joblib.hash(array1),
joblib.hash(array2),
str(obj1),
str(obj2))

hash_input = hashlib.sha1(data).hexdigest()

It is wise to use joblib.hash and not try to do a str(array1), since
that string can be very long, and joblib.hash is more efficient than
hashlib when turning these data into a hash.

Remark: turning function objects into their source code is
unreliable!
The idea of turning a function object into a string via its source code
may look smart, but is not a completely reliable solution. Suppose
we have some function

x0 = 0.1
f = lambda x: 0 if x <= x0 else 1

The source code will be f = lambda x: 0 if x <= x0 else 1,
so if the calling code changes the value of x0 (which f remembers
- it is a closure), the source remains unchanged, the hash is the
same, and the change in input data is unnoticed. Consequently, the
technique above must be used with care. The user can always just
remove the stored files in disk and thereby force a recomputation
(provided the software applies a hash to test if a zip archive or
joblib subdirectory exists, and if so, avoids recomputation).
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C.3 Software for the 1D wave equation

We use numpy.storez to store the solution at each time level on disk.
Such actions must be taken care of outside the solver function, more
precisely in the user_action function that is called at every time level.

We have, in the wave1D_dn_vc.py code, implemented the
user_action callback function as a class PlotAndStoreSolution
with a __call__(self, x, t, t, n) method for the user_action
function. Basically, __call__ stores and plots the solution. The storage
makes use of the numpy.savez function for saving a set of arrays to a
zip archive. Here, in this callback function, we want to save one array,
u. Since there will be many such arrays, we introduce the array names
’u%04d’ % n and closely related filenames. The usage of numpy.savez
in __call__ goes like this:

from numpy import savez
name = ’u%04d’ % n # array name
kwargs = {name: u} # keyword args for savez
fname = ’.’ + self.filename + ’_’ + name + ’.dat’
self.t.append(t[n]) # store corresponding time value
savez(fname, **kwargs)
if n == 0: # store x once

savez(’.’ + self.filename + ’_x.dat’, x=x)

For example, if n is 10 and self.filename is tmp, the above call to
savez becomes savez(’.tmp_u0010.dat’, u0010=u). The actual file-
name becomes .tmp_u0010.dat.npz. The actual array name becomes
u0010.npy.

Each savez call results in a file, so after the simulation we have one
file per time level. Each file produced by savez is a zip archive. It makes
sense to merge all the files into one. This is done in the close_file
method in the PlotAndStoreSolution class. The code goes as follows.

class PlotAndStoreSolution:
...
def close_file(self, hashed_input):

"""
Merge all files from savez calls into one archive.
hashed_input is a string reflecting input data
for this simulation (made by solver).
"""
if self.filename is not None:

# Save all the time points where solutions are saved
savez(’.’ + self.filename + ’_t.dat’,

t=array(self.t, dtype=float))
# Merge all savez files to one zip archive
archive_name = ’.’ + hashed_input + ’_archive.npz’

http://tinyurl.com/nu656p2/wave/wave1D/wave_dn_vc.py
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filenames = glob.glob(’.’ + self.filename + ’*.dat.npz’)
merge_zip_archives(filenames, archive_name)

We use various ZipFile functionality to extract the content of the indi-
vidual files (each with name filename) and write it to the merged
archive (archive). There is only one array in each individual file
(filename) so strictly speaking, there is no need for the loop for name
in f.namelist() (as f.namelist() returns a list of length 1). How-
ever, in other applications where we compute more arrays at each time
level, savez will store all these and then there is need for iterating over
f.namelist().

Instead of merging the archives written by savez we could make an
alternative implementation that writes all our arrays into one archive.
This is the subject of Exercise C.9.

C.3.1 Making hash strings from input data

The hashed_input argument, used to name the resulting archive file
with all solutions, is supposed to be a hash reflecting all import parame-
ters in the problem such that this simulation has a unique name. The
hashed_input string is made in the solver function, using the hashlib
and inspect modules, based on the arguments to solver:

# Make hash of all input data
import hashlib, inspect
data = inspect.getsource(I) + ’_’ + inspect.getsource(V) + \

’_’ + inspect.getsource(f) + ’_’ + str(c) + ’_’ + \
(’None’ if U_0 is None else inspect.getsource(U_0)) + \
(’None’ if U_L is None else inspect.getsource(U_L)) + \
’_’ + str(L) + str(dt) + ’_’ + str(C) + ’_’ + str(T) + \
’_’ + str(stability_safety_factor)

hashed_input = hashlib.sha1(data).hexdigest()

To get the source code of a function f as a string, we use
inspect.getsource(f). All input, functions as well as variables, is
then merged to a string data, and then hashlib.sha1 makes a unique,
much shorter (40 characters long), fixed-length string out of data that
we can use in the archive filename.

Remark
Note that the construction of the data string is not fool proof: if,
e.g., I is a formula with parameters and the parameters change, the

http://tinyurl.com/nu656p2/wave/wave1D/wave_dn_vc.py
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source code is still the same and data and hence the hash remains
unaltered. The implementation must therefore be used with care!

C.3.2 Avoiding rerunning previously run cases
If the archive file whose name is based on hashed_input already exists,
the simulation with the current set of parameters has been done before
and one can avoid redoing the work. The solver function returns the
CPU time and hashed_input, and a negative CPU time means that
no simulation was run. In that case we should not call the close_file
method above (otherwise we overwrite the archive with just the self.t
array). The typical usage goes like

action = PlotAndStoreSolution(...)
dt = (L/Nx)/C # choose the stability limit with given Nx
cpu, hashed_input = solver(

I=lambda x: ...,
V=0, f=0, c=1, U_0=lambda t: 0, U_L=None, L=1,
dt=dt, C=C, T=T,
user_action=action, version=’vectorized’,
stability_safety_factor=1)

action.make_movie_file()
if cpu > 0: # did we generate new data?

action.close_file(hashed_input)

C.3.3 Verification
Vanishing approximation error. Exact solutions of the numerical equa-
tions are always attractive for verification purposes since the software
should reproduce such solutions to machine precision. With Dirichlet
boundary conditions we can construct a function that is linear in t and
quadratic in x that is also an exact solution of the scheme, while with
Neumann conditions we are left with testing just a constant solution (see
comments in Section 2.6.5).
Convergence rates. A more general method for verification is to check
the convergence rates. We must introduce one discretization parameter
h and assume an error model E = Chr, where C and r are constants
to be determine (i.e., r is the rate that we are interested in). Given two
experiments with different resolutions hi and hi−1, we can estimate r by
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r = ln(Ei/Ei−1)
ln(hihi−1

, tp

where Ei is the error corresponding to hi and Ei−1 corresponds to hi−1.
Section 2.2.2 explains the details of this type of verification and how we
introduce the single discretization parameter h = ∆t = ĉ∆t, for some
constant ĉ. To compute the error, we had to rely on a global variable
in the user action function. Below is an implementation where we have
a more elegant solution in terms of a class: the error variable is not a
class attribute and there is no need for a global error (which is always
considered as an advantage).

def convergence_rates(
u_exact,
I, V, f, c, U_0, U_L, L,
dt0, num_meshes,
C, T, version=’scalar’,
stability_safety_factor=1.0):
"""
Half the time step and estimate convergence rates for
for num_meshes simulations.
"""
class ComputeError:

def __init__(self, norm_type):
self.error = 0

def __call__(self, u, x, t, n):
"""Store norm of the error in self.E."""
error = np.abs(u - u_exact(x, t[n])).max()
self.error = max(self.error, error)

E = []
h = [] # dt, solver adjusts dx such that C=dt*c/dx
dt = dt0
for i in range(num_meshes):

error_calculator = ComputeError(’Linf’)
solver(I, V, f, c, U_0, U_L, L, dt, C, T,

user_action=error_calculator,
version=’scalar’,
stability_safety_factor=1.0)

E.append(error_calculator.error)
h.append(dt)
dt /= 2 # halve the time step for next simulation

print ’E:’, E
print ’h:’, h
r = [np.log(E[i]/E[i-1])/np.log(h[i]/h[i-1])

for i in range(1,num_meshes)]
return r

The returned sequence r should converge to 2 since the error anal-
ysis in Section 2.10 predicts various error measures to behave like
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O(∆t2) + O(∆x2). We can easily run the case with standing waves
and the analytical solution u(x, t) = cos(2π

L t) sin(2π
L x). The call will be

very similar to the one provided in the test_convrate_sincos function
in Section 2.3.4, see the file wave1D_dn_vc.py for details.

C.4 Programming the solver with classes

Many who know about class programming prefer to organize their soft-
ware in terms of classes. This gives a richer application programming
interface (API) since a function solver must have all its input data in
terms of arguments, while a class-based solver naturally has a mix of
method arguments and user-supplied methods. (Well, to be more precise,
our solvers have demanded user_action to be a function provided by
the user, so it is possible to mix variables and functions in the input also
in a solver function.)

We will create a class Problem to hold the physical parameters of the
problem and a class Solver to hold the numerical parameters and the
solver function. In addition, it is convenient to collect the arrays that
describe the mesh in a special Mesh class and make a class Function for
a mesh function (mesh point values and its mesh).

C.4.1 Class Problem

C.4.2 Class Mesh

The Mesh class can be made valid for a space-time mesh in any number
of space dimensions. To make the class versatile, the constructor accepts
either a tuple/list of number of cells in each spatial dimension or a
tuple/list of cell spacings. In addition, we need the size of the hypercube
mesh as a tuple/list of 2-tuples with lower and upper limits of the mesh
coordinates in each direction. For 1D meshes it is more natural to just
write the number of cells or the cell size and not wrap it in a list. We
also need the time interval from t0 to T. Giving no spatial discretization
information implies a time mesh only, and vice versa. The Mesh class
with documentation and a doc test should now be self-explanatory:

import numpy as np

class Mesh(object):

http://tinyurl.com/nu656p2/wave/wave1D/wave_dn_vc.py
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"""
Holds data structures for a uniform mesh on a hypercube in
space, plus a uniform mesh in time.

======== ==================================================
Argument Explanation
======== ==================================================
L List of 2-lists of min and max coordinates

in each spatial direction.
T Final time in time mesh.
Nt Number of cells in time mesh.
dt Time step. Either Nt or dt must be given.
N List of number of cells in the spatial directions.
d List of cell sizes in the spatial directions.

Either N or d must be given.
======== ==================================================

Users can access all the parameters mentioned above, plus
‘‘x[i]‘‘ and ‘‘t‘‘ for the coordinates in direction ‘‘i‘‘
and the time coordinates, respectively.

Examples:

>>> from UniformFDMesh import Mesh
>>>
>>> # Simple space mesh
>>> m = Mesh(L=[0,1], N=4)
>>> print m.dump()
space: [0,1] N=4 d=0.25
>>>
>>> # Simple time mesh
>>> m = Mesh(T=4, dt=0.5)
>>> print m.dump()
time: [0,4] Nt=8 dt=0.5
>>>
>>> # 2D space mesh
>>> m = Mesh(L=[[0,1], [-1,1]], d=[0.5, 1])
>>> print m.dump()
space: [0,1]x[-1,1] N=2x2 d=0.5,1
>>>
>>> # 2D space mesh and time mesh
>>> m = Mesh(L=[[0,1], [-1,1]], d=[0.5, 1], Nt=10, T=3)
>>> print m.dump()
space: [0,1]x[-1,1] N=2x2 d=0.5,1 time: [0,3] Nt=10 dt=0.3

"""
def __init__(self,

L=None, T=None, t0=0,
N=None, d=None,
Nt=None, dt=None):

if N is None and d is None:
# No spatial mesh
if Nt is None and dt is None:

raise ValueError(



550 C Software engineering; wave equation model

’Mesh constructor: either Nt or dt must be given’)
if T is None:

raise ValueError(
’Mesh constructor: T must be given’)

if Nt is None and dt is None:
if N is None and d is None:

raise ValueError(
’Mesh constructor: either N or d must be given’)

if L is None:
raise ValueError(
’Mesh constructor: L must be given’)

# Allow 1D interface without nested lists with one element
if L is not None and isinstance(L[0], (float,int)):

# Only an interval was given
L = [L]

if N is not None and isinstance(N, (float,int)):
N = [N]

if d is not None and isinstance(d, (float,int)):
d = [d]

# Set all attributes to None
self.x = None
self.t = None
self.Nt = None
self.dt = None
self.N = None
self.d = None
self.t0 = t0

if N is None and d is not None and L is not None:
self.L = L
if len(d) != len(L):

raise ValueError(
’d has different size (no of space dim.) from ’
’L: %d vs %d’, len(d), len(L))

self.d = d
self.N = [int(round(float(self.L[i][1] -

self.L[i][0])/d[i]))
for i in range(len(d))]

if d is None and N is not None and L is not None:
self.L = L
if len(N) != len(L):

raise ValueError(
’N has different size (no of space dim.) from ’
’L: %d vs %d’, len(N), len(L))

self.N = N
self.d = [float(self.L[i][1] - self.L[i][0])/N[i]

for i in range(len(N))]

if Nt is None and dt is not None and T is not None:
self.T = T
self.dt = dt
self.Nt = int(round(T/dt))
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if dt is None and Nt is not None and T is not None:
self.T = T
self.Nt = Nt
self.dt = T/float(Nt)

if self.N is not None:
self.x = [np.linspace(

self.L[i][0], self.L[i][1], self.N[i]+1)
for i in range(len(self.L))]

if Nt is not None:
self.t = np.linspace(self.t0, self.T, self.Nt+1)

def get_num_space_dim(self):
return len(self.d) if self.d is not None else 0

def has_space(self):
return self.d is not None

def has_time(self):
return self.dt is not None

def dump(self):
s = ’’
if self.has_space():

s += ’space: ’ + \
’x’.join([’[%g,%g]’ % (self.L[i][0], self.L[i][1])

for i in range(len(self.L))]) + ’ N=’
s += ’x’.join([str(Ni) for Ni in self.N]) + ’ d=’
s += ’,’.join([str(di) for di in self.d])

if self.has_space() and self.has_time():
s += ’ ’

if self.has_time():
s += ’time: ’ + ’[%g,%g]’ % (self.t0, self.T) + \

’ Nt=%g’ % self.Nt + ’ dt=%g’ % self.dt
return s

We rely on attribute access - not get/set functions!

Java programmers in particular are used to get/set functions in
classes to access internal data. In Python, we usually apply direct
access of the attribute, such as m.N[i] if m is a Mesh object. A
widely used convention is to do this as long as access to an attribute
does not require additional code. In that case, one applies a prop-
erty construction. The original interface remains the same after a
property is introduced (in contrast to Java), so user will not notice
a change to properties.
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The only argument against direct attribute access in class Mesh
is that the attributes are read-only so we could avoid offering a set
function. Instead, we rely on the user that she does not assign new
values to the attributes.

C.4.3 Class Function
A class Function is handy to hold a mesh and corresponding values for
a scalar or vector function over the mesh. Since we may have a time
or space mesh, or a combined time and space mesh, with one or more
components in the function, some if tests are needed for allocating the
right array sizes. To help the user, an indices attribute with the name
of the indices in the final array u for the function values is made. The
examples in the doc string should explain the functionality.

class Function(object):
"""
A scalar or vector function over a mesh (of class Mesh).

========== ===================================================
Argument Explanation
========== ===================================================
mesh Class Mesh object: spatial and/or temporal mesh.
num_comp Number of components in function (1 for scalar).
space_only True if the function is defined on the space mesh

only (to save space). False if function has values
in space and time.

========== ===================================================

The indexing of ‘‘u‘‘, which holds the mesh point values of the
function, depends on whether we have a space and/or time mesh.

Examples:

>>> from UniformFDMesh import Mesh, Function
>>>
>>> # Simple space mesh
>>> m = Mesh(L=[0,1], N=4)
>>> print m.dump()
space: [0,1] N=4 d=0.25
>>> f = Function(m)
>>> f.indices
[’x0’]
>>> f.u.shape
(5,)
>>> f.u[4] # space point 4
0.0
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>>>
>>> # Simple time mesh for two components
>>> m = Mesh(T=4, dt=0.5)
>>> print m.dump()
time: [0,4] Nt=8 dt=0.5
>>> f = Function(m, num_comp=2)
>>> f.indices
[’time’, ’component’]
>>> f.u.shape
(9, 2)
>>> f.u[3,1] # time point 3, comp=1 (2nd comp.)
0.0
>>>
>>> # 2D space mesh
>>> m = Mesh(L=[[0,1], [-1,1]], d=[0.5, 1])
>>> print m.dump()
space: [0,1]x[-1,1] N=2x2 d=0.5,1
>>> f = Function(m)
>>> f.indices
[’x0’, ’x1’]
>>> f.u.shape
(3, 3)
>>> f.u[1,2] # space point (1,2)
0.0
>>>
>>> # 2D space mesh and time mesh
>>> m = Mesh(L=[[0,1],[-1,1]], d=[0.5,1], Nt=10, T=3)
>>> print m.dump()
space: [0,1]x[-1,1] N=2x2 d=0.5,1 time: [0,3] Nt=10 dt=0.3
>>> f = Function(m, num_comp=2, space_only=False)
>>> f.indices
[’time’, ’x0’, ’x1’, ’component’]
>>> f.u.shape
(11, 3, 3, 2)
>>> f.u[2,1,2,0] # time step 2, space point (1,2), comp=0
0.0
>>> # Function with space data only
>>> f = Function(m, num_comp=1, space_only=True)
>>> f.indices
[’x0’, ’x1’]
>>> f.u.shape
(3, 3)
>>> f.u[1,2] # space point (1,2)
0.0
"""
def __init__(self, mesh, num_comp=1, space_only=True):

self.mesh = mesh
self.num_comp = num_comp
self.indices = []

# Create array(s) to store mesh point values
if (self.mesh.has_space() and not self.mesh.has_time()) or \

(self.mesh.has_space() and self.mesh.has_time() and \
space_only):
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# Space mesh only
if num_comp == 1:

self.u = np.zeros(
[self.mesh.N[i] + 1
for i in range(len(self.mesh.N))])

self.indices = [
’x’+str(i) for i in range(len(self.mesh.N))]

else:
self.u = np.zeros(

[self.mesh.N[i] + 1
for i in range(len(self.mesh.N))] +

[num_comp])
self.indices = [

’x’+str(i)
for i in range(len(self.mesh.N))] +\
[’component’]

if not self.mesh.has_space() and self.mesh.has_time():
# Time mesh only
if num_comp == 1:

self.u = np.zeros(self.mesh.Nt+1)
self.indices = [’time’]

else:
# Need num_comp entries per time step
self.u = np.zeros((self.mesh.Nt+1, num_comp))
self.indices = [’time’, ’component’]

if self.mesh.has_space() and self.mesh.has_time() \
and not space_only:
# Space-time mesh
size = [self.mesh.Nt+1] + \

[self.mesh.N[i]+1
for i in range(len(self.mesh.N))]

if num_comp > 1:
self.indices = [’time’] + \

[’x’+str(i)
for i in range(len(self.mesh.N))] +\

[’component’]
size += [num_comp]

else:
self.indices = [’time’] + [’x’+str(i)

for i in range(len(self.mesh.N))]
self.u = np.zeros(size)

C.4.4 Class Solver

With the Mesh and Function classes in place, we can rewrite the solver
function, but we put it as a method in class Solver:
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C.5 Migrating loops to Cython

We now consider the wave2D_u0.py code for solving the 2D linear wave
equation with constant wave velocity and homogeneous Dirichlet bound-
ary conditions u = 0. We shall in the present chapter extend this code
with computational modules written in other languages than Python.
This extended version is called wave2D_u0_adv.py.

The wave2D_u0.py file contains a solver function, which calls an
advance_* function to advance the numerical scheme one level forward
in time. The function advance_scalar applies standard Python loops to
implement the scheme, while advance_vectorized performs correspond-
ing vectorized arithmetics with array slices. The statements of this solver
are explained in Section 2.12, in particular Sections 2.12.1 and 2.12.2.

Although vectorization can bring down the CPU time dramatically
compared with scalar code, there is still some factor 5-10 to win in these
types of applications by implementing the finite difference scheme in
compiled code, typically in Fortran, C, or C++. This can quite easily be
done by adding a little extra code to our program. Cython is an extension
of Python that offers the easiest way to nail our Python loops in the
scalar code down to machine code and achieve the efficiency of C.

Cython can be viewed as an extended Python language where vari-
ables are declared with types and where functions are marked to be
implemented in C. Migrating Python code to Cython is done by copying
the desired code segments to functions (or classes) and placing them in
one or more separate files with extension .pyx.

C.5.1 Declaring variables and annotating the code

Our starting point is the plain advance_scalar function for a scalar
implementation of the updating algorithm for new values un+1

i,j :

def advance_scalar(u, u_n, u_nm1, f, x, y, t, n, Cx2, Cy2, dt2,
V=None, step1=False):

Ix = range(0, u.shape[0]); Iy = range(0, u.shape[1])
if step1:

dt = sqrt(dt2) # save
Cx2 = 0.5*Cx2; Cy2 = 0.5*Cy2; dt2 = 0.5*dt2 # redefine
D1 = 1; D2 = 0

else:
D1 = 2; D2 = 1

for i in Ix[1:-1]:
for j in Iy[1:-1]:

http://tinyurl.com/nu656p2/wave/wave2D_u0/wave2D_u0.py
http://tinyurl.com/nu656p2/softeng2/wave2D_u0_adv.py
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u_xx = u_n[i-1,j] - 2*u_n[i,j] + u_n[i+1,j]
u_yy = u_n[i,j-1] - 2*u_n[i,j] + u_n[i,j+1]
u[i,j] = D1*u_n[i,j] - D2*u_nm1[i,j] + \

Cx2*u_xx + Cy2*u_yy + dt2*f(x[i], y[j], t[n])
if step1:

u[i,j] += dt*V(x[i], y[j])
# Boundary condition u=0
j = Iy[0]
for i in Ix: u[i,j] = 0
j = Iy[-1]
for i in Ix: u[i,j] = 0
i = Ix[0]
for j in Iy: u[i,j] = 0
i = Ix[-1]
for j in Iy: u[i,j] = 0
return u

We simply take a copy of this function and put it in a file
wave2D_u0_loop_cy.pyx. The relevant Cython implementation arises
from declaring variables with types and adding some important anno-
tations to speed up array computing in Cython. Let us first list the
complete code in the .pyx file:

import numpy as np
cimport numpy as np
cimport cython
ctypedef np.float64_t DT # data type

@cython.boundscheck(False) # turn off array bounds check
@cython.wraparound(False) # turn off negative indices (u[-1,-1])
cpdef advance(

np.ndarray[DT, ndim=2, mode=’c’] u,
np.ndarray[DT, ndim=2, mode=’c’] u_n,
np.ndarray[DT, ndim=2, mode=’c’] u_nm1,
np.ndarray[DT, ndim=2, mode=’c’] f,
double Cx2, double Cy2, double dt2):

cdef:
int Ix_start = 0
int Iy_start = 0
int Ix_end = u.shape[0]-1
int Iy_end = u.shape[1]-1
int i, j
double u_xx, u_yy

for i in range(Ix_start+1, Ix_end):
for j in range(Iy_start+1, Iy_end):

u_xx = u_n[i-1,j] - 2*u_n[i,j] + u_n[i+1,j]
u_yy = u_n[i,j-1] - 2*u_n[i,j] + u_n[i,j+1]
u[i,j] = 2*u_n[i,j] - u_nm1[i,j] + \

Cx2*u_xx + Cy2*u_yy + dt2*f[i,j]
# Boundary condition u=0
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j = Iy_start
for i in range(Ix_start, Ix_end+1): u[i,j] = 0
j = Iy_end
for i in range(Ix_start, Ix_end+1): u[i,j] = 0
i = Ix_start
for j in range(Iy_start, Iy_end+1): u[i,j] = 0
i = Ix_end
for j in range(Iy_start, Iy_end+1): u[i,j] = 0
return u

This example may act as a recipe on how to transform array-intensive
code with loops into Cython.

1. Variables are declared with types: for example, double v in the
argument list instead of just v, and cdef double v for a variable v
in the body of the function. A Python float object is declared as
double for translation to C by Cython, while an int object is declared
by int.

2. Arrays need a comprehensive type declaration involving
•the type np.ndarray,
•the data type of the elements, here 64-bit floats, abbreviated as
DT through ctypedef np.float64_t DT (instead of DT we could
use the full name of the data type: np.float64_t, which is a
Cython-defined type),

•the dimensions of the array, here ndim=2 and ndim=1,
•specification of contiguous memory for the array (mode=’c’).

3. Functions declared with cpdef are translated to C but are also acces-
sible from Python.

4. In addition to the standard numpy import we also need a special
Cython import of numpy: cimport numpy as np, to appear after the
standard import.

5. By default, array indices are checked to be within their legal limits. To
speed up the code one should turn off this feature for a specific function
by placing @cython.boundscheck(False) above the function header.

6. Also by default, array indices can be negative (counting from the
end), but this feature has a performance penalty and is therefore here
turned off by writing @cython.wraparound(False) right above the
function header.

7. The use of index sets Ix and Iy in the scalar code cannot be success-
fully translated to C. One reason is that constructions like Ix[1:-1]
involve negative indices, and these are now turned off. Another rea-
son is that Cython loops must take the form for i in xrange or
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for i in range for being translated into efficient C loops. We have
therefore introduced Ix_start as Ix[0] and Ix_end as Ix[-1] to
hold the start and end of the values of index i. Similar variables are
introduced for the j index. A loop for i in Ix is with these new
variables written as for i in range(Ix_start, Ix_end+1).

Array declaration syntax in Cython

We have used the syntax np.ndarray[DT, ndim=2, mode=’c’] to
declare numpy arrays in Cython. There is a simpler, alternative
syntax, employing typed memory views, where the declaration looks
like double [:,:]. However, the full support for this functionality
is not yet ready, and in this text we use the full array declaration
syntax.

C.5.2 Visual inspection of the C translation

Cython can visually explain how successfully it translated a code from
Python to C. The command

Terminal

Terminal> cython -a wave2D_u0_loop_cy.pyx

produces an HTML file wave2D_u0_loop_cy.html, which can be loaded
into a web browser to illustrate which lines of the code that have been
translated to C. Figure C.1 shows the illustrated code. Yellow lines
indicate the lines that Cython did not manage to translate to efficient
C code and that remain in Python. For the present code we see that
Cython is able to translate all the loops with array computing to C,
which is our primary goal.

You can also inspect the generated C code directly, as it appears in
the file wave2D_u0_loop_cy.c. Nevertheless, understanding this C code
requires some familiarity with writing Python extension modules in C
by hand. Deep down in the file we can see in detail how the compute-
intensive statements have been translated into some complex C code that
is quite different from what a human would write (at least if a direct
correspondence to the mathematical notation was intended).

http://docs.cython.org/src/userguide/memoryviews.html
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Fig. C.1 Visual illustration of Cython’s ability to translate Python to C.

C.5.3 Building the extension module
Cython code must be translated to C, compiled, and linked to form what
is known in the Python world as a C extension module. This is usually
done by making a setup.py script, which is the standard way of building
and installing Python software. For an extension module arising from
Cython code, the following setup.py script is all we need to build and
install the module:

from distutils.core import setup
from distutils.extension import Extension
from Cython.Distutils import build_ext

cymodule = ’wave2D_u0_loop_cy’
setup(

name=cymodule
ext_modules=[Extension(cymodule, [cymodule + ’.pyx’],)],
cmdclass={’build_ext’: build_ext},

)

We run the script by
Terminal

Terminal> python setup.py build_ext --inplace

The –inplace option makes the extension module available in the current
directory as the file wave2D_u0_loop_cy.so. This file acts as a normal
Python module that can be imported and inspected:

>>> import wave2D_u0_loop_cy
>>> dir(wave2D_u0_loop_cy)
[’__builtins__’, ’__doc__’, ’__file__’, ’__name__’,
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’__package__’, ’__test__’, ’advance’, ’np’]

The important output from the dir function is our Cython function
advance (the module also features the imported numpy module under
the name np as well as many standard Python objects with double
underscores in their names).

The setup.py file makes use of the distutils package in Python and
Cython’s extension of this package. These tools know how Python was
built on the computer and will use compatible compiler(s) and options
when building other code in Cython, C, or C++. Quite some experience
with building large program systems is needed to do the build process
manually, so using a setup.py script is strongly recommended.

Simplified build of a Cython module

When there is no need to link the C code with special libraries,
Cython offers a shortcut for generating and importing the extension
module:

import pyximport; pyximport.install()

This makes the setup.py script redundant. However, in the
wave2D_u0_adv.py code we do not use pyximport and require
an explicit build process of this and many other modules.

C.5.4 Calling the Cython function from Python

The wave2D_u0_loop_cy module contains our advance function, which
we now may call from the Python program for the wave equation:

import wave2D_u0_loop_cy
advance = wave2D_u0_loop_cy.advance
...
for n in It[1:-1]: # time loop

f_a[:,:] = f(xv, yv, t[n]) # precompute, size as u
u = advance(u, u_n, u_nm1, f_a, x, y, t, Cx2, Cy2, dt2)

Efficiency. For a mesh consisting of 120× 120 cells, the scalar Python
code require 1370 CPU time units, the vectorized version requires 5.5,
while the Cython version requires only 1! For a smaller mesh with 60×60
cells Cython is about 1000 times faster than the scalar Python code, and
the vectorized version is about 6 times slower than the Cython version.
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C.6 Migrating loops to Fortran

Instead of relying on Cython’s (excellent) ability to translate Python
to C, we can invoke a compiled language directly and write the loops
ourselves. Let us start with Fortran 77, because this is a language with
more convenient array handling than C (or plain C++), because we
can use the same multi-dimensional indices in the Fortran code as in
the numpy arrays in the Python code, while in C these arrays are one-
dimensional and requires us to reduce multi-dimensional indices to a
single index.

C.6.1 The Fortran subroutine

We write a Fortran subroutine advance in a file wave2D_u0_loop_f77.f
for implementing the updating formula (2.117) and setting the solution
to zero at the boundaries:

subroutine advance(u, u_n, u_nm1, f, Cx2, Cy2, dt2, Nx, Ny)
integer Nx, Ny
real*8 u(0:Nx,0:Ny), u_n(0:Nx,0:Ny), u_nm1(0:Nx,0:Ny)
real*8 f(0:Nx,0:Ny), Cx2, Cy2, dt2
integer i, j
real*8 u_xx, u_yy

Cf2py intent(in, out) u

C Scheme at interior points
do j = 1, Ny-1

do i = 1, Nx-1
u_xx = u_n(i-1,j) - 2*u_n(i,j) + u_n(i+1,j)
u_yy = u_n(i,j-1) - 2*u_n(i,j) + u_n(i,j+1)
u(i,j) = 2*u_n(i,j) - u_nm1(i,j) + Cx2*u_xx + Cy2*u_yy +

& dt2*f(i,j)
end do

end do

C Boundary conditions
j = 0
do i = 0, Nx

u(i,j) = 0
end do
j = Ny
do i = 0, Nx

u(i,j) = 0
end do
i = 0
do j = 0, Ny

u(i,j) = 0

http://tinyurl.com/nu656p2/wave/wave2D_u0/wave2D_u0_loop_f77.f
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end do
i = Nx
do j = 0, Ny

u(i,j) = 0
end do
return
end

This code is plain Fortran 77, except for the special Cf2py comment line,
which here specifies that u is both an input argument and an object to
be returned from the advance routine. Or more precisely, Fortran is not
able return an array from a function, but we need a wrapper code in C
for the Fortran subroutine to enable calling it from Python, and from
this wrapper code one can return u to the calling Python code.

Tip: Return all computed objects to the calling code

It is not strictly necessary to return u to the calling Python code
since the advance function will modify the elements of u, but the
convention in Python is to get all output from a function as returned
values. That is, the right way of calling the above Fortran subroutine
from Python is

u = advance(u, u_n, u_nm1, f, Cx2, Cy2, dt2)

The less encouraged style, which works and resembles the way the
Fortran subroutine is called from Fortran, reads

advance(u, u_n, u_nm1, f, Cx2, Cy2, dt2)

C.6.2 Building the Fortran module with f2py

The nice feature of writing loops in Fortran is that, without much effort,
the tool f2py can produce a C extension module such that we can call
the Fortran version of advance from Python. The necessary commands
to run are

Terminal

Terminal> f2py -m wave2D_u0_loop_f77 -h wave2D_u0_loop_f77.pyf \
--overwrite-signature wave2D_u0_loop_f77.f

Terminal> f2py -c wave2D_u0_loop_f77.pyf --build-dir build_f77 \
-DF2PY_REPORT_ON_ARRAY_COPY=1 wave2D_u0_loop_f77.f
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The first command asks f2py to interpret the Fortran code and
make a Fortran 90 specification of the extension module in the file
wave2D_u0_loop_f77.pyf. The second command makes f2py generate
all necessary wrapper code, compile our Fortran file and the wrapper
code, and finally build the module. The build process takes place in
the specified subdirectory build_f77 so that files can be inspected if
something goes wrong. The option -DF2PY_REPORT_ON_ARRAY_COPY=1
makes f2py write a message for every array that is copied in the commu-
nication between Fortran and Python, which is very useful for avoiding
unnecessary array copying (see below). The name of the module file is
wave2D_u0_loop_f77.so, and this file can be imported and inspected
as any other Python module:

>>> import wave2D_u0_loop_f77
>>> dir(wave2D_u0_loop_f77)
[’__doc__’, ’__file__’, ’__name__’, ’__package__’,
’__version__’, ’advance’]

>>> print wave2D_u0_loop_f77.__doc__
This module ’wave2D_u0_loop_f77’ is auto-generated with f2py....
Functions:

u = advance(u,u_n,u_nm1,f,cx2,cy2,dt2,
nx=(shape(u,0)-1),ny=(shape(u,1)-1))

Examine the doc strings!

Printing the doc strings of the module and its functions is extremely
important after having created a module with f2py. The reason is
that f2py makes Python interfaces to the Fortran functions that are
different from how the functions are declared in the Fortran code
(!). The rationale for this behavior is that f2py creates Pythonic
interfaces such that Fortran routines can be called in the same way
as one calls Python functions. Output data from Python functions is
always returned to the calling code, but this is technically impossible
in Fortran. Also, arrays in Python are passed to Python functions
without their dimensions because that information is packed with
the array data in the array objects. This is not possible in Fortran,
however. Therefore, f2py removes array dimensions from the ar-
gument list, and f2py makes it possible to return objects back to
Python.
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Let us follow the advice of examining the doc strings and take a close
look at the documentation f2py has generated for our Fortran advance
subroutine:

>>> print wave2D_u0_loop_f77.advance.__doc__
This module ’wave2D_u0_loop_f77’ is auto-generated with f2py
Functions:

u = advance(u,u_n,u_nm1,f,cx2,cy2,dt2,
nx=(shape(u,0)-1),ny=(shape(u,1)-1))

.
advance - Function signature:

u = advance(u,u_n,u_nm1,f,cx2,cy2,dt2,[nx,ny])
Required arguments:

u : input rank-2 array(’d’) with bounds (nx + 1,ny + 1)
u_n : input rank-2 array(’d’) with bounds (nx + 1,ny + 1)
u_nm1 : input rank-2 array(’d’) with bounds (nx + 1,ny + 1)
f : input rank-2 array(’d’) with bounds (nx + 1,ny + 1)
cx2 : input float
cy2 : input float
dt2 : input float

Optional arguments:
nx := (shape(u,0)-1) input int
ny := (shape(u,1)-1) input int

Return objects:
u : rank-2 array(’d’) with bounds (nx + 1,ny + 1)

Here we see that the nx and ny parameters declared in Fortran are
optional arguments that can be omitted when calling advance from
Python.

We strongly recommend to print out the documentation of every
Fortran function to be called from Python and make sure the call syntax
is exactly as listed in the documentation.

C.6.3 How to avoid array copying
Multi-dimensional arrays are stored as a stream of numbers in memory.
For a two-dimensional array consisting of rows and columns there are
two ways of creating such a stream: row-major ordering, which means
that rows are stored consecutively in memory, or column-major ordering,
which means that the columns are stored one after each other. All
programming languages inherited from C, including Python, apply the
row-major ordering, but Fortran uses column-major storage. Thinking
of a two-dimensional array in Python or C as a matrix, it means that
Fortran works with the transposed matrix.

Fortunately, f2py creates extra code so that accessing u(i,j) in the
Fortran subroutine corresponds to the element u[i,j] in the underlying
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numpy array (without the extra code, u(i,j) in Fortran would access
u[j,i] in the numpy array). Technically, f2py takes a copy of our numpy
array and reorders the data before sending the array to Fortran. Such
copying can be costly. For 2D wave simulations on a 60 × 60 grid the
overhead of copying is a factor of 5, which means that almost the whole
performance gain of Fortran over vectorized numpy code is lost!

To avoid having f2py to copy arrays with C storage to the correspond-
ing Fortran storage, we declare the arrays with Fortran storage:

order = ’Fortran’ if version == ’f77’ else ’C’
u = zeros((Nx+1,Ny+1), order=order) # solution array
u_n = zeros((Nx+1,Ny+1), order=order) # solution at t-dt
u_nm1 = zeros((Nx+1,Ny+1), order=order) # solution at t-2*dt

In the compile and build step of using f2py, it is recommended to add
an extra option for making f2py report on array copying:

Terminal

Terminal> f2py -c wave2D_u0_loop_f77.pyf --build-dir build_f77 \
-DF2PY_REPORT_ON_ARRAY_COPY=1 wave2D_u0_loop_f77.f

It can sometimes be a challenge to track down which array that causes
a copying. There are two principal reasons for copying array data: either
the array does not have Fortran storage or the element types do not
match those declared in the Fortran code. The latter cause is usually
effectively eliminated by using real*8 data in the Fortran code and
float64 (the default float type in numpy) in the arrays on the Python
side. The former reason is more common, and to check whether an array
before a Fortran call has the right storage one can print the result of
isfortran(a), which is True if the array a has Fortran storage.

Let us look at an example where we face problems with array storage.
A typical problem in the wave2D_u0.py code is to set

f_a = f(xv, yv, t[n])

before the call to the Fortran advance routine. This computation creates
a new array with C storage. An undesired copy of f_a will be produced
when sending f_a to a Fortran routine. There are two remedies, either
direct insertion of data in an array with Fortran storage,

f_a = zeros((Nx+1, Ny+1), order=’Fortran’)
...
f_a[:,:] = f(xv, yv, t[n])

or remaking the f(xv, yv, t[n]) array,

f_a = asarray(f(xv, yv, t[n]), order=’Fortran’)
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The former remedy is most efficient if the asarray operation is to be
performed a large number of times.
Efficiency. The efficiency of this Fortran code is very similar to the
Cython code. There is usually nothing more to gain, from a computational
efficiency point of view, by implementing the complete Python program
in Fortran or C. That will just be a lot more code for all administering
work that is needed in scientific software, especially if we extend our
sample program wave2D_u0.py to handle a real scientific problem. Then
only a small portion will consist of loops with intensive array calculations.
These can be migrated to Cython or Fortran as explained, while the rest
of the programming can be more conveniently done in Python.

C.7 Migrating loops to C via Cython

The computationally intensive loops can alternatively be implemented
in C code. Just as Fortran calls for care regarding the storage of two-
dimensional arrays, working with two-dimensional arrays in C is a bit
tricky. The reason is that numpy arrays are viewed as one-dimensional
arrays when transferred to C, while C programmers will think of u, u_n,
and u_nm1 as two dimensional arrays and index them like u[i][j]. The
C code must declare u as double* u and translate an index pair [i][j]
to a corresponding single index when u is viewed as one-dimensional.
This translation requires knowledge of how the numbers in u are stored
in memory.

C.7.1 Translating index pairs to single indices

Two-dimensional numpy arrays with the default C storage are stored row
by row. In general, multi-dimensional arrays with C storage are stored
such that the last index has the fastest variation, then the next last
index, and so on, ending up with the slowest variation in the first index.
For a two-dimensional u declared as zeros((Nx+1,Ny+1)) in Python,
the individual elements are stored in the following order:

u[0,0], u[0,1], u[0,2], ..., u[0,Ny], u[1,0], u[1,1], ...,
u[1,Ny], u[2,0], ..., u[Nx,0], u[Nx,1], ..., u[Nx, Ny]

Viewing u as one-dimensional, the index pair (i, j) translates to i(Ny +
1)+j. So, where a C programmer would naturally write an index u[i][j],
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the indexing must read u[i*(Ny+1) + j]. This is tedious to write, so it
can be handy to define a C macro,

#define idx(i,j) (i)*(Ny+1) + j

so that we can write u[idx(i,j)], which reads much better and is easier
to debug.

Be careful with macro definitions
Macros just perform simple text substitutions: idx(hello,world)
is expanded to (hello)*(Ny+1) + world. The parenthesis in (i)
are essential - using the natural mathematical formula i*(Ny+1) +
j in the macro definition, idx(i-1,j) would expand to i-1*(Ny+1)
+ j, which is the wrong formula. Macros are handy, but requires
careful use. In C++, inline functions are safer and replace the need
for macros.

C.7.2 The complete C code

The C version of our function advance can be coded as follows.

#define idx(i,j) (i)*(Ny+1) + j

void advance(double* u, double* u_n, double* u_nm1, double* f,
double Cx2, double Cy2, double dt2, int Nx, int Ny)

{
int i, j;
double u_xx, u_yy;
/* Scheme at interior points */
for (i=1; i<=Nx-1; i++) {

for (j=1; j<=Ny-1; j++) {
u_xx = u_n[idx(i-1,j)] - 2*u_n[idx(i,j)] + u_n[idx(i+1,j)];
u_yy = u_n[idx(i,j-1)] - 2*u_n[idx(i,j)] + u_n[idx(i,j+1)];
u[idx(i,j)] = 2*u_n[idx(i,j)] - u_nm1[idx(i,j)] +

Cx2*u_xx + Cy2*u_yy + dt2*f[idx(i,j)];
}

}
/* Boundary conditions */
j = 0; for (i=0; i<=Nx; i++) u[idx(i,j)] = 0;
j = Ny; for (i=0; i<=Nx; i++) u[idx(i,j)] = 0;
i = 0; for (j=0; j<=Ny; j++) u[idx(i,j)] = 0;
i = Nx; for (j=0; j<=Ny; j++) u[idx(i,j)] = 0;

}
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C.7.3 The Cython interface file

All the code above appears in a file wave2D_u0_loop_c.c. We need to
compile this file together with C wrapper code such that advance can be
called from Python. Cython can be used to generate appropriate wrapper
code. The relevant Cython code for interfacing C is placed in a file with
extension .pyx. Here this file, called wave2D_u0_loop_c_cy.pyx, looks
like

import numpy as np
cimport numpy as np
cimport cython

cdef extern from "wave2D_u0_loop_c.h":
void advance(double* u, double* u_n, double* u_nm1, double* f,

double Cx2, double Cy2, double dt2,
int Nx, int Ny)

@cython.boundscheck(False)
@cython.wraparound(False)
def advance_cwrap(

np.ndarray[double, ndim=2, mode=’c’] u,
np.ndarray[double, ndim=2, mode=’c’] u_n,
np.ndarray[double, ndim=2, mode=’c’] u_nm1,
np.ndarray[double, ndim=2, mode=’c’] f,
double Cx2, double Cy2, double dt2):
advance(&u[0,0], &u_n[0,0], &u_nm1[0,0], &f[0,0],

Cx2, Cy2, dt2,
u.shape[0]-1, u.shape[1]-1)

return u

We first declare the C functions to be interfaced. These must also appear
in a C header file, wave2D_u0_loop_c.h,

extern void advance(double* u, double* u_n, double* u_nm1, double* f,
double Cx2, double Cy2, double dt2,
int Nx, int Ny);

The next step is to write a Cython function with Python objects as
arguments. The name advance is already used for the C function so
the function to be called from Python is named advance_cwrap. The
contents of this function is simply a call to the advance version in C. To
this end, the right information from the Python objects must be passed
on as arguments to advance. Arrays are sent with their C pointers to the
first element, obtained in Cython as &u[0,0] (the & takes the address of
a C variable). The Nx and Ny arguments in advance are easily obtained
from the shape of the numpy array u. Finally, u must be returned such
that we can set u = advance(...) in Python.

http://tinyurl.com/nu656p2/wave//wave2D_u0/wave2D_u0_loop_c.c
http://tinyurl.com/nu656p2/wave/wave2D_u0/wave2D_u0_loop_c_cy.pyx
http://tinyurl.com/nu656p2/wave/wave2D_u0/wave2D_u0_loop_c.h
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C.7.4 Building the extension module

It remains to build the extension module. An appropriate setup.py file
is

from distutils.core import setup
from distutils.extension import Extension
from Cython.Distutils import build_ext

sources = [’wave2D_u0_loop_c.c’, ’wave2D_u0_loop_c_cy.pyx’]
module = ’wave2D_u0_loop_c_cy’
setup(

name=module,
ext_modules=[Extension(module, sources,

libraries=[], # C libs to link with
)],

cmdclass={’build_ext’: build_ext},
)

All we need to specify is the .c file(s) and the .pyx interface file. Cython
is automatically run to generate the necessary wrapper code. Files are
then compiled and linked to an extension module residing in the file
wave2D_u0_loop_c_cy.so. Here is a session with running setup.py and
examining the resulting module in Python

Terminal

Terminal> python setup.py build_ext --inplace
Terminal> python
>>> import wave2D_u0_loop_c_cy as m
>>> dir(m)
[’__builtins__’, ’__doc__’, ’__file__’, ’__name__’, ’__package__’,
’__test__’, ’advance_cwrap’, ’np’]

The call to the C version of advance can go like this in Python:

import wave2D_u0_loop_c_cy
advance = wave2D_u0_loop_c_cy.advance_cwrap
...
f_a[:,:] = f(xv, yv, t[n])
u = advance(u, u_n, u_nm1, f_a, Cx2, Cy2, dt2)

Efficiency. In this example, the C and Fortran code runs at the same
speed, and there are no significant differences in the efficiency of the
wrapper code. The overhead implied by the wrapper code is negligible
as long as there is little numerical work in the advance function, or in
other words, that we work with small meshes.
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C.8 Migrating loops to C via f2py

An alternative to using Cython for interfacing C code is to apply f2py.
The C code is the same, just the details of specifying how it is to be
called from Python differ. The f2py tool requires the call specification to
be a Fortran 90 module defined in a .pyf file. This file was automatically
generated when we interfaced a Fortran subroutine. With a C function
we need to write this module ourselves, or we can use a trick and let
f2py generate it for us. The trick consists in writing the signature of
the C function with Fortran syntax and place it in a Fortran file, here
wave2D_u0_loop_c_f2py_signature.f:

subroutine advance(u, u_n, u_nm1, f, Cx2, Cy2, dt2, Nx, Ny)
Cf2py intent(c) advance

integer Nx, Ny, N
real*8 u(0:Nx,0:Ny), u_n(0:Nx,0:Ny), u_nm1(0:Nx,0:Ny)
real*8 f(0:Nx, 0:Ny), Cx2, Cy2, dt2

Cf2py intent(in, out) u
Cf2py intent(c) u, u_n, u_nm1, f, Cx2, Cy2, dt2, Nx, Ny

return
end

Note that we need a special f2py instruction, through a Cf2py comment
line, to specify that all the function arguments are C variables. We also
need to tell that the function is actually in C: intent(c) advance.

Since f2py is just concerned with the function signature and not the
complete contents of the function body, it can easily generate the Fortran
90 module specification based solely on the signature above:

Terminal

Terminal> f2py -m wave2D_u0_loop_c_f2py \
-h wave2D_u0_loop_c_f2py.pyf --overwrite-signature \
wave2D_u0_loop_c_f2py_signature.f

The compile and build step is as for the Fortran code, except that we
list C files instead of Fortran files:

Terminal

Terminal> f2py -c wave2D_u0_loop_c_f2py.pyf \
--build-dir tmp_build_c \
-DF2PY_REPORT_ON_ARRAY_COPY=1 wave2D_u0_loop_c.c

As when interfacing Fortran code with f2py, we need to print out the
doc string to see the exact call syntax from the Python side. This doc
string is identical for the C and Fortran versions of advance.
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C.8.1 Migrating loops to C++ via f2py

C++ is a much more versatile language than C or Fortran and has
over the last two decades become very popular for numerical computing.
Many will therefore prefer to migrate compute-intensive Python code
to C++. This is, in principle, easy: just write the desired C++ code
and use some tool for interfacing it from Python. A tool like SWIG
can interpret the C++ code and generate interfaces for a wide range
of languages, including Python, Perl, Ruby, and Java. However, SWIG
is a comprehensive tool with a correspondingly steep learning curve.
Alternative tools, such as Boost Python, SIP, and Shiboken are similarly
comprehensive. Simpler tools include PyBindGen.

A technically much easier way of interfacing C++ code is to drop
the possibility to use C++ classes directly from Python, but instead
make a C interface to the C++ code. The C interface can be handled
by f2py as shown in the example with pure C code. Such a solution
means that classes in Python and C++ cannot be mixed and that only
primitive data types like numbers, strings, and arrays can be transferred
between Python and C++. Actually, this is often a very good solution
because it forces the C++ code to work on array data, which usually
gives faster code than if fancy data structures with classes are used. The
arrays coming from Python, and looking like plain C/C++ arrays, can
be efficiently wrapped in more user-friendly C++ array classes in the
C++ code, if desired.

C.9 Exercises

Exercise C.1: Explore computational efficiency of numpy.sum
versus built-in sum

Using the task of computing the sum of the first n integers, we want
to compare the efficiency of numpy.sum versus Python’s built-in func-
tion sum. Use IPython’s %timeit functionality to time these two func-
tions applied to three different arguments: range(n), xrange(n), and
arange(n).
Filename: sumn.

http://swig.org/
http://www.boost.org/doc/libs/1_51_0/libs/python/doc/index.html
http://riverbankcomputing.co.uk/software/sip/intro
http://qt-project.org/wiki/Category:LanguageBindings::PySide::Shiboken
http://code.google.com/p/pybindgen/
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Exercise C.2: Make an improved numpy.savez function
The numpy.savez function can save multiple arrays to a zip archive.
Unfortunately, if we want to use savez in time-dependent problems and
call it multiple times (once per time level), each call leads to a separate
zip archive. It is more convenient to have all arrays in one archive, which
can be read by numpy.load. Section C.2 provides a recipe for merging all
the individual zip archives into one archive. An alternative is to write a
new savez function that allows multiple calls and storage into the same
archive prior to a final close method to close the archive and make it
ready for reading. Implement such an improved savez function as a class
Savez.

The class should pass the following unit test:

def test_Savez():
import tempfile, os
tmp = ’tmp_testarchive’
database = Savez(tmp)
for i in range(4):

array = np.linspace(0, 5+i, 3)
kwargs = {’myarray_%02d’ % i: array}
database.savez(**kwargs)

database.close()

database = np.load(tmp+’.npz’)

expected = {
’myarray_00’: np.array([ 0. , 2.5, 5. ]),
’myarray_01’: np.array([ 0., 3., 6.])
’myarray_02’: np.array([ 0. , 3.5, 7. ]),
’myarray_03’: np.array([ 0., 4., 8.]),
}

for name in database:
computed = database[name]
diff = np.abs(expected[name] - computed).max()
assert diff < 1E-13

database.close
os.remove(tmp+’.npz’)

Hint. Study the source code for function savez (or more precisely,
function _savez).
Filename: Savez.

Exercise C.3: Visualize the impact of the Courant number
Use the pulse function in the wave1D_dn_vc.py to simulate a pulse
through two media with different wave velocities. The aim is to visualize

https://github.com/numpy/numpy/blob/master/numpy/lib/npyio.py
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the impact of the Courant number C on the quality of the solution. Set
slowness_factor=4 and Nx=100.

Simulate for C = 1, 0.9, 0.75 and make an animation comparing the
three curves (use the animate_archives.py program to combine the
curves and make animations on the screen and video files). Perform the
investigations for different types of initial profiles: a Gaussian pulse, a
“cosine hat” pulse, half a “cosine hat” pulse, and a plug pulse.
Filename: pulse1D_Courant.

Exercise C.4: Visualize the impact of the resolution

We solve the same set of problems as in Exercise C.9, except that we
now fix C = 1 and instead study the impact of ∆t and ∆x by varying
the Nx parameter: 20, 40, 160. Make animations comparing three such
curves. Filename: pulse1D_Nx.
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