
Finite Difference Computing
with Exponential Decay Models

Hans Petter Langtangen1,2

1Center for Biomedical Computing, Simula Research Laboratory
2Department of Informatics, University of Oslo

This text provides a very simple, initial introduction to the complete
scientific computing pipeline: models, discretization, algorithms, pro-
gramming, verification, and visualization. The pedagogical strategy
is to use one case study - an ordinary differential equation describing
exponential decay processes - to illustrate fundamental concepts in
mathematics and computer science. The book is easy to read and
only requires a command of one-variable calculus and some very
basic knowledge about computer programming. Contrary to similar
texts on numerical methods and programming, this text has a much
stronger focus on implementation and teaches testing and software
engineering in particular.

Feb 29, 2016

Preface

This book teaches the basic components in the scientific computing
pipeline: modeling, differential equations, numerical algorithms, program-
ming, plotting, and software testing. The pedagogical idea is to treat
these topics in the context of a very simple mathematical model, the
differential equation for exponential decay, u′(t) = −au(t), where u is un-
known and a is a given parameter. By keeping the mathematical problem
simple, the text can go deep into all details about how one must combine
mathematics and computer science to create well-tested, reliable, and
flexible software for such a mathematical model.

The writing style is gentle and aims at a broad audience. I am much
inspired by Nick Trefethen’s praise of easy learning:

Some people think that stiff challenges are the best device to induce learning, but
I am not one of them. The natural way to learn something is by spending vast
amounts of easy, enjoyable time at it. This goes whether you want to speak German,
sight-read at the piano, type, or do mathematics. Give me the German storybook
for fifth graders that I feel like reading in bed, not Goethe and a dictionary. The
latter will bring rapid progress at first, then exhaustion and failure to resolve.
The main thing to be said for stiff challenges is that inevitably we will encounter
them, so we had better learn to face them boldly. Putting them in the curriculum
can help teach us to do so. But for teaching the skill or subject matter itself, they
are overrated. [13, p. 86]

Prerequisite knowledge for this book is basic one-dimensional calculus
and preferably some experience with computer programming in Python or
MATLAB. The material was initially written for self study and therefore
features comprehensive and easy-to-understand explanations. For some
readers it may act as an overview and refresher of traditional mathemat-

© 2016, Hans Petter Langtangen. Released under CC Attribution 4.0 license

vi

ical topics and likely a first introduction to many of the software topics.
The text can also be used as a case-based and mathematically simple
introduction to modern multi-disciplinary problem solving with comput-
ers, using the range of applications in Chapter 4 as motivation and then
treating the details of the mathematical and computer science subjects
from the other chapters. In particular, I have also had in mind the new
groups of readers from bio- and geo-sciences who need to enter the world
of computer-based differential equation modeling, but lack experience
with (and perhaps also interest in) mathematics and programming.

The choice of topics in this book is motivated from what is needed in
more advanced courses on finite difference methods for partial differential
equations (PDEs). It turns out that a range of concepts and tools needed
for PDEs can be introduced and illustrated by very simple ordinary
differential equation (ODE) examples. The goal of the text is therefore
to lay a foundation for understanding numerical methods for PDEs by
first meeting the fundamental ideas in a simpler ODE setting. Compared
to other books, the present one has a much stronger focus on how to
turn mathematics into working code. It also explains the mathematics
and programming in more detail than what is common in the literature.

There is a more advanced companion book in the works, “Finite
Difference Computing with Partial Differential Equations”, which treats
finite difference methods for PDEs using the same writing style and
having the same focus on turning mathematical algorithms into reliable
software.

Although the main example in the present book is u′ = −au, we also
address the more general model problem u′ = −a(t)u + b(t), and the
completely general, nonlinear problem u′ = f(u, t), both for scalar and
vector u(t). The author believes in the principle simplify, understand,
and then generalize. That is why we start out with the simple model
u′ = −au and try to understand how methods are constructed, how
they work, how they are implemented, and how they may fail for this
problem, before we generalize what we have learned from u′ = −au to
more complicated models.

The following list of topics will be elaborated on.

• How to think when constructing finite difference methods, with special
focus on the Forward Euler, Backward Euler, and Crank-Nicolson
(midpoint) schemes.

• How to formulate a computational algorithm and translate it into
Python code.

vii

• How to make curve plots of the solutions.
• How to compute numerical errors.
• How to compute convergence rates.
• How to test that an implementation is correct (verification) and how

to automate tests through test functions and unit testing.
• How to work with Python concepts such as arrays, lists, dictionaries,

lambda functions, and functions in functions (closures).
• How to perform array computing and understand the difference from

scalar computing.
• How to uncover numerical artifacts in the computed solution.
• How to analyze the numerical schemes mathematically to understand

why artifacts may occur.
• How to derive mathematical expressions for various measures of the

error in numerical methods, frequently by using the sympy software
for symbolic computations.

• How to understand concepts such as finite difference operators, mesh
(grid), mesh functions, stability, truncation error, consistency, and
convergence.

• How to solve the general nonlinear ODE u′ = f(u, t), which is either
a scalar ODE or a system of ODEs (i.e., u and f can either be a
function or a vector of functions).

• How to access professional packages for solving ODEs.
• How the model equation u′ = −au arises in a wide range of phenomena

in physics, biology, chemistry, and finance.
• How to structure a code in terms of functions.
• How to make reusable modules.
• How to read input data flexibly from the command line.
• How to create graphical/web user interfaces.
• How to use test frameworks for automatic unit testing.
• How to refactor code in terms of classes (instead of functions).
• How to conduct and automate large-scale numerical experiments.
• How to write scientific reports in various formats (LATEX, HTML).

viii

The exposition in a nutshell

Everything we cover is put into a practical, hands-on context. All
mathematics is translated into working computing codes, and all
the mathematical theory of finite difference methods presented here
is motivated from a strong need to understand why we occasion-
ally obtain strange results from the programs. Two fundamental
questions saturate the text:

• How do we solve a differential equation problem and produce
numbers?

• How do we know that the numbers are correct?

Besides answering these two questions, one will learn a lot about
mathematical modeling in general and the interplay between physics,
mathematics, numerical methods, and computer science.

The book contains a set of exercises in most of the chapters. The
exercises are divided into three categories: exercises refer to the text
(usually variations or extensions of examples in the text), problems are
stand-alone exercises without references to the text, and projects are
larger problems. Exercises, problems, and projects share a common
numbering to avoid confusion between, e.g., Exercise 4.3 and Problem 4.3
(it will be Exercise 4.3 and Problem 4.4 if they follow after each other).

All program and data files referred to in this book are available
from the book’s primary web site: URL: http://hplgit.github.io/
decay-book/doc/web/.

Acknowledgments. Professor Svein Linge provided very detailed and
constructive feedback on this text, and all his efforts are highly appreci-
ated. Many students have also pointed out weaknesses and found errors.
A special thank goes to Yapi Donatien Achou’s proof reading. Many
thanks also to Linda Falch-Koslung, Dr. Olav Dajani, and the rest of
the OUS team for feeding me with FOLFIRINOX and thereby keeping
me alive and in good enough shape to finish this book. As always, the
Springer team ensured a smooth and rapid review process and production
phase. This time special thanks go to all the efforts by Martin Peters,
Thanh-Ha Le Thi, and Yvonne Schlatter.

Oslo, August 2015 Hans Petter Langtangen

http://hplgit.github.io/decay-book/doc/web/.
http://hplgit.github.io/decay-book/doc/web/.

Contents

Preface . v

1 Algorithms and implementations . 1

1.1 Finite difference methods . 1
1.1.1 A basic model for exponential decay 2
1.1.2 The Forward Euler scheme . 3
1.1.3 The Backward Euler scheme . 9
1.1.4 The Crank-Nicolson scheme . 10
1.1.5 The unifying θ-rule . 12
1.1.6 Constant time step . 14
1.1.7 Mathematical derivation of finite difference formulas . 15
1.1.8 Compact operator notation for finite differences 17

1.2 Implementation . 19
1.2.1 Computer language: Python . 20
1.2.2 Making a solver function . 21
1.2.3 Integer division . 22
1.2.4 Doc strings . 23
1.2.5 Formatting numbers . 24
1.2.6 Running the program . 25
1.2.7 Plotting the solution . 26
1.2.8 Verifying the implementation . 28
1.2.9 Computing the numerical error as a mesh function . . . 30
1.2.10 Computing the norm of the error mesh function 32

© 2016, Hans Petter Langtangen. Released under CC Attribution 4.0 license

x Contents

1.2.11 Experiments with computing and plotting 35
1.2.12 Memory-saving implementation 39

1.3 Exercises . 42

2 Analysis . 47

2.1 Experimental investigations . 47
2.1.1 Discouraging numerical solutions 48
2.1.2 Detailed experiments . 50

2.2 Stability . 53
2.2.1 Exact numerical solution . 53
2.2.2 Stability properties derived from the amplification

factor . 55

2.3 Accuracy . 56
2.3.1 Visual comparison of amplification factors 56
2.3.2 Series expansion of amplification factors 57
2.3.3 The ratio of numerical and exact amplification factors 59
2.3.4 The global error at a point . 60
2.3.5 Integrated error . 61
2.3.6 Truncation error . 63
2.3.7 Consistency, stability, and convergence 64

2.4 Various types of errors in a differential equation model 66
2.4.1 Model errors . 66
2.4.2 Data errors . 69
2.4.3 Discretization errors . 71
2.4.4 Rounding errors . 73
2.4.5 Discussion of the size of various errors 75

2.5 Exercises . 76

3 Generalizations . 79

3.1 Model extensions . 79
3.1.1 Generalization: including a variable coefficient 80
3.1.2 Generalization: including a source term 81
3.1.3 Implementation of the generalized model problem 81
3.1.4 Verifying a constant solution . 83
3.1.5 Verification via manufactured solutions 84
3.1.6 Computing convergence rates . 86
3.1.7 Extension to systems of ODEs . 89

Contents xi

3.2 General first-order ODEs . 90
3.2.1 Generic form of first-order ODEs 90
3.2.2 The θ-rule . 91
3.2.3 An implicit 2-step backward scheme 91
3.2.4 Leapfrog schemes . 92
3.2.5 The 2nd-order Runge-Kutta method 93
3.2.6 A 2nd-order Taylor-series method. 93
3.2.7 The 2nd- and 3rd-order Adams-Bashforth schemes . . . 94
3.2.8 The 4th-order Runge-Kutta method 94
3.2.9 The Odespy software . 96
3.2.10 Example: Runge-Kutta methods 97
3.2.11 Example: Adaptive Runge-Kutta methods 100

3.3 Exercises . 102

4 Models . 107

4.1 Scaling . 107
4.1.1 Dimensionless variables . 108
4.1.2 Dimensionless numbers . 108
4.1.3 A scaling for vanishing initial condition 109

4.2 Evolution of a population . 109
4.2.1 Exponential growth . 109
4.2.2 Logistic growth . 111

4.3 Compound interest and inflation . 111

4.4 Newton’s law of cooling . 112

4.5 Radioactive decay . 113
4.5.1 Deterministic model . 113
4.5.2 Stochastic model . 114
4.5.3 Relation between stochastic and deterministic models 115
4.5.4 Generalization of the radioactive decay modeling 116

4.6 Chemical kinetics . 117
4.6.1 Irreversible reaction of two substances 117
4.6.2 Reversible reaction of two substances 118
4.6.3 Irreversible reaction of two substances into a third . . . 119
4.6.4 A biochemical reaction . 120

4.7 Spreading of diseases . 121

4.8 Predator-prey models in ecology . 122

xii Contents

4.9 Decay of atmospheric pressure with altitude 123
4.9.1 The general model . 123
4.9.2 Multiple atmospheric layers . 124
4.9.3 Simplifications . 124

4.10 Compaction of sediments . 125

4.11 Vertical motion of a body in a viscous fluid 126
4.11.1 Overview of forces . 126
4.11.2 Equation of motion . 127
4.11.3 Terminal velocity . 128
4.11.4 A Crank-Nicolson scheme . 129
4.11.5 Physical data . 130
4.11.6 Verification . 130
4.11.7 Scaling . 131

4.12 Viscoelastic materials . 131

4.13 Decay ODEs from solving a PDE by Fourier expansions 132

4.14 Exercises . 133

5 Scientific software engineering . 151

5.1 Implementations with functions and modules 152
5.1.1 Mathematical problem and solution technique 152
5.1.2 A first, quick implementation . 153
5.1.3 A more decent program . 154
5.1.4 Prefixing imported functions by the module name . . . 156
5.1.5 Implementing the numerical algorithm in a function . . 158
5.1.6 Do not have several versions of a code 159
5.1.7 Making a module . 160
5.1.8 Example on extending the module code 162
5.1.9 Documenting functions and modules 164
5.1.10 Logging intermediate results . 166

5.2 User interfaces . 169
5.2.1 Command-line arguments . 170
5.2.2 Positional command-line arguments 172
5.2.3 Option-value pairs on the command line 173
5.2.4 Creating a graphical web user interface 176

5.3 Tests for verifying implementations . 179
5.3.1 Doctests . 180

Contents xiii

5.3.2 Unit tests and test functions . 182
5.3.3 Test function for the solver . 186
5.3.4 Test function for reading positional command-line

arguments . 187
5.3.5 Test function for reading option-value pairs 188
5.3.6 Classical class-based unit testing 189

5.4 Sharing the software with other users . 191
5.4.1 Organizing the software directory tree 191
5.4.2 Publishing the software at GitHub 193
5.4.3 Downloading and installing the software 195

5.5 Classes for problem and solution method 197
5.5.1 The problem class . 197
5.5.2 The solver class . 199
5.5.3 Improving the problem and solver classes 201

5.6 Automating scientific experiments . 203
5.6.1 Available software . 204
5.6.2 The results we want to produce 205
5.6.3 Combining plot files . 206
5.6.4 Running a program from Python 207
5.6.5 The automating script . 209
5.6.6 Making a report . 211
5.6.7 Publishing a complete project . 215

5.7 Exercises . 216

References . 223

Index . 225

List of Exercises, Problems, and
Projects

Exercise 1.1: Define a mesh function and visualize it 42
Problem 1.2: Differentiate a function . 43
Problem 1.3: Experiment with divisions . 44
Problem 1.4: Experiment with wrong computations 44
Problem 1.5: Plot the error function . 45
Problem 1.6: Change formatting of numbers and debug 45
Problem 2.1: Visualize the accuracy of finite differences 76
Problem 2.2: Explore the θ-rule for exponential growth 77
Problem 2.3: Explore rounding errors in numerical calculus 77
Exercise 3.1: Experiment with precision in tests and the size of u 102
Exercise 3.2: Implement the 2-step backward scheme 103
Exercise 3.3: Implement the 2nd-order Adams-Bashforth scheme . 103
Exercise 3.4: Implement the 3rd-order Adams-Bashforth scheme . 103
Exercise 3.5: Analyze explicit 2nd-order methods 103
Project 3.6: Implement and investigate the Leapfrog scheme 104
Problem 3.7: Make a unified implementation of many schemes . . . 106
Problem 4.1: Radioactive decay of Carbon-14 133
Exercise 4.2: Derive schemes for Newton’s law of cooling 134
Exercise 4.3: Implement schemes for Newton’s law of cooling 134
Exercise 4.4: Find time of murder from body temperature 136
Exercise 4.5: Simulate an oscillating cooling process 137
Exercise 4.6: Simulate stochastic radioactive decay 137
Problem 4.7: Radioactive decay of two substances 138
Exercise 4.8: Simulate a simple chemical reaction 138
Exercise 4.9: Simulate an n-th order chemical reaction 139

© 2016, Hans Petter Langtangen. Released under CC Attribution 4.0 license

xvi List of Exercises, Problems, and Projects

Exercise 4.10: Simulate a biochemical process 140
Exercise 4.11: Simulate spreading of a disease 141
Exercise 4.12: Simulate predator-prey interaction 142
Exercise 4.13: Simulate the pressure drop in the atmosphere 142
Exercise 4.14: Make a program for vertical motion in a fluid 143
Project 4.15: Simulate parachuting . 144
Exercise 4.16: Formulate vertical motion in the atmosphere 146
Exercise 4.17: Simulate vertical motion in the atmosphere 146
Problem 4.18: Compute y = |x| by solving an ODE 147
Problem 4.19: Simulate fortune growth with random interest rate 147
Exercise 4.20: Simulate a population in a changing environment . 148
Exercise 4.21: Simulate logistic growth . 149
Exercise 4.22: Rederive the equation for continuous compound

interest . 149
Exercise 4.23: Simulate the deformation of a viscoelastic material 149
Problem 5.1: Make a tool for differentiating curves 216
Problem 5.2: Make solid software for the Trapezoidal rule 217
Problem 5.3: Implement classes for the Trapezoidal rule 219
Problem 5.4: Write a doctest and a test function 219
Problem 5.5: Investigate the size of tolerances in comparisons . . . 220
Exercise 5.6: Make use of a class implementation 220
Problem 5.7: Make solid software for a difference equation 220

Algorithms and implementations 1

Throughout industry and science it is common today to study nature or
technological devices through models on a computer. With such models
the computer acts as a virtual lab where experiments can be done in a fast,
reliable, safe, and cheap way. In some fields, e.g., aerospace engineering,
the computer models are now so sophisticated that they can replace
physical experiments to a large extent.

A vast amount of computer models are based on ordinary and partial
differential equations. This book is an introduction to the various scientific
ingredients we need for reliable computing with such type of models. A
key theme is to solve differential equations numerically on a computer.
Many methods are available for this purpose, but the focus here is on
finite difference methods, because these are simple, yet versatile, for
solving a wide range of ordinary and partial differential equations. The
present chapter first presents the mathematical ideas of finite difference
methods and derives algorithms, i.e., formulations of the methods ready
for computer programming. Then we create programs and learn how we
can be sure that the programs really work correctly.

1.1 Finite difference methods

This section explains the basic ideas of finite difference methods via
the simple ordinary differential equation u′ = −au. Emphasis is put on
the reasoning around discretization principles and introduction of key

© 2016, Hans Petter Langtangen. Released under CC Attribution 4.0 license

2 1 Algorithms and implementations

concepts such as mesh, mesh function, finite difference approximations,
averaging in a mesh, derivation of algorithms, and discrete operator
notation.

1.1.1 A basic model for exponential decay

Our model problem is perhaps the simplest ordinary differential equation
(ODE):

u′(t) = −au(t) .

In this equation, u(t) is a scalar function of time t, a is a constant (in this
book we mostly work with a > 0), and u′(t) means differentiation with
respect to t. This type of equation arises in a number of widely different
phenomena where some quantity u undergoes exponential reduction
(provided a > 0). Examples include radioactive decay, population decay,
investment decay, cooling of an object, pressure decay in the atmosphere,
and retarded motion in fluids. Some models with growth, a < 0, are
treated as well, see Chapter 4 for details and motivation. We have
chosen this particular ODE not only because its applications are relevant,
but even more because studying numerical solution methods for this
particular ODE gives important insight that can be reused in far more
complicated settings, in particular when solving diffusion-type partial
differential equations.
The exact solution. Although our interest is in approximate numerical
solutions of u′ = −au, it is convenient to know the exact analytical
solution of the problem so we can compute the error in numerical ap-
proximations. The analytical solution of this ODE is found by separation
of variables, which results in

u(t) = Ce−at,

for any arbitrary constant C. To obtain a unique solution, we need a
condition to fix the value of C. This condition is known as the initial
condition and stated as u(0) = I. That is, we know that the value of u is I
when the process starts at t = 0. With this knowledge, the exact solution
becomes u(t) = Ie−at. The initial condition is also crucial for numerical
methods: without it, we can never start the numerical algorithms!
A complete problem formulation. Besides an initial condition for the
ODE, we also need to specify a time interval for the solution: t ∈ (0, T].

1.1 Finite difference methods 3

The point t = 0 is not included since we know that u(0) = I and
assume that the equation governs u for t > 0. Let us now summarize the
information that is required to state the complete problem formulation:
find u(t) such that

u′ = −au, t ∈ (0, T], u(0) = I . (1.1)

This is known as a continuous problem because the parameter t varies
continuously from 0 to T . For each t we have a corresponding u(t). There
are hence infinitely many values of t and u(t). The purpose of a numerical
method is to formulate a corresponding discrete problem whose solution
is characterized by a finite number of values, which can be computed
in a finite number of steps on a computer. Typically, we choose a finite
set of time values t0, t1, . . . , tNt , and create algorithms that generate the
corresponding u values u0, u1, . . . , uNt .

1.1.2 The Forward Euler scheme

Solving an ODE like (1.1) by a finite difference method consists of the
following four steps:

1. discretizing the domain,
2. requiring fulfillment of the equation at discrete time points,
3. replacing derivatives by finite differences,
4. formulating a recursive algorithm.

Step 1: Discretizing the domain. The time domain [0, T] is represented
by a finite number of Nt + 1 points

0 = t0 < t1 < t2 < · · · < tNt−1 < tNt = T . (1.2)

The collection of points t0, t1, . . . , tNt constitutes a mesh or grid. Often
the mesh points will be uniformly spaced in the domain [0, T], which
means that the spacing tn+1 − tn is the same for all n. This spacing is
often denoted by ∆t, which means that tn = n∆t.

We want the solution u at the mesh points: u(tn), n = 0, 1, . . . , Nt.
A notational short-form for u(tn), which will be used extensively, is un.
More precisely, we let un be the numerical approximation to the exact
solution u(tn) at t = tn.

4 1 Algorithms and implementations

When we need to clearly distinguish between the numerical and exact
solution, we often place a subscript e on the exact solution, as in ue(tn).
Figure 1.1 shows the tn and un points for n = 0, 1, . . . , Nt = 7 as well as
ue(t) as the dashed line.

u

t

u0

u1

u2

u3

u4

u5

t0 t1 t2 t3 t4 t5
Fig. 1.1 Time mesh with discrete solution values at points and a dashed line indicating
the true solution.

We say that the numerical approximation, i.e., the collection of un
values for n = 0, . . . , Nt, constitutes a mesh function. A “normal” contin-
uous function is a curve defined for all real t values in [0, T], but a mesh
function is only defined at discrete points in time. If you want to compute
the mesh function between the mesh points, where it is not defined, an
interpolation method must be used. Usually, linear interpolation, i.e.,
drawing a straight line between the mesh function values, see Figure 1.1,
suffices. To compute the solution for some t ∈ [tn, tn+1], we use the linear
interpolation formula

u(t) ≈ un + un+1 − un

tn+1 − tn
(t− tn) . (1.3)

1.1 Finite difference methods 5

u

t

u0

u1

u2

u3

u4

u5

t0 t1 t2 t3 t4 t5
Fig. 1.2 Linear interpolation between the discrete solution values (dashed curve is exact
solution).

6 1 Algorithms and implementations

Notice
The goal of a numerical solution method for ODEs is to compute the
mesh function by solving a finite set of algebraic equations derived
from the original ODE problem.

Step 2: Fulfilling the equation at discrete time points. The ODE is
supposed to hold for all t ∈ (0, T], i.e., at an infinite number of points.
Now we relax that requirement and require that the ODE is fulfilled at
a finite set of discrete points in time. The mesh points t0, t1, . . . , tNt are
a natural (but not the only) choice of points. The original ODE is then
reduced to the following equations:

u′(tn) = −au(tn), n = 0, . . . , Nt, u(0) = I . (1.4)

Even though the original ODE is not stated to be valid at t = 0, it is
valid as close to t = 0 as we like, and it turns out that it is useful for
construction of numerical methods to have (1.4) valid for n = 0. The
next two steps show that we need (1.4) for n = 0.
Step 3: Replacing derivatives by finite differences. The next and
most essential step of the method is to replace the derivative u′ by
a finite difference approximation. Let us first try a forward difference
approximation (see Figure 1.3),

u′(tn) ≈ un+1 − un

tn+1 − tn
. (1.5)

The name forward relates to the fact that we use a value forward in
time, un+1, together with the value un at the point tn, where we seek the
derivative, to approximate u′(tn). Inserting this approximation in (1.4)
results in

un+1 − un

tn+1 − tn
= −aun, n = 0, 1, . . . , Nt − 1 . (1.6)

Note that if we want to compute the solution up to time level Nt, we
only need (1.4) to hold for n = 0, . . . , Nt − 1 since (1.6) for n = Nt − 1
creates an equation for the final value uNt .

Also note that we use the approximation symbol ≈ in (1.5), but not
in (1.6). Instead, we view (1.6) as an equation that is not mathematically
equivalent to (1.5), but represents an approximation to the equation
(1.5).

1.1 Finite difference methods 7

Equation (1.6) is the discrete counterpart to the original ODE problem
(1.1), and often referred to as a finite difference scheme or more generally
as the discrete equations of the problem. The fundamental feature of these
equations is that they are algebraic and can hence be straightforwardly
solved to produce the mesh function, i.e., the approximate values of u at
the mesh points: un, n = 1, 2, . . . , Nt.

forward

u(t)

tntn−1 tn+1

Fig. 1.3 Illustration of a forward difference.

Step 4: Formulating a recursive algorithm. The final step is to identify
the computational algorithm to be implemented in a program. The key
observation here is to realize that (1.6) can be used to compute un+1 if
un is known. Starting with n = 0, u0 is known since u0 = u(0) = I, and
(1.6) gives an equation for u1. Knowing u1, u2 can be found from (1.6).
In general, un in (1.6) can be assumed known, and then we can easily
solve for the unknown un+1:

un+1 = un − a(tn+1 − tn)un . (1.7)

We shall refer to (1.7) as the Forward Euler (FE) scheme for our model
problem. From a mathematical point of view, equations of the form (1.7)
are known as difference equations since they express how differences in
the dependent variable, here u, evolve with n. In our case, the differences
in u are given by un+1 − un = −a(tn+1 − tn)un. The finite difference
method can be viewed as a method for turning a differential equation

8 1 Algorithms and implementations

into an algebraic difference equation that can be easily solved by repeated
use of a formula like (1.7).
Interpretation. There is a very intuitive interpretation of the FE scheme,
illustrated in the sketch below. We have computed some point values
on the solution curve (small red disks), and the question is how we
reason about the next point. Since we know u and t at the most recently
computed point, the differential equation gives us the slope of the solution
curve: u′ = −au. We can draw this slope as a red line and continue the
solution curve along that slope. As soon as we have chosen the next point
on this line, we have a new t and u value and can compute a new slope
and continue the process.

Computing with the recursive formula. Mathematical computation
with (1.7) is straightforward:

u0 = I,

u1 = u0 − a(t1 − t0)u0 = I(1− a(t1 − t0)),
u2 = u1 − a(t2 − t1)u1 = I(1− a(t1 − t0))(1− a(t2 − t1)),
u3 = u2 − a(t3 − t2)u2 = I(1− a(t1 − t0))(1− a(t2 − t1))(1− a(t3 − t2)),

and so on until we reach uNt . Very often, tn+1− tn is constant for all n, so
we can introduce the common symbol ∆t = tn+1−tn, n = 0, 1, . . . , Nt−1.
Using a constant mesh spacing ∆t in the above calculations gives

1.1 Finite difference methods 9

u0 = I,

u1 = I(1− a∆t),
u2 = I(1− a∆t)2,

u3 = I(1− a∆t)3,

...
uNt = I(1− a∆t)Nt .

This means that we have found a closed formula for un, and there is
no need to let a computer generate the sequence u1, u2, u3, However,
finding such a formula for un is possible only for a few very simple
problems, so in general finite difference equations must be solved on a
computer.

As the next sections will show, the scheme (1.7) is just one out of
many alternative finite difference (and other) methods for the model
problem (1.1).

1.1.3 The Backward Euler scheme
There are several choices of difference approximations in step 3 of the
finite difference method as presented in the previous section. Another
alternative is

u′(tn) ≈ un − un−1

tn − tn−1
. (1.8)

Since this difference is based on going backward in time (tn−1) for
information, it is known as a backward difference, also called Backward
Euler difference. Figure 1.4 explains the idea.

Inserting (1.8) in (1.4) yields the Backward Euler (BE) scheme:

un − un−1

tn − tn−1
= −aun, n = 1, . . . , Nt . (1.9)

We assume, as explained under step 4 in Section 1.1.2, that we have
computed u0, u1, . . . , un−1 such that (1.9) can be used to compute un.
Note that (1.9) needs n to start at 1 (then it involves u0, but no u−1)
and end at Nt.

For direct similarity with the formula for the Forward Euler scheme
(1.7) we replace n by n+ 1 in (1.9) and solve for the unknown value un+1:

10 1 Algorithms and implementations

backward

u(t)

tntn−1 tn+1

Fig. 1.4 Illustration of a backward difference.

un+1 = 1
1 + a(tn+1 − tn)u

n, n = 0, . . . , Nt − 1 . (1.10)

1.1.4 The Crank-Nicolson scheme

The finite difference approximations (1.5) and (1.8) used to derive the
schemes (1.7) and (1.10), respectively, are both one-sided differences,
i.e., we collect information either forward or backward in time when
approximating the derivative at a point. Such one-sided differences are
known to be less accurate than central (or midpoint) differences, where
we use information both forward and backward in time. A natural next
step is therefore to construct a central difference approximation that will
yield a more accurate numerical solution.

The central difference approximation to the derivative is sought at the
point tn+ 1

2
= 1

2(tn + tn+1) (or tn+ 1
2

= (n+ 1
2)∆t if the mesh spacing is

uniform in time). The approximation reads

u′(tn+ 1
2
) ≈ un+1 − un

tn+1 − tn
. (1.11)

Figure 1.5 sketches the geometric interpretation of such a centered differ-
ence. Note that the fraction on the right-hand side is the same as for the
Forward Euler approximation (1.5) and the Backward Euler approxima-
tion (1.8) (with n replaced by n+ 1). The accuracy of this fraction as

1.1 Finite difference methods 11

an approximation to the derivative of u depends on where we seek the
derivative: in the center of the interval [tn, tn+1] or at the end points. We
shall later see that it is more accurate at the center point.

centered

u(t)

tn+1
2

tn tn+1

Fig. 1.5 Illustration of a centered difference.

With the formula (1.11), where u′ is evaluated at tn+ 1
2
, it is natural

to demand the ODE to be fulfilled at the time points between the mesh
points:

u′(tn+ 1
2
) = −au(tn+ 1

2
), n = 0, . . . , Nt − 1 . (1.12)

Using (1.11) in (1.12) results in the approximate discrete equation

un+1 − un

tn+1 − tn
= −aun+ 1

2 , n = 0, . . . , Nt − 1, (1.13)

where un+ 1
2 is a short form for the numerical approximation to u(tn+ 1

2
).

There is a fundamental problem with the right-hand side of (1.13): we
aim to compute un for integer n, which means that un+ 1

2 is not a quantity
computed by our method. The quantity must therefore be expressed by
the quantities that we actually produce, i.e., the numerical solution at
the mesh points. One possibility is to approximate un+ 1

2 as an arithmetic
mean of the u values at the neighboring mesh points:

un+ 1
2 ≈ 1

2(un + un+1) . (1.14)

12 1 Algorithms and implementations

Using (1.14) in (1.13) results in a new approximate discrete equation

un+1 − un

tn+1 − tn
= −a1

2(un + un+1) . (1.15)

There are three approximation steps leading to this formula: 1) the
ODE is only valid at discrete points (between the mesh points), 2) the
derivative is approximated by a finite difference, and 3) the value of
u between mesh points is approximated by an arithmetic mean value.
Despite one more approximation than for the Backward and Forward
Euler schemes, the use of a centered difference leads to a more accurate
method.

To formulate a recursive algorithm, we assume that un is already
computed so that un+1 is the unknown, which we can solve for:

un+1 =
1− 1

2a(tn+1 − tn)
1 + 1

2a(tn+1 − tn)
un . (1.16)

The finite difference scheme (1.16) is often called the Crank-Nicolson
(CN) scheme or a midpoint or centered scheme. Note that (1.16) as well
as (1.7) and (1.10) apply whether the spacing in the time mesh, tn+1− tn,
depends on n or is constant.

1.1.5 The unifying θ-rule
The Forward Euler, Backward Euler, and Crank-Nicolson schemes can
be formulated as one scheme with a varying parameter θ:

un+1 − un

tn+1 − tn
= −a(θun+1 + (1− θ)un) . (1.17)

Observe that

• θ = 0 gives the Forward Euler scheme
• θ = 1 gives the Backward Euler scheme,
• θ = 1

2 gives the Crank-Nicolson scheme.

We shall later, in Chapter 2, learn the pros and cons of the three alter-
natives. One may alternatively choose any other value of θ in [0, 1], but
this is not so common since the accuracy and stability of the scheme do
not improve compared to the values θ = 0, 1, 1

2 .
As before, un is considered known and un+1 unknown, so we solve for

the latter:

1.1 Finite difference methods 13

un+1 = 1− (1− θ)a(tn+1 − tn)
1 + θa(tn+1 − tn) . (1.18)

This scheme is known as the θ-rule, or alternatively written as the
“theta-rule”.

Derivation.
We start with replacing u′ by the fraction

un+1 − un

tn+1 − tn
,

in the Forward Euler, Backward Euler, and Crank-Nicolson schemes.
Then we observe that the difference between the methods concerns
which point this fraction approximates the derivative. Or in other
words, at which point we sample the ODE. So far this has been the
end points or the midpoint of [tn, tn+1]. However, we may choose
any point t̃ ∈ [tn, tn+1]. The difficulty is that evaluating the right-
hand side −au at an arbitrary point faces the same problem as in
Section 1.1.4: the point value must be expressed by the discrete
u quantities that we compute by the scheme, i.e., un and un+1.
Following the averaging idea from Section 1.1.4, the value of u at
an arbitrary point t̃ can be calculated as a weighted average, which
generalizes the arithmetic mean 1

2u
n+ 1

2u
n+1. The weighted average

reads

u(t̃) ≈ θun+1 + (1− θ)un, (1.19)

where θ ∈ [0, 1] is a weighting factor. We can also express t̃ as a
similar weighted average

t̃ ≈ θtn+1 + (1− θ)tn . (1.20)

Let now the ODE hold at the point t̃ ∈ [tn, tn+1], approximate
u′ by the fraction (un+1 − un)/(tn+1 − tn), and approximate the
right-hand side −au by the weighted average (1.19). The result is
(1.17).

14 1 Algorithms and implementations

1.1.6 Constant time step

All schemes up to now have been formulated for a general non-uniform
mesh in time: t0 < t1 < · · · < tNt . Non-uniform meshes are highly
relevant since one can use many points in regions where u varies rapidly,
and fewer points in regions where u is slowly varying. This idea saves
the total number of points and therefore makes it faster to compute the
mesh function un. Non-uniform meshes are used together with adaptive
methods that are able to adjust the time mesh during the computations
(Section 3.2.11 applies adaptive methods).

However, a uniformly distributed set of mesh points is not only conve-
nient, but also sufficient for many applications. Therefore, it is a very
common choice. We shall present the finite difference schemes for a
uniform point distribution tn = n∆t, where ∆t is the constant spacing
between the mesh points, also referred to as the time step. The resulting
formulas look simpler and are more well known.

Summary of schemes for constant time step

un+1 = (1− a∆t)un Forward Euler (1.21)

un+1 = 1
1 + a∆t

un Backward Euler (1.22)

un+1 =
1− 1

2a∆t

1 + 1
2a∆t

un Crank-Nicolson (1.23)

un+1 = 1− (1− θ)a∆t
1 + θa∆t

un The θ − rule (1.24)

It is not accidental that we focus on presenting the Forward Euler,
Backward Euler, and Crank-Nicolson schemes. They complement each
other with their different pros and cons, thus providing a useful collection
of solution methods for many differential equation problems. The unifying
notation of the θ-rule makes it convenient to work with all three methods
through just one formula. This is particularly advantageous in computer
implementations since one avoids if-else tests with formulas that have
repetitive elements.

1.1 Finite difference methods 15

Test your understanding!

To check that key concepts are really understood, the reader is
encouraged to apply the explained finite difference techniques to a
slightly different equation. For this purpose, we recommend you do
Exercise 4.2 now!

1.1.7 Mathematical derivation of finite difference formulas

The finite difference formulas for approximating the first derivative
of a function have so far been somewhat justified through graphical
illustrations in Figures 1.3, 1.4, and 1.5. The task is to approximate the
derivative at a point of a curve using only two function values. By drawing
a straight line through the points, we have some approximation to the
tangent of the curve and use the slope of this line as an approximation
to the derivative. The slope can be computed by inspecting the figures.

However, we can alternatively derive the finite difference formulas
by pure mathematics. The key tool for this approach is Taylor series,
or more precisely, approximation of functions by lower-order Taylor
polynomials. Given a function f(x) that is sufficiently smooth (i.e., f(x)
has “enough derivatives”), a Taylor polynomial of degree m can be used
to approximate the value of the function f(x) if we know the values of f
and its first m derivatives at some other point x = a. The formula for
the Taylor polynomial reads

f(x) ≈ f(a) + f ′(a)(x− a) + 1
2f
′′(a)(x− a)2 + 1

6f
′′′(a)(x− a)3 + · · ·

+ 1
m!

df (m)

dxm
(a)(x− a)m . (1.25)

For a function of time, f(t), related to a mesh with spacing ∆t, we often
need the Taylor polynomial approximation at f(tn ±∆t) given f and its
derivatives at t = tn. Replacing x by tn +∆t and a by tn gives

f(tn +∆t) ≈ f(tn) + f ′(tn)∆t+ 1
2f
′′(tn)∆t2 + 1

6f
′′′(tn)∆t3 + · · ·

+ 1
m!

df (m)

dxm
(tn)∆tm . (1.26)

16 1 Algorithms and implementations

The forward difference. We can use (1.26) to find an approximation
for f ′(tn) simply by solving with respect to this quantity:

f ′(tn) ≈ f(tn +∆t)− f(tn)
∆t

− 1
2f
′′(tn)∆t− 1

6f
′′′(tn)∆t2 + · · ·

− 1
m!

df (m)

dxm
(tn)∆tm−1 . (1.27)

By letting m → ∞, this formula is exact, but that is not so much of
practical value. A more interesting observation is that all the power terms
in ∆t vanish as ∆t→ 0, i.e., the formula

f ′(tn) ≈ f(tn +∆t)− f(tn)
∆t

(1.28)

is exact in the limit ∆t→ 0.
The interesting feature of (1.27) is that we have a measure of the

error in the formula (1.28): the error is given by the extra terms on
the right-hand side of (1.27). We assume that ∆t is a small quantity
(∆t � 1). Then ∆t2 � ∆t, ∆t3 � ∆t2, and so on, which means that
the first term is the dominating term. This first term reads −1

2f
′′(tn)∆t

and can be taken as a measure of the error in the Forward Euler formula.

The backward difference. To derive the backward difference, we use
the Taylor polynomial approximation at f(tn −∆t):

f(tn −∆t) ≈ f(tn)− f ′(tn)∆t+ 1
2f
′′(tn)∆t2 − 1

6f
′′′(tn)∆t3 + · · ·

+ 1
m!

df (m)

dxm
(tn)∆tm . (1.29)

Solving with respect to f ′(tn) gives

f ′(tn) ≈ f(tn)− f(tn −∆t)
∆t

+ 1
2f
′′(tn)∆t− 1

6f
′′′(tn)∆t2 + · · ·

− 1
m!

df (m)

dxm
(tn)∆tm−1 . (1.30)

The term 1
2f
′′(tn)∆t can be taken as a simple measure of the approxima-

tion error since it will dominate over the other terms as ∆t→ 0.

1.1 Finite difference methods 17

The centered difference. The centered difference approximates the
derivative at tn + 1

2∆t. Let us write up the Taylor polynomial approxi-
mations to f(tn) and f(tn+1) around tn + 1

2∆t:

f(tn) ≈ f(tn + 1
2∆t)− f

′(tn + 1
2∆t)

1
2∆t+ f ′′(tn + 1

2∆t)(
1
2∆t)

2−

f ′′′(tn + 1
2∆t)(

1
2∆t)

3 + · · · (1.31)

f(tn+1) ≈ f(tn + 1
2∆t) + f ′(tn + 1

2∆t)
1
2∆t+ f ′′(tn + 1

2∆t)(
1
2∆t)

2+

f ′′′(tn + 1
2∆t)(

1
2∆t)

3 + · · · (1.32)

Subtracting the first from the second gives

f(tn+1)− f(tn) = f ′(tn + 1
2∆t)∆t+ 2f ′′′(tn + 1

2∆t)(
1
2∆t)

3 + · · · (1.33)

Solving with respect to f ′(tn + 1
2∆t) results in

f ′(tn + 1
2∆t) ≈

f(tn+1)− f(tn)
∆t

− 1
4f
′′′(tn + 1

2∆t)∆t
2 + c · · · (1.34)

This time the error measure goes like 1
4f
′′′∆t2, i.e., it is proportional to

∆t2 and not only ∆t, which means that the error goes faster to zero as
∆t is reduced. This means that the centered difference formula

f ′(tn + 1
2∆t) ≈

f(tn+1)− f(tn)
∆t

(1.35)

is more accurate than the forward and backward differences for small ∆t.

1.1.8 Compact operator notation for finite differences

Finite difference formulas can be tedious to write and read, especially for
differential equations with many terms and many derivatives. To save
space and help the reader spot the nature of the difference approximations,
we introduce a compact notation. For a function u(t), a forward difference
approximation is denoted by the D+

t operator and written as

18 1 Algorithms and implementations

[D+
t u]n = un+1 − un

∆t

(
≈ d

dt
u(tn)

)
. (1.36)

The notation consists of an operator that approximates differentiation
with respect to an independent variable, here t. The operator is built
of the symbol D, with the independent variable as subscript and a
superscript denoting the type of difference. The superscript + indicates a
forward difference. We place square brackets around the operator and the
function it operates on and specify the mesh point, where the operator
is acting, by a superscript after the closing bracket.

The corresponding operator notation for a centered difference and a
backward difference reads

[Dtu]n = un+ 1
2 − un− 1

2

∆t
≈ d

dt
u(tn), (1.37)

and
[D−t u]n = un − un−1

∆t
≈ d

dt
u(tn) . (1.38)

Note that the superscript − denotes the backward difference, while no
superscript implies a central difference.

An averaging operator is also convenient to have:

[ut]n = 1
2(un− 1

2 + un+ 1
2) ≈ u(tn) (1.39)

The superscript t indicates that the average is taken along the time
coordinate. The common average (un + un+1)/2 can now be expressed
as [ut]n+ 1

2 . (When also spatial coordinates enter the problem, we need
the explicit specification of the coordinate after the bar.)

With our compact notation, the Backward Euler finite difference
approximation to u′ = −au can be written as

[D−t u]n = −aun .

In difference equations we often place the square brackets around the
whole equation, to indicate at which mesh point the equation applies,
since each term must be approximated at the same point:

[D−t u = −au]n . (1.40)

Similarly, the Forward Euler scheme takes the form

[D+
t u = −au]n, (1.41)

1.2 Implementation 19

while the Crank-Nicolson scheme is written as

[Dtu = −aut]n+ 1
2 . (1.42)

Question:

By use of (1.37) and (1.39), are you able to write out the expressions
in (1.42) to verify that it is indeed the Crank-Nicolson scheme?

The θ-rule can be specified in operator notation by

[D̄tu = −aut,θ]n+θ, . (1.43)

We define a new time difference

[D̄tu]n+θ = un+1 − un

tn+1 − tn
, (1.44)

to be applied at the time point tn+θ ≈ θtn + (1− θ)tn+1. This weighted
average gives rise to the weighted averaging operator

[ut,θ]n+θ = (1− θ)un + θun+1 ≈ u(tn+θ), (1.45)

where θ ∈ [0, 1] as usual. Note that for θ = 1
2 we recover the standard

centered difference and the standard arithmetic mean. The idea in (1.43)
is to sample the equation at tn+θ, use a non-symmetric difference at that
point [D̄tu]n+θ, and a weighted (non-symmetric) mean value.

An alternative and perhaps clearer notation is

[Dtu]n+ 1
2 = θ[−au]n+1 + (1− θ)[−au]n .

Looking at the various examples above and comparing them with the
underlying differential equations, we see immediately which difference
approximations that have been used and at which point they apply.
Therefore, the compact notation effectively communicates the reasoning
behind turning a differential equation into a difference equation.

1.2 Implementation

We want to make a computer program for solving

20 1 Algorithms and implementations

u′(t) = −au(t), t ∈ (0, T], u(0) = I,

by finite difference methods. The program should also display the numer-
ical solution as a curve on the screen, preferably together with the exact
solution.

All programs referred to in this section are found in the src/alg
directory (we use the classical Unix term directory for what many others
nowadays call folder).
Mathematical problem. We want to explore the Forward Euler scheme,
the Backward Euler, and the Crank-Nicolson schemes applied to our
model problem. From an implementational point of view, it is advanta-
geous to implement the θ-rule

un+1 = 1− (1− θ)a∆t
1 + θa∆t

un,

since it can generate the three other schemes by various choices of θ:
θ = 0 for Forward Euler, θ = 1 for Backward Euler, and θ = 1/2 for
Crank-Nicolson. Given a, u0 = I, T , and ∆t, our task is to use the θ-rule
to compute u1, u2, . . . , uNt , where tNt = Nt∆t, and Nt the closest integer
to T/∆t.

1.2.1 Computer language: Python
Any programming language can be used to generate the un+1 values from
the formula above. However, in this document we shall mainly make use
of Python. There are several good reasons for this choice:

• Python has a very clean, readable syntax (often known as "executable
pseudo-code").

• Python code is very similar to MATLAB code (and MATLAB has a
particularly widespread use for scientific computing).

• Python is a full-fledged, very powerful programming language.
• Python is similar to C++, but is much simpler to work with and

results in more reliable code.
• Python has a rich set of modules for scientific computing, and its

popularity in scientific computing is rapidly growing.
• Python was made for being combined with compiled languages (C,

C++, Fortran), so that existing numerical software can be reused,
and thereby easing high computational performance with new imple-
mentations.

http://tinyurl.com/ofkw6kc/alg

1.2 Implementation 21

• Python has extensive support for administrative tasks needed when
doing large-scale computational investigations.

• Python has extensive support for graphics (visualization, user inter-
faces, web applications).

Learning Python is easy. Many newcomers to the language will proba-
bly learn enough from the forthcoming examples to perform their own
computer experiments. The examples start with simple Python code and
gradually make use of more powerful constructs as we proceed. Unless
it is inconvenient for the problem at hand, our Python code is made as
close as possible to MATLAB code for easy transition between the two
languages.

The coming programming examples assumes familiarity with variables,
for loops, lists, arrays, functions, positional arguments, and keyword
(named) arguments. A background in basic MATLAB programming is
often enough to understand Python examples. Readers who feel the
Python examples are too hard to follow will benefit from reading a
tutorial, e.g.,

• The Official Python Tutorial
• Python Tutorial on tutorialspoint.com
• Interactive Python tutorial site
• A Beginner’s Python Tutorial

The author also has a comprehensive book [8] that teaches scientific
programming with Python from the ground up.

1.2.2 Making a solver function

We choose to have an array u for storing the un values, n = 0, 1, . . . , Nt.
The algorithmic steps are

1. initialize u0

2. for t = tn, n = 1, 2, . . . , Nt: compute un using the θ-rule formula

An implementation of a numerical algorithm is often referred to as a
solver. We shall now make a solver for our model problem and realize the
solver as a Python function. The function must take the input data I,
a, T , ∆t, and θ of the problem as arguments and return the solution as
arrays u and t for un and tn, n = 0, . . . , Nt. The solver function used as

u, t = solver(I, a, T, dt, theta)

http://docs.python.org/2/tutorial/
http://www.tutorialspoint.com/python/
http://www.learnpython.org/
http://en.wikibooks.org/wiki/A_Beginner's_Python_Tutorial

22 1 Algorithms and implementations

One can now easily plot u versus t to visualize the solution.
The function solver may look as follows in Python:

from numpy import *

def solver(I, a, T, dt, theta):
"""Solve u’=-a*u, u(0)=I, for t in (0,T] with steps of dt."""
Nt = int(T/dt) # no of time intervals
T = Nt*dt # adjust T to fit time step dt
u = zeros(Nt+1) # array of u[n] values
t = linspace(0, T, Nt+1) # time mesh

u[0] = I # assign initial condition
for n in range(0, Nt): # n=0,1,...,Nt-1

u[n+1] = (1 - (1-theta)*a*dt)/(1 + theta*dt*a)*u[n]
return u, t

The numpy library contains a lot of functions for array computing.
Most of the function names are similar to what is found in the alternative
scientific computing language MATLAB. Here we make use of

• zeros(Nt+1) for creating an array of size Nt+1 and initializing the
elements to zero

• linspace(0, T, Nt+1) for creating an array with Nt+1 coordinates
uniformly distributed between 0 and T

The for loop deserves a comment, especially for newcomers to Python.
The construction range(0, Nt, s) generates all integers from 0 to Nt
in steps of s, but not including Nt. Omitting s means s=1. For example,
range(0, 6, 3) gives 0 and 3, while range(0, 6) generates the list [0,
1, 2, 3, 4, 5]. Our loop implies the following assignments to u[n+1]:
u[1], u[2], ..., u[Nt], which is what we want since u has length Nt+1.
The first index in Python arrays or lists is always 0 and the last is then
len(u)-1 (the length of an array u is obtained by len(u) or u.size).

1.2.3 Integer division
The shown implementation of the solver may face problems and wrong
results if T, a, dt, and theta are given as integers (see Exercises 1.3
and 1.4). The problem is related to integer division in Python (as in
Fortran, C, C++, and many other computer languages!): 1/2 becomes 0,
while 1.0/2, 1/2.0, or 1.0/2.0 all become 0.5. So, it is enough that at
least the nominator or the denominator is a real number (i.e., a float
object) to ensure a correct mathematical division. Inserting a conversion
dt = float(dt) guarantees that dt is float.

1.2 Implementation 23

Another problem with computing Nt = T/∆t is that we should round
Nt to the nearest integer. With Nt = int(T/dt) the int operation picks
the largest integer smaller than T/dt. Correct mathematical rounding as
known from school is obtained by

Nt = int(round(T/dt))

The complete version of our improved, safer solver function then be-
comes

from numpy import *

def solver(I, a, T, dt, theta):
"""Solve u’=-a*u, u(0)=I, for t in (0,T] with steps of dt."""
dt = float(dt) # avoid integer division
Nt = int(round(T/dt)) # no of time intervals
T = Nt*dt # adjust T to fit time step dt
u = zeros(Nt+1) # array of u[n] values
t = linspace(0, T, Nt+1) # time mesh

u[0] = I # assign initial condition
for n in range(0, Nt): # n=0,1,...,Nt-1

u[n+1] = (1 - (1-theta)*a*dt)/(1 + theta*dt*a)*u[n]
return u, t

1.2.4 Doc strings

Right below the header line in the solver function there is a Python
string enclosed in triple double quotes """. The purpose of this string
object is to document what the function does and what the arguments
are. In this case the necessary documentation does not span more than
one line, but with triple double quoted strings the text may span several
lines:

def solver(I, a, T, dt, theta):
"""
Solve

u’(t) = -a*u(t),

with initial condition u(0)=I, for t in the time interval
(0,T]. The time interval is divided into time steps of
length dt.

theta=1 corresponds to the Backward Euler scheme, theta=0
to the Forward Euler scheme, and theta=0.5 to the Crank-
Nicolson method.
"""

24 1 Algorithms and implementations

...

Such documentation strings appearing right after the header of a function
are called doc strings. There are tools that can automatically produce
nicely formatted documentation by extracting the definition of functions
and the contents of doc strings.

It is strongly recommended to equip any function with a doc string,
unless the purpose of the function is not obvious. Nevertheless, the
forthcoming text deviates from this rule if the function is explained in
the text.

1.2.5 Formatting numbers

Having computed the discrete solution u, it is natural to look at the
numbers:

Write out a table of t and u values:
for i in range(len(t)):

print t[i], u[i]

This compact print statement unfortunately gives less readable output
because the t and u values are not aligned in nicely formatted columns.
To fix this problem, we recommend to use the printf format, supported
in most programming languages inherited from C. Another choice is
Python’s recent format string syntax. Both kinds of syntax are illustrated
below.

Writing t[i] and u[i] in two nicely formatted columns is done like
this with the printf format:

print ’t=%6.3f u=%g’ % (t[i], u[i])

The percentage signs signify "slots" in the text where the variables listed
at the end of the statement are inserted. For each "slot" one must specify
a format for how the variable is going to appear in the string: f for float
(with 6 decimals), s for pure text, d for an integer, g for a real number
written as compactly as possible, 9.3E for scientific notation with three
decimals in a field of width 9 characters (e.g., -1.351E-2), or .2f for
standard decimal notation with two decimals formatted with minimum
width. The printf syntax provides a quick way of formatting tabular
output of numbers with full control of the layout.

The alternative format string syntax looks like

print ’t={t:6.3f} u={u:g}’.format(t=t[i], u=u[i])

1.2 Implementation 25

As seen, this format allows logical names in the "slots" where t[i] and
u[i] are to be inserted. The "slots" are surrounded by curly braces,
and the logical name is followed by a colon and then the printf-like
specification of how to format real numbers, integers, or strings.

1.2.6 Running the program
The function and main program shown above must be placed in a file,
say with name decay_v1.py (v1 for 1st version of this program). Make
sure you write the code with a suitable text editor (Gedit, Emacs, Vim,
Notepad++, or similar). The program is run by executing the file this
way:

Terminal

Terminal> python decay_v1.py

The text Terminal> just indicates a prompt in a Unix/Linux or DOS
terminal window. After this prompt, which may look different in your
terminal window (depending on the terminal application and how it
is set up), commands like python decay_v1.py can be issued. These
commands are interpreted by the operating system.

We strongly recommend to run Python programs within the IPython
shell. First start IPython by typing ipython in the terminal window. In-
side the IPython shell, our program decay_v1.py is run by the command
run decay_v1.py:

Terminal

Terminal> ipython

In [1]: run decay_v1.py
t= 0.000 u=1
t= 0.800 u=0.384615
t= 1.600 u=0.147929
t= 2.400 u=0.0568958
t= 3.200 u=0.021883
t= 4.000 u=0.00841653
t= 4.800 u=0.00323713
t= 5.600 u=0.00124505
t= 6.400 u=0.000478865
t= 7.200 u=0.000184179
t= 8.000 u=7.0838e-05

The advantage of running programs in IPython are many, but here
we explicitly mention a few of the most useful features:

• previous commands are easily recalled with the up arrow,

http://tinyurl.com/ofkw6kc/alg/decay_v1.py

26 1 Algorithms and implementations

• %pdb turns on a debugger so that variables can be examined if the
program aborts (due to a Python exception),

• output of commands are stored in variables,
• the computing time spent on a set of statements can be measured

with the %timeit command,
• any operating system command can be executed,
• modules can be loaded automatically and other customizations can

be performed when starting IPython

Although running programs in IPython is strongly recommended, most
execution examples in the forthcoming text use the standard Python
shell with prompt >>> and run programs through a typesetting like

Terminal

Terminal> python programname

The reason is that such typesetting makes the text more compact in the
vertical direction than showing sessions with IPython syntax.

1.2.7 Plotting the solution

Having the t and u arrays, the approximate solution u is visualized by
the intuitive command plot(t, u):

from matplotlib.pyplot import *
plot(t, u)
show()

It will be illustrative to also plot the exact solution ue(t) = Ie−at for
comparison. We first need to make a Python function for computing the
exact solution:

def u_exact(t, I, a):
return I*exp(-a*t)

It is tempting to just do

u_e = u_exact(t, I, a)
plot(t, u, t, u_e)

However, this is not exactly what we want: the plot function draws
straight lines between the discrete points (t[n], u_e[n]) while ue(t)
varies as an exponential function between the mesh points. The technique
for showing the “exact” variation of ue(t) between the mesh points is to
introduce a very fine mesh for ue(t):

1.2 Implementation 27

t_e = linspace(0, T, 1001) # fine mesh
u_e = u_exact(t_e, I, a)

We can also plot the curves with different colors and styles, e.g.,

plot(t_e, u_e, ’b-’, # blue line for u_e
t, u, ’r--o’) # red dashes w/circles

With more than one curve in the plot we need to associate each curve
with a legend. We also want appropriate names on the axes, a title,
and a file containing the plot as an image for inclusion in reports. The
Matplotlib package (matplotlib.pyplot) contains functions for this
purpose. The names of the functions are similar to the plotting functions
known from MATLAB. A complete function for creating the comparison
plot becomes

from matplotlib.pyplot import *

def plot_numerical_and_exact(theta, I, a, T, dt):
"""Compare the numerical and exact solution in a plot."""
u, t = solver(I=I, a=a, T=T, dt=dt, theta=theta)

t_e = linspace(0, T, 1001) # fine mesh for u_e
u_e = u_exact(t_e, I, a)

plot(t, u, ’r--o’, # red dashes w/circles
t_e, u_e, ’b-’) # blue line for exact sol.

legend([’numerical’, ’exact’])
xlabel(’t’)
ylabel(’u’)
title(’theta=%g, dt=%g’ % (theta, dt))
savefig(’plot_%s_%g.png’ % (theta, dt))

plot_numerical_and_exact(I=1, a=2, T=8, dt=0.8, theta=1)
show()

Note that savefig here creates a PNG file whose name includes the
values of θ and ∆t so that we can easily distinguish files from different
runs with θ and ∆t.

The complete code is found in the file decay_v2.py. The resulting
plot is shown in Figure 1.6. As seen, there is quite some discrepancy
between the exact and the numerical solution. Fortunately, the numerical
solution approaches the exact one as ∆t is reduced.

http://tinyurl.com/ofkw6kc/alg/decay_v2.py

28 1 Algorithms and implementations

0 1 2 3 4 5 6 7 8
t

0.0

0.2

0.4

0.6

0.8

1.0

u

theta=1, dt=0.8

numerical
exact

Fig. 1.6 Comparison of numerical and exact solution.

1.2.8 Verifying the implementation

It is easy to make mistakes while deriving and implementing numerical
algorithms, so we should never believe in the solution before it has been
thoroughly verified.

Verification and validation
The purpose of verifying a program is to bring evidence for the
property that there are no errors in the implementation. A related
term, validate (and validation), addresses the question if the ODE
model is a good representation of the phenomena we want to simu-
late. To remember the difference between verification and validation,
verification is about solving the equations right, while validation
is about solving the right equations. We must always perform a
verification before it is meaningful to believe in the computations
and perform validation (which compares the program results with
physical experiments or observations).

The most obvious idea for verification in our case is to compare the
numerical solution with the exact solution, when that exists. This is,
however, not a particularly good method. The reason is that there will
always be a discrepancy between these two solutions, due to numerical

1.2 Implementation 29

approximations, and we cannot precisely quantify the approximation
errors. The open question is therefore whether we have the mathematically
correct discrepancy or if we have another, maybe small, discrepancy due
to both an approximation error and an error in the implementation. It
is thus impossible to judge whether the program is correct or not by just
looking at the graphs in Figure 1.6.

To avoid mixing the unavoidable numerical approximation errors and
the undesired implementation errors, we should try to make tests where
we have some exact computation of the discrete solution or at least parts
of it. Examples will show how this can be done.

Running a few algorithmic steps by hand. The simplest approach to
produce a correct non-trivial reference solution for the discrete solution
u, is to compute a few steps of the algorithm by hand. Then we can
compare the hand calculations with numbers produced by the program.

A straightforward approach is to use a calculator and compute u1, u2,
and u3. With I = 0.1, θ = 0.8, and ∆t = 0.8 we get

A ≡ 1− (1− θ)a∆t
1 + θa∆t

= 0.298245614035

u1 = AI = 0.0298245614035,
u2 = Au1 = 0.00889504462912,
u3 = Au2 = 0.00265290804728

Comparison of these manual calculations with the result of the solver
function is carried out in the function

def test_solver_three_steps():
"""Compare three steps with known manual computations."""
theta = 0.8; a = 2; I = 0.1; dt = 0.8
u_by_hand = array([I,

0.0298245614035,
0.00889504462912,
0.00265290804728])

Nt = 3 # number of time steps
u, t = solver(I=I, a=a, T=Nt*dt, dt=dt, theta=theta)

tol = 1E-15 # tolerance for comparing floats
diff = abs(u - u_by_hand).max()
success = diff < tol
assert success

30 1 Algorithms and implementations

The test_solver_three_steps function follows widely used conventions
for unit testing. By following such conventions we can at a later stage easily
execute a big test suite for our software. That is, after a small modification
is made to the program, we can by typing just a short command, run
through a large number of tests to check that the modifications do not
break any computations. The conventions boil down to three rules:

• The test function name must start with test_ and the function cannot
take any arguments.

• The test must end up in a boolean expression that is True if the test
was passed and False if it failed.

• The function must run assert on the boolean expression, resulting in
program abortion (due to an AssertionError exception) if the test
failed.

A typical assert statement is to check that a computed result c equals
the expected value e: assert c == e. However, since real numbers are
stored in a computer using only 64 units, most numbers will feature a
small rounding error, typically of size 10−16. That is, real numbers on
a computer have finite precision. When doing arithmetics with finite
precision numbers, the rounding errors may accumulate or not, depending
on the algorithm. It does not make sense to test c == e, since a small
rounding error will cause the test to fail. Instead, we use an equality
with tolerance tol: abs(e - c) < tol. The test_solver_three_steps
functions applies this type of test with a tolerance 01−15.

The main program can routinely run the verification test prior to
solving the real problem:

test_solver_three_steps()
plot_numerical_and_exact(I=1, a=2, T=8, dt=0.8, theta=1)
show()

(Rather than calling test_*() functions explicitly, one will normally ask
a testing framework like nose or pytest to find and run such functions.)
The complete program including the verification above is found in the
file decay_v3.py.

1.2.9 Computing the numerical error as a mesh function

Now that we have some evidence for a correct implementation, we are
in position to compare the computed un values in the u array with the

http://tinyurl.com/ofkw6kc/alg/decay_v3.py

1.2 Implementation 31

exact u values at the mesh points, in order to study the error in the
numerical solution.

A natural way to compare the exact and discrete solutions is to
calculate their difference as a mesh function for the error:

en = ue(tn)− un, n = 0, 1, . . . , Nt . (1.46)

We may view the mesh function une = ue(tn) as a representation of the
continuous function ue(t) defined for all t ∈ [0, T]. In fact, une is often
called the representative of ue on the mesh. Then, en = une −un is clearly
the difference of two mesh functions.

The error mesh function en can be computed by

u, t = solver(I, a, T, dt, theta) # Numerical sol.
u_e = u_exact(t, I, a) # Representative of exact sol.
e = u_e - u

Note that the mesh functions u and u_e are represented by arrays and
associated with the points in the array t.

Array arithmetics

The last statements

u_e = u_exact(t, I, a)
e = u_e - u

demonstrate some standard examples of array arithmetics: t is
an array of mesh points that we pass to u_exact. This function
evaluates -a*t, which is a scalar times an array, meaning that the
scalar is multiplied with each array element. The result is an array,
let us call it tmp1. Then exp(tmp1) means applying the exponential
function to each element in tmp1, giving an array, say tmp2. Finally,
I*tmp2 is computed (scalar times array) and u_e refers to this array
returned from u_exact. The expression u_e - u is the difference
between two arrays, resulting in a new array referred to by e.

Replacement of array element computations inside a loop by
array arithmetics is known as vectorization.

32 1 Algorithms and implementations

1.2.10 Computing the norm of the error mesh function

Instead of working with the error en on the entire mesh, we often want a
single number expressing the size of the error. This is obtained by taking
the norm of the error function.

Let us first define norms of a function f(t) defined for all t ∈ [0, T].
Three common norms are

||f ||L2 =
(∫ T

0
f(t)2dt

)1/2

, (1.47)

||f ||L1 =
∫ T

0
|f(t)|dt, (1.48)

||f ||L∞ = max
t∈[0,T]

|f(t)| . (1.49)

The L2 norm (1.47) (“L-two norm”) has nice mathematical properties
and is the most popular norm. It is a generalization of the well-known
Eucledian norm of vectors to functions. The L1 norm looks simpler and
more intuitive, but has less nice mathematical properties compared to
the two other norms, so it is much less used in computations. The L∞ is
also called the max norm or the supremum norm and is widely used. It
focuses on a single point with the largest value of |f |, while the other
norms measure average behavior of the function.

In fact, there is a whole family of norms,

||f ||Lp =
(∫ T

0
f(t)pdt

)1/p

, (1.50)

with p real. In particular, p = 1 corresponds to the L1 norm above while
p =∞ is the L∞ norm.

Numerical computations involving mesh functions need corresponding
norms. Given a set of function values, fn, and some associated mesh
points, tn, a numerical integration rule can be used to calculate the
L2 and L1 norms defined above. Imagining that the mesh function is
extended to vary linearly between the mesh points, the Trapezoidal rule
is in fact an exact integration rule. A possible modification of the L2

norm for a mesh function fn on a uniform mesh with spacing ∆t is
therefore the well-known Trapezoidal integration formula

1.2 Implementation 33

||fn|| =
(
∆t

(
1
2(f0)2 + 1

2(fNt)2 +
Nt−1∑
n=1

(fn)2
))1/2

A common approximation of this expression, motivated by the conve-
nience of having a simpler formula, is

||fn||`2 =
(
∆t

Nt∑
n=0

(fn)2
)1/2

.

This is called the discrete L2 norm and denoted by `2. If ||f ||2`2 (i.e.,
the square of the norm) is used instead of the Trapezoidal integration
formula, the error is ∆t((f0)2 + (fNt)2)/2. This means that the weights
at the end points of the mesh function are perturbed, but as ∆t→ 0, the
error from this perturbation goes to zero. As long as we are consistent
and stick to one kind of integration rule for the norm of a mesh function,
the details and accuracy of this rule is of no concern.

The three discrete norms for a mesh function fn, corresponding to the
L2, L1, and L∞ norms of f(t) defined above, are defined by

||fn||`2 =
(
∆t

Nt∑
n=0

(fn)2
)1/2

, (1.51)

||fn||`1 = ∆t
Nt∑
n=0
|fn|, (1.52)

||fn||`∞ = max
0≤n≤Nt

|fn| . (1.53)

Note that the L2, L1, `2, and `1 norms depend on the length of the
interval of interest (think of f = 1, then the norms are proportional
to
√
T or T). In some applications it is convenient to think of a mesh

function as just a vector of function values without any relation to the
interval [0, T]. Then one can replace ∆t by T/Nt and simply drop T
(which is just a common scaling factor in the norm, independent of the
vector of function values). Moreover, people prefer to divide by the total
length of the vector, Nt + 1, instead of Nt. This reasoning gives rise to
the vector norms for a vector f = (f0, . . . , fN):

34 1 Algorithms and implementations

||f ||2 =
(

1
N + 1

N∑
n=0

(fn)2
)1/2

, (1.54)

||f ||1 = 1
N + 1

N∑
n=0
|fn|, (1.55)

||f ||`∞ = max
0≤n≤N

|fn| . (1.56)

Here we have used the common vector component notation with sub-
scripts (fn) and N as length. We will mostly work with mesh functions
and use the discrete `2 norm (1.51) or the max norm `∞ (1.53), but the
corresponding vector norms (1.54)-(1.56) are also much used in numerical
computations, so it is important to know the different norms and the
relations between them.

A single number that expresses the size of the numerical error will be
taken as ||en||`2 and called E:

E =

√√√√∆t Nt∑
n=0

(en)2 (1.57)

The corresponding Python code, using array arithmetics, reads

E = sqrt(dt*sum(e**2))

The sum function comes from numpy and computes the sum of the elements
of an array. Also the sqrt function is from numpy and computes the
square root of each element in the array argument.

Scalar computing. Instead of doing array computing sqrt(dt*sum(e**2))
we can compute with one element at a time:

m = len(u) # length of u array (alt: u.size)
u_e = zeros(m)
t = 0
for i in range(m):

u_e[i] = u_exact(t, a, I)
t = t + dt

e = zeros(m)
for i in range(m):

e[i] = u_e[i] - u[i]
s = 0 # summation variable
for i in range(m):

s = s + e[i]**2
error = sqrt(dt*s)

1.2 Implementation 35

Such element-wise computing, often called scalar computing, takes more
code, is less readable, and runs much slower than what we can achieve
with array computing.

1.2.11 Experiments with computing and plotting

Let us write down a new function that wraps up the computation and
all the plotting statements used for comparing the exact and numerical
solutions. This function can be called with various θ and ∆t values to
see how the error depends on the method and mesh resolution.

def explore(I, a, T, dt, theta=0.5, makeplot=True):
"""
Run a case with the solver, compute error measure,
and plot the numerical and exact solutions (if makeplot=True).
"""
u, t = solver(I, a, T, dt, theta) # Numerical solution
u_e = u_exact(t, I, a)
e = u_e - u
E = sqrt(dt*sum(e**2))
if makeplot:

figure() # create new plot
t_e = linspace(0, T, 1001) # fine mesh for u_e
u_e = u_exact(t_e, I, a)
plot(t, u, ’r--o’) # red dashes w/circles
plot(t_e, u_e, ’b-’) # blue line for exact sol.
legend([’numerical’, ’exact’])
xlabel(’t’)
ylabel(’u’)
title(’theta=%g, dt=%g’ % (theta, dt))
theta2name = {0: ’FE’, 1: ’BE’, 0.5: ’CN’}
savefig(’%s_%g.png’ % (theta2name[theta], dt))
savefig(’%s_%g.pdf’ % (theta2name[theta], dt))
show()

return E

The figure() call is key: without it, a new plot command will draw
the new pair of curves in the same plot window, while we want the
different pairs to appear in separate windows and files. Calling figure()
ensures this.

Instead of including the θ value in the filename to implicitly inform
about the applied method, the code utilizes a little Python dictionary
that maps each relevant θ value to a corresponding acronym for the
method name (FE, BE, or CN):

theta2name = {0: ’FE’, 1: ’BE’, 0.5: ’CN’}
savefig(’%s_%g.png’ % (theta2name[theta], dt))

36 1 Algorithms and implementations

The explore function stores the plot in two different image file formats:
PNG and PDF. The PNG format is suitable for being included in HTML
documents, while the PDF format provides higher quality for LATEX (i.e.,
pdfLATEX) documents. Frequently used viewers for these image files on
Unix systems are gv (comes with Ghostscript) for the PDF format and
display (from the ImageMagick software suite) for PNG files:

Terminal

Terminal> gv BE_0.5.pdf
Terminal> display BE_0.5.png

A main program may run a loop over the three methods (given by
their corresponding θ values) and call explore to compute errors and
make plots:

def main(I, a, T, dt_values, theta_values=(0, 0.5, 1)):
print ’theta dt error’ # Column headings in table
for theta in theta_values:

for dt in dt_values:
E = explore(I, a, T, dt, theta, makeplot=True)
print ’%4.1f %6.2f: %12.3E’ % (theta, dt, E)

main(I=1, a=2, T=5, dt_values=[0.4, 0.04])

The file decay_plot_mpl.py contains the complete code with the func-
tions above. Running this program results in

Terminal

Terminal> python decay_plot_mpl.py
theta dt error
0.0 0.40: 2.105E-01
0.0 0.04: 1.449E-02
0.5 0.40: 3.362E-02
0.5 0.04: 1.887E-04
1.0 0.40: 1.030E-01
1.0 0.04: 1.382E-02

We observe that reducing ∆t by a factor of 10 increases the accuracy for
all three methods. We also see that the combination of θ = 0.5 and a
small time step ∆t = 0.04 gives a much more accurate solution, and that
θ = 0 and θ = 1 with ∆t = 0.4 result in the least accurate solutions.

Figure 1.7 demonstrates that the numerical solution produced by the
Forward Euler method with ∆t = 0.4 clearly lies below the exact curve,
but that the accuracy improves considerably by reducing the time step
by a factor of 10.

The behavior of the two other schemes is shown in Figures 1.8 and 1.9.
Crank-Nicolson is obviously the most accurate scheme from this visual
point of view.

http://tinyurl.com/ofkw6kc/alg/decay_plot_mpl.py

1.2 Implementation 37

Fig. 1.7 The Forward Euler scheme for two values of the time step.

Fig. 1.8 The Backward Euler scheme for two values of the time step.

Fig. 1.9 The Crank-Nicolson scheme for two values of the time step.

Combining plot files. Mounting two PNG files beside each other, as
done in Figures 1.7-1.9, is easily carried out by the montage program
from the ImageMagick suite:

http://www.imagemagick.org/script/montage.php

38 1 Algorithms and implementations

Terminal

Terminal> montage -background white -geometry 100% -tile 2x1 \
FE_0.4.png FE_0.04.png FE1.png

Terminal> convert -trim FE1.png FE1.png

The -geometry argument is used to specify the size of the image. Here,
we preserve the individual sizes of the images. The -tile HxV option
specifies H images in the horizontal direction and V images in the vertical
direction. A series of image files to be combined are then listed, with
the name of the resulting combined image, here FE1.png at the end.
The convert -trim command removes surrounding white areas in the
figure (an operation usually known as cropping in image manipulation
programs).

For LATEX reports it is not recommended to use montage and PNG
files as the result has too low resolution. Instead, plots should be made
in the PDF format and combined using the pdftk, pdfnup, and pdfcrop
tools (on Linux/Unix):

Terminal

Terminal> pdftk FE_0.4.png FE_0.04.png output tmp.pdf
Terminal> pdfnup --nup 2x1 --outfile tmp.pdf tmp.pdf
Terminal> pdfcrop tmp.pdf FE1.png # output in FE1.png

Here, pdftk combines images into a multi-page PDF file, pdfnup com-
bines the images in individual pages to a table of images (pages), and
pdfcrop removes white margins in the resulting combined image file.

Plotting with SciTools. The SciTools package provides a unified plotting
interface, called Easyviz, to many different plotting packages, including
Matplotlib, Gnuplot, Grace, MATLAB, VTK, OpenDX, and VisIt. The
syntax is very similar to that of Matplotlib and MATLAB. In fact, the
plotting commands shown above look the same in SciTool’s Easyviz
interface, apart from the import statement, which reads

from scitools.std import *

This statement performs a from numpy import * as well as an import
of the most common pieces of the Easyviz (scitools.easyviz) package,
along with some additional numerical functionality.

With Easyviz one can merge several plotting commands into a single
one using keyword arguments:

plot(t, u, ’r--o’, # red dashes w/circles
t_e, u_e, ’b-’, # blue line for exact sol.

https://github.com/hplgit/scitools

1.2 Implementation 39

legend=[’numerical’, ’exact’],
xlabel=’t’,
ylabel=’u’,
title=’theta=%g, dt=%g’ % (theta, dt),
savefig=’%s_%g.png’ % (theta2name[theta], dt),
show=True)

The decay_plot_st.py file contains such a demo.
By default, Easyviz employs Matplotlib for plotting, but Gnuplot and

Grace are viable alternatives:
Terminal

Terminal> python decay_plot_st.py --SCITOOLS_easyviz_backend gnuplot
Terminal> python decay_plot_st.py --SCITOOLS_easyviz_backend grace

The actual tool used for creating plots (called backend) and numerous
other options can be permanently set in SciTool’s configuration file.

All the Gnuplot windows are launched without any need to kill one
before the next one pops up (as is the case with Matplotlib) and one can
press the key ’q’ anywhere in a plot window to kill it. Another advantage
of Gnuplot is the automatic choice of sensible and distinguishable line
types in black-and-white PDF and PostScript files.

For more detailed information on syntax and plotting capabilities, we
refer to the Matplotlib [5] and SciTools [7] documentation. The hope is
that the programming syntax explained so far suffices for understanding
the basic plotting functionality and being able to look up the cited
technical documentation.

Test your understanding!

Exercise 4.3 asks you to implement a solver for a problem that is
slightly different from the one above. You may use the solver and
explore functions explained above as a starting point. Apply the
new solver to solve Exercise 4.4.

1.2.12 Memory-saving implementation

The computer memory requirements of our implementations so far consist
mainly of the u and t arrays, both of length Nt+1. Also, for the programs
that involve array arithmetics, Python needs memory space for storing
temporary arrays. For example, computing I*exp(-a*t) requires storing

http://tinyurl.com/ofkw6kc/alg/decay_plot_st.py
http://www.gnuplot.info/
http://plasma-gate.weizmann.ac.il/Grace/

40 1 Algorithms and implementations

the intermediate result a*t before the preceding minus sign can be applied.
The resulting array is temporarily stored and provided as input to the exp
function. Regardless of how we implement simple ODE problems, storage
requirements are very modest and put no restrictions on how we choose
our data structures and algorithms. Nevertheless, when the presented
methods are applied to three-dimensional PDE problems, memory storage
requirements suddenly become a challenging issue.

Let us briefly elaborate on how large the storage requirements can
quickly be in three-dimensional problems. The PDE counterpart to our
model problem u′ = −a is a diffusion equation ut = a∇2u posed on a
space-time domain. The discrete representation of this domain may in
3D be a spatial mesh of M3 points and a time mesh of Nt points. In
many applications, it is quite typical that M is at least 100, or even 1000.
Storing all the computed u values, like we have done in the programs so
far, would demand storing arrays of size up to M3Nt. This would give
a factor of M3 larger storage demands compared to what was required
by our ODE programs. Each real number in the u array requires 8 bytes
(b) of storage. With M = 100 and Nt = 1000, there is a storage demand
of (103)3 · 1000 · 8 = 8 Gb for the solution array. Fortunately, we can
usually get rid of the Nt factor, resulting in 8 Mb of storage. Below
we explain how this is done (the technique is almost always applied in
implementations of PDE problems).

Let us critically evaluate how much we really need to store in the
computer’s memory for our implementation of the θ method. To com-
pute a new un+1, all we need is un. This implies that the previous
un−1, un−2, . . . , u0 values do not need to be stored, although this is con-
venient for plotting and data analysis in the program. Instead of the
u array we can work with two variables for real numbers, u and u_1,
representing un+1 and un in the algorithm, respectively. At each time
level, we update u from u_1 and then set u_1 = u, so that the computed
un+1 value becomes the "previous" value un at the next time level. The
downside is that we cannot plot the solution after the simulation is done
since only the last two numbers are available. The remedy is to store
computed values in a file and use the file for visualizing the solution
later.

We have implemented this memory saving idea in the file decay_
memsave.py, which is a slight modification of decay_plot_mpl.py pro-
gram.

The following function demonstrates how we work with the two most
recent values of the unknown:

http://tinyurl.com/ofkw6kc/alg/decay_memsave.py
http://tinyurl.com/ofkw6kc/alg/decay_memsave.py
http://tinyurl.com/ofkw6kc/alg/decay_plot_mpl.py

1.2 Implementation 41

def solver_memsave(I, a, T, dt, theta, filename=’sol.dat’):
"""
Solve u’=-a*u, u(0)=I, for t in (0,T] with steps of dt.
Minimum use of memory. The solution is stored in a file
(with name filename) for later plotting.
"""
dt = float(dt) # avoid integer division
Nt = int(round(T/dt)) # no of intervals

outfile = open(filename, ’w’)
u: time level n+1, u_1: time level n
t = 0
u_1 = I
outfile.write(’%.16E %.16E\n’ % (t, u_1))
for n in range(1, Nt+1):

u = (1 - (1-theta)*a*dt)/(1 + theta*dt*a)*u_1
u_1 = u
t += dt
outfile.write(’%.16E %.16E\n’ % (t, u))

outfile.close()
return u, t

This code snippet also serves as a quick introduction to file writing in
Python. Reading the data in the file into arrays t and u is done by the
function

def read_file(filename=’sol.dat’):
infile = open(filename, ’r’)
u = []; t = []
for line in infile:

words = line.split()
if len(words) != 2:

print ’Found more than two numbers on a line!’, words
sys.exit(1) # abort

t.append(float(words[0]))
u.append(float(words[1]))

return np.array(t), np.array(u)

This type of file with numbers in rows and columns is very common,
and numpy has a function loadtxt which loads such tabular data into
a two-dimensional array named by the user. Say the name is data, the
number in row i and column j is then data[i,j]. The whole column
number j can be extracted by data[:,j]. A version of read_file using
np.loadtxt reads

def read_file_numpy(filename=’sol.dat’):
data = np.loadtxt(filename)
t = data[:,0]
u = data[:,1]
return t, u

42 1 Algorithms and implementations

The present counterpart to the explore function from decay_plot_
mpl.py must run solver_memsave and then load data from file before
we can compute the error measure and make the plot:

def explore(I, a, T, dt, theta=0.5, makeplot=True):
filename = ’u.dat’
u, t = solver_memsave(I, a, T, dt, theta, filename)

t, u = read_file(filename)
u_e = u_exact(t, I, a)
e = u_e - u
E = sqrt(dt*np.sum(e**2))
if makeplot:

figure()
...

Apart from the internal implementation, where un values are stored
in a file rather than in an array, decay_memsave.py file works exactly
as the decay_plot_mpl.py file.

1.3 Exercises

Exercise 1.1: Define a mesh function and visualize it

a) Write a function mesh_function(f, t) that returns an array with
mesh point values f(t0), . . . , f(tNt), where f is a Python function imple-
menting a mathematical function f(t) and t0, . . . , tNt are mesh points
stored in the array t. Use a loop over the mesh points and compute one
mesh function value at the time.

b) Use mesh_function to compute the mesh function corresponding to

f(t) =
{
e−t, 0 ≤ t ≤ 3,
e−3t, 3 < t ≤ 4

Choose a mesh tn = n∆t with ∆t = 0.1. Plot the mesh function.
Filename: mesh_function.

Remarks. In Section 1.2.9 we show how easy it is to compute a mesh
function by array arithmetics (or array computing). Using this technique,
one could simply implement mesh_function(f,t) as return f(t). How-
ever, f(t) will not work if there are if tests involving t inside f as is the
case in b). Typically, if t < 3 must have t < 3 as a boolean expression,
but if t is array, t < 3, is an array of boolean values, which is not legal

http://tinyurl.com/ofkw6kc/alg/decay_plot_mpl.py
http://tinyurl.com/ofkw6kc/alg/decay_plot_mpl.py

1.3 Exercises 43

as a boolean expression in an if test. Computing one element at a time
as suggested in a) is a way of out of this problem.

We also remark that the function in b) is the solution of u′ = −au,
u(0) = 1, for t ∈ [0, 4], where a = 1 for t ∈ [0, 3] and a = 3 for t ∈ [3, 4].

Problem 1.2: Differentiate a function

Given a mesh function un as an array u with un values at mesh points
tn = n∆t, the discrete derivative can be based on centered differences:

dn = [D2tu]n = un+1 − un−1

2∆t , n = 1, . . . , Nt − 1 . (1.58)

At the end points we may use forward and backward differences:

d0 = [D+
t u]n = u1 − u0

∆t
,

and

dNt = [D−t u]n = uNt − uNt−1

∆t
.

(Note that the formulas for the derivative at the end points are less
accurate than the formula used for the internal mesh points. We can
easily employ equally accurate finite differences at the end points, but
these involve three instead of two points.)

a) Write a function differentiate(u, dt) that returns the discrete
derivative dn of the mesh function un. The parameter dt reflects the mesh
spacing ∆t. Write a corresponding test function test_differentiate()
for verifying the implementation.

Hint. The three differentiation formulas are exact for quadratic polyno-
mials. Use this property to verify the program.

b) A standard implementation of the formula (1.58) is to have a loop
over i. For large Nt, such loop may run slowly in Python. A technique for
speeding up the computations, called vectorization or array computing,
replaces the loop by array operations. To see how this can be done in
the present mathematical problem, we define two arrays

u+ = (u2, u3, . . . , uNt), u− = (u0, u1, . . . , uNt−2) .

44 1 Algorithms and implementations

The formula (1.58) can now be expressed as

(d1, d2, . . . , dNt−1) = 1
2∆t(u

+ − u−) .

The corresponding Python code reads

d[1:-1] = (u[2:] - u[0:-2])/(2*dt)
or
d[1:N_t] = (u[2:N_t+1] - u[0:N_t-1])/(2*dt)

Recall that an array slice u[1:-1] contains the elements in u starting
with index 1 and going all indices up to, but not including, the last one
(-1).

Use the ideas above to implement a vectorized version of the
differentiate function without loops. Make a corresponding test func-
tion that compares the result with that of differentiate.
Filename: differentiate.

Problem 1.3: Experiment with divisions

Explain what happens in the following computations, where some are
mathematically unexpected:

>>> dt = 3
>>> T = 8
>>> Nt = T/dt
>>> Nt
2
>>> theta = 1; a = 1
>>> (1 - (1-theta)*a*dt)/(1 + theta*dt*a)
0

Filename: pyproblems.

Problem 1.4: Experiment with wrong computations

Consider the solver function in the decay_v1.py file and the following
call:

u, t = solver(I=1, a=1, T=7, dt=2, theta=1)

The output becomes

t= 0.000 u=1
t= 2.000 u=0

http://tinyurl.com/ofkw6kc/alg/decay_v1.py

1.3 Exercises 45

t= 4.000 u=0
t= 6.000 u=0

Print out the result of all intermediate computations and use type(v)
to see the object type of the result stored in some variable v. Examine
the intermediate calculations and explain why u is wrong and why we
compute up to t = 6 only even though we specified T = 7.
Filename: decay_v1_err.

Problem 1.5: Plot the error function
Solve the problem u′ = −au, u(0) = I, using the Forward Euler, Back-
ward Euler, and Crank-Nicolson schemes. For each scheme, plot the error
mesh function en = ue(tn) − un for ∆t = 0.1, 0.05, 0.025, where ue is
the exact solution of the ODE and un is the numerical solution at mesh
point tn.
Hint. Modify the decay_plot_mpl.py code.
Filename: decay_plot_error.

Problem 1.6: Change formatting of numbers and debug
The decay_memsave.py program writes the time values and solution
values to a file which looks like

0.0000000000000000E+00 1.0000000000000000E+00
2.0000000000000001E-01 8.3333333333333337E-01
4.0000000000000002E-01 6.9444444444444453E-01
6.0000000000000009E-01 5.7870370370370383E-01
8.0000000000000004E-01 4.8225308641975323E-01
1.0000000000000000E+00 4.0187757201646102E-01
1.2000000000000000E+00 3.3489797668038418E-01
1.3999999999999999E+00 2.7908164723365347E-01

Modify the file output such that it looks like

0.000 1.00000
0.200 0.83333
0.400 0.69444
0.600 0.57870
0.800 0.48225
1.000 0.40188
1.200 0.33490
1.400 0.27908

If you have just modified the formatting of numbers in the file, running
the modified program

http://tinyurl.com/ofkw6kc/alg/decay_plot_mpl.py
http://tinyurl.com/ofkw6kc/alg/decay_memsave.py

46 1 Algorithms and implementations

Terminal

Terminal> python decay_memsave_v2.py --T 10 --theta 1 \
--dt 0.2 --makeplot

leads to printing of the message Bug in the implementation! in the
terminal window. Why?
Filename: decay_memsave_v2.

Analysis 2

We address the ODE for exponential decay,

u′(t) = −au(t), u(0) = I, (2.1)

where a and I are given constants. This problem is solved by the θ-rule
finite difference scheme, resulting in the recursive equations

un+1 = 1− (1− θ)a∆t
1 + θa∆t

un (2.2)

for the numerical solution un+1, which approximates the exact solution
ue at time point tn+1. For constant mesh spacing, which we assume here,
tn+1 = (n+ 1)∆t.

The example programs associated with this chapter are found in the
directory src/analysis.

2.1 Experimental investigations

We first perform a series of numerical explorations to see how the methods
behave as we change the parameters I, a, and ∆t in the problem.

© 2016, Hans Petter Langtangen. Released under CC Attribution 4.0 license

http://tinyurl.com/ofkw6kc/analysis

48 2 Analysis

2.1.1 Discouraging numerical solutions

Choosing I = 1, a = 2, and running experiments with θ = 1, 0.5, 0 for
∆t = 1.25, 0.75, 0.5, 0.1, gives the results in Figures 2.1, 2.2, and 2.3.

0 1 2 3 4 5
t

0.0

0.2

0.4

0.6

0.8

1.0

u

Method: theta-rule, theta=1, dt=1.25

numerical
exact

0 1 2 3 4 5 6
t

0.0

0.2

0.4

0.6

0.8

1.0

u

Method: theta-rule, theta=1, dt=0.75

numerical
exact

0 1 2 3 4 5
t

0.0

0.2

0.4

0.6

0.8

1.0

u

Method: theta-rule, theta=1, dt=0.5

numerical
exact

0 1 2 3 4 5
t

0.0

0.2

0.4

0.6

0.8

1.0

u

Method: theta-rule, theta=1, dt=0.1

numerical
exact

Fig. 2.1 Backward Euler.

The characteristics of the displayed curves can be summarized as
follows:

• The Backward Euler scheme gives a monotone solution in all cases,
lying above the exact curve.

• The Crank-Nicolson scheme gives the most accurate results, but for
∆t = 1.25 the solution oscillates.

• The Forward Euler scheme gives a growing, oscillating solution for
∆t = 1.25; a decaying, oscillating solution for ∆t = 0.75; a strange
solution un = 0 for n ≥ 1 when ∆t = 0.5; and a solution seemingly as
accurate as the one by the Backward Euler scheme for ∆t = 0.1, but
the curve lies below the exact solution.

2.1 Experimental investigations 49

0 1 2 3 4 5
t

0.2

0.0

0.2

0.4

0.6

0.8

1.0

u

Method: theta-rule, theta=0.5, dt=1.25

numerical
exact

0 1 2 3 4 5 6
t

0.0

0.2

0.4

0.6

0.8

1.0

u

Method: theta-rule, theta=0.5, dt=0.75

numerical
exact

0 1 2 3 4 5
t

0.0

0.2

0.4

0.6

0.8

1.0

u

Method: theta-rule, theta=0.5, dt=0.5

numerical
exact

0 1 2 3 4 5
t

0.0

0.2

0.4

0.6

0.8

1.0

u

Method: theta-rule, theta=0.5, dt=0.1

numerical
exact

Fig. 2.2 Crank-Nicolson.

Since the exact solution of our model problem is a monotone function,
u(t) = Ie−at, some of these qualitatively wrong results indeed seem
alarming!

Key questions

• Under what circumstances, i.e., values of the input data I, a, and
∆t will the Forward Euler and Crank-Nicolson schemes result in
undesired oscillatory solutions?

• How does ∆t impact the error in the numerical solution?
The first question will be investigated both by numerical experi-
ments and by precise mathematical theory. The theory will help
establish general criteria on ∆t for avoiding non-physical oscillatory
or growing solutions.

For our simple model problem we can answer the second question
very precisely, but we will also look at simplified formulas for small
∆t and touch upon important concepts such as convergence rate

50 2 Analysis

0 1 2 3 4 5
t

4

2

0

2

4

6

u

Method: theta-rule, theta=0, dt=1.25

numerical
exact

0 1 2 3 4 5 6
t

0.5

0.0

0.5

1.0

u

Method: theta-rule, theta=0, dt=0.75

numerical
exact

0 1 2 3 4 5
t

0.0

0.2

0.4

0.6

0.8

1.0

u

Method: theta-rule, theta=0, dt=0.5

numerical
exact

0 1 2 3 4 5
t

0.0

0.2

0.4

0.6

0.8

1.0

u

Method: theta-rule, theta=0, dt=0.1

numerical
exact

Fig. 2.3 Forward Euler.

and the order of a scheme. Other fundamental concepts mentioned
are stability, consistency, and convergence.

2.1.2 Detailed experiments
To address the first question above, we may set up an experiment where
we loop over values of I, a, and ∆t in our chosen model problem. For
each experiment, we flag the solution as oscillatory if

un > un−1,

for some value of n. This seems like a reasonable choice, since we expect
un to decay with n, but oscillations will make u increase over a time step.
Doing some initial experimentation with varying I, a, and ∆t, quickly
reveals that oscillations are independent of I, but they do depend on a
and ∆t. We can therefore limit the investigation to vary a and ∆t. Based
on this observation, we introduce a two-dimensional function B(a,∆t)

2.1 Experimental investigations 51

which is 1 if oscillations occur and 0 otherwise. We can visualize B
as a contour plot (lines for which B = const). The contour B = 0.5
corresponds to the borderline between oscillatory regions with B = 1
and monotone regions with B = 0 in the a,∆t plane.

The B function is defined at discrete a and∆t values. Say we have given
P values for a, a0, . . . , aP−1, and Q values for ∆t, ∆t0, . . . , ∆tQ−1. These
ai and ∆tj values, i = 0, . . . , P − 1, j = 0, . . . , Q− 1, form a rectangular
mesh of P ×Q points in the plane spanned by a and ∆t. At each point
(ai, ∆tj), we associate the corresponding value B(ai, ∆tj), denoted Bij .
The Bij values are naturally stored in a two-dimensional array. We
can thereafter create a plot of the contour line Bij = 0.5 dividing the
oscillatory and monotone regions. The file decay_osc_regions.py given
below (osc_regions stands for “oscillatory regions”) contains all nuts
and bolts to produce the B = 0.5 line in Figures 2.4 and 2.5. The
oscillatory region is above this line.

from decay_mod import solver
import numpy as np
import scitools.std as st

def non_physical_behavior(I, a, T, dt, theta):
"""
Given lists/arrays a and dt, and numbers I, dt, and theta,
make a two-dimensional contour line B=0.5, where B=1>0.5
means oscillatory (unstable) solution, and B=0<0.5 means
monotone solution of u’=-au.
"""
a = np.asarray(a); dt = np.asarray(dt) # must be arrays
B = np.zeros((len(a), len(dt))) # results
for i in range(len(a)):

for j in range(len(dt)):
u, t = solver(I, a[i], T, dt[j], theta)
Does u have the right monotone decay properties?
correct_qualitative_behavior = True
for n in range(1, len(u)):

if u[n] > u[n-1]: # Not decaying?
correct_qualitative_behavior = False
break # Jump out of loop

B[i,j] = float(correct_qualitative_behavior)
a_, dt_ = st.ndgrid(a, dt) # make mesh of a and dt values
st.contour(a_, dt_, B, 1)
st.grid(’on’)
st.title(’theta=%g’ % theta)
st.xlabel(’a’); st.ylabel(’dt’)
st.savefig(’osc_region_theta_%s.png’ % theta)
st.savefig(’osc_region_theta_%s.pdf’ % theta)

non_physical_behavior(

http://tinyurl.com/ofkw6kc/analysis/decay_osc_regions.py

52 2 Analysis

I=1,
a=np.linspace(0.01, 4, 22),
dt=np.linspace(0.01, 4, 22),
T=6,
theta=0.5)

Fig. 2.4 Forward Euler scheme: oscillatory solutions occur for points above the curve.

By looking at the curves in the figures one may guess that a∆t must
be less than a critical limit to avoid the undesired oscillations. This limit
seems to be about 2 for Crank-Nicolson and 1 for Forward Euler. We
shall now establish a precise mathematical analysis of the discrete model
that can explain the observations in our numerical experiments.

2.2 Stability 53

Fig. 2.5 Crank-Nicolson scheme: oscillatory solutions occur for points above the curve.

2.2 Stability

The goal now is to understand the results in the previous section. To this
end, we shall investigate the properties of the mathematical formula for
the solution of the equations arising from the finite difference methods.

2.2.1 Exact numerical solution
Starting with u0 = I, the simple recursion (2.2) can be applied repeatedly
n times, with the result that

un = IAn, A = 1− (1− θ)a∆t
1 + θa∆t

. (2.3)

Solving difference equations

Difference equations where all terms are linear in un+1, un, and
maybe un−1, un−2, etc., are called homogeneous, linear difference
equations, and their solutions are generally of the form un = An,

54 2 Analysis

where A is a constant to be determined. Inserting this expression
in the difference equation and dividing by An+1 gives a polynomial
equation in A. In the present case we get

A = 1− (1− θ)a∆t
1 + θa∆t

.

This is a solution technique of wider applicability than repeated use
of the recursion (2.2).

Regardless of the solution approach, we have obtained a formula for
un. This formula can explain everything we see in the figures above,
but it also gives us a more general insight into accuracy and stability
properties of the three schemes.

Since un is a factor A raised to an integer power n, we realize that
A < 0 will imply un < 0 for odd n and un > 0 for even n. That is, the
solution oscillates between the mesh points. We have oscillations due to
A < 0 when

(1− θ)a∆t > 1 . (2.4)

Since A > 0 is a requirement for having a numerical solution with the
same basic property (monotonicity) as the exact solution, we may say
that A > 0 is a stability criterion. Expressed in terms of ∆t the stability
criterion reads

∆t <
1

(1− θ)a . (2.5)

The Backward Euler scheme is always stable since A < 0 is impossible
for θ = 1, while non-oscillating solutions for Forward Euler and Crank-
Nicolson demand ∆t ≤ 1/a and ∆t ≤ 2/a, respectively. The relation
between ∆t and a look reasonable: a larger a means faster decay and
hence a need for smaller time steps.

Looking at the upper left plot in Figure 2.3, we see that ∆t = 1.25, and
remembering that a = 2 in these experiments, A can be calculated to be
−1.5, so the Forward Euler solution becomes un = (−1.5)n (I = 1). This
solution oscillates and grows. The upper right plot has a∆t = 2·0.75 = 1.5,
so A = −0.5, and un = (−0.5)n decays but oscillates. The lower left plot
is a peculiar case where the Forward Euler scheme produces a solution
that is stuck on the t axis. Now we can understand why this is so, because
a∆t = 2 · 0.5 = 1, which gives A = 0, and therefore un = 0 for n ≥ 1.

2.2 Stability 55

The decaying oscillations in the Crank-Nicolson scheme in the upper left
plot in Figure 2.2 for ∆t = 1.25 are easily explained by the fact that
A ≈ −0.11 < 0.

2.2.2 Stability properties derived from the amplification
factor

The factor A is called the amplification factor since the solution at a new
time level is the solution at the previous time level amplified by a factor
A. For a decay process, we must obviously have |A| ≤ 1, which is fulfilled
for all ∆t if θ ≥ 1/2. Arbitrarily large values of u can be generated when
|A| > 1 and n is large enough. The numerical solution is in such cases
totally irrelevant to an ODE modeling decay processes! To avoid this
situation, we must demand |A| ≤ 1 also for θ < 1/2, which implies

∆t ≤ 2
(1− 2θ)a, (2.6)

For example, ∆t must not exceed 2/a when computing with the Forward
Euler scheme.

Stability properties

We may summarize the stability investigations as follows:

1. The Forward Euler method is a conditionally stable scheme
because it requires ∆t < 2/a for avoiding growing solutions and
∆t < 1/a for avoiding oscillatory solutions.

2. The Crank-Nicolson is unconditionally stable with respect to
growing solutions, while it is conditionally stable with the crite-
rion ∆t < 2/a for avoiding oscillatory solutions.

3. The Backward Euler method is unconditionally stable with re-
spect to growing and oscillatory solutions - any ∆t will work.

Much literature on ODEs speaks about L-stable and A-stable meth-
ods. In our case A-stable methods ensures non-growing solutions,
while L-stable methods also avoids oscillatory solutions.

56 2 Analysis

2.3 Accuracy

While stability concerns the qualitative properties of the numerical
solution, it remains to investigate the quantitative properties to see
exactly how large the numerical errors are.

2.3.1 Visual comparison of amplification factors
After establishing how A impacts the qualitative features of the solution,
we shall now look more into how well the numerical amplification factor
approximates the exact one. The exact solution reads u(t) = Ie−at, which
can be rewritten as

ue(tn) = Ie−an∆t = I(e−a∆t)n . (2.7)

From this formula we see that the exact amplification factor is

Ae = e−a∆t . (2.8)

We see from all of our analysis that the exact and numerical amplifi-
cation factors depend on a and ∆t through the dimensionless product
a∆t: whenever there is a ∆t in the analysis, there is always an associated
a parameter. Therefore, it is convenient to introduce a symbol for this
product, p = a∆t, and view A and Ae as functions of p. Figure 2.6 shows
these functions. The two amplification factors are clearly closest for the
Crank-Nicolson method, but that method has the unfortunate oscillatory
behavior when p > 2.

Significance of the p = a∆t parameter

The key parameter for numerical performance of a scheme is in
this model problem p = a∆t. This is a dimensionless number (a
has dimension 1/s and ∆t has dimension s) reflecting how the
discretization parameter plays together with a physical parameter
in the problem.

One can bring the present model problem on dimensionless form
through a process called scaling. The scaled modeled has a modified
time t̄ = at and modified response ū = u/I such that the model
reads dū/dt̄ = −ū, ū(0) = 1. Analyzing this model, where there are
no physical parameters, we find that ∆t̄ is the key parameter for

2.3 Accuracy 57

0.0 0.5 1.0 1.5 2.0 2.5 3.0
p=a∆t

2.0

1.5

1.0

0.5

0.0

0.5

1.0

A
m

p
lif

ic
a
ti

o
n
 f

a
ct

o
r

Amplification factors

exact
FE
BE
CN

Fig. 2.6 Comparison of amplification factors.

numerical performance. In the unscaled model, this corresponds to
∆t̄ = a∆t.

It is common that the numerical performance of methods for
solving ordinary and partial differential equations is governed by
dimensionless parameters that combine mesh sizes with physical
parameters.

2.3.2 Series expansion of amplification factors
As an alternative to the visual understanding inherent in Figure 2.6,
there is a strong tradition in numerical analysis to establish formulas
for approximation errors when the discretization parameter, here ∆t,
becomes small. In the present case, we let p be our small discretization
parameter, and it makes sense to simplify the expressions for A and Ae
by using Taylor polynomials around p = 0. The Taylor polynomials are
accurate for small p and greatly simplify the comparison of the analytical
expressions since we then can compare polynomials, term by term.

Calculating the Taylor series for Ae is easily done by hand, but the
three versions of A for θ = 0, 1, 1

2 lead to more cumbersome calculations.

58 2 Analysis

Nowadays, analytical computations can benefit greatly by symbolic
computer algebra software. The Python package sympy represents a
powerful computer algebra system, not yet as sophisticated as the famous
Maple and Mathematica systems, but it is free and very easy to integrate
with our numerical computations in Python.

When using sympy, it is convenient to enter an interactive Python
shell where the results of expressions and statements can be shown
immediately. Here is a simple example. We strongly recommend to use
isympy (or ipython) for such interactive sessions.

Let us illustrate sympy with a standard Python shell syntax (>>>
prompt) to compute a Taylor polynomial approximation to e−p:

>>> from sympy import *
>>> # Create p as a mathematical symbol with name ’p’
>>> p = Symbols(’p’)
>>> # Create a mathematical expression with p
>>> A_e = exp(-p)
>>>
>>> # Find the first 6 terms of the Taylor series of A_e
>>> A_e.series(p, 0, 6)
1 + (1/2)*p**2 - p - 1/6*p**3 - 1/120*p**5 + (1/24)*p**4 + O(p**6)

Lines with >>> represent input lines, whereas without this prompt repre-
sent the result of the previous command (note that isympy and ipython
apply other prompts, but in this text we always apply >>> for interactive
Python computing). Apart from the order of the powers, the computed
formula is easily recognized as the beginning of the Taylor series for e−p.

Let us define the numerical amplification factor where p and θ enter
the formula as symbols:

>>> theta = Symbol(’theta’)
>>> A = (1-(1-theta)*p)/(1+theta*p)

To work with the factor for the Backward Euler scheme we can substitute
the value 1 for theta:

>>> A.subs(theta, 1)
1/(1 + p)

Similarly, we can substitute theta by 1/2 for Crank-Nicolson, preferably
using an exact rational representation of 1/2 in sympy:

>>> half = Rational(1,2)
>>> A.subs(theta, half)
1/(1 + (1/2)*p)*(1 - 1/2*p)

The Taylor series of the amplification factor for the Crank-Nicolson
scheme can be computed as

2.3 Accuracy 59

>>> A.subs(theta, half).series(p, 0, 4)
1 + (1/2)*p**2 - p - 1/4*p**3 + O(p**4)

We are now in a position to compare Taylor series:

>>> FE = A_e.series(p, 0, 4) - A.subs(theta, 0).series(p, 0, 4)
>>> BE = A_e.series(p, 0, 4) - A.subs(theta, 1).series(p, 0, 4)
>>> CN = A_e.series(p, 0, 4) - A.subs(theta, half).series(p, 0, 4)
>>> FE
(1/2)*p**2 - 1/6*p**3 + O(p**4)
>>> BE
-1/2*p**2 + (5/6)*p**3 + O(p**4)
>>> CN
(1/12)*p**3 + O(p**4)

From these expressions we see that the error A − Ae ∼ O(p2) for the
Forward and Backward Euler schemes, while A − Ae ∼ O(p3) for the
Crank-Nicolson scheme. The notation O(pm) here means a polynomial in
p where pm is the term of lowest-degree, and consequently the term that
dominates the expression for p < 0. We call this the leading order term.
As p→ 0, the leading order term clearly dominates over the higher-order
terms (think of p = 0.01: p is a hundred times larger than p2).

Now, a is a given parameter in the problem, while ∆t is what we can
vary. Not surprisingly, the error expressions are usually written in terms
∆t. We then have

A− Ae =
{
O(∆t2), Forward and Backward Euler,
O(∆t3), Crank-Nicolson (2.9)

We say that the Crank-Nicolson scheme has an error in the amplifica-
tion factor of order ∆t3, while the two other schemes are of order ∆t2 in
the same quantity.

What is the significance of the order expression? If we halve ∆t, the
error in amplification factor at a time level will be reduced by a factor
of 4 in the Forward and Backward Euler schemes, and by a factor of
8 in the Crank-Nicolson scheme. That is, as we reduce ∆t to obtain
more accurate results, the Crank-Nicolson scheme reduces the error more
efficiently than the other schemes.

2.3.3 The ratio of numerical and exact amplification factors
An alternative comparison of the schemes is provided by looking at the
ratio A/Ae, or the error 1− A/Ae in this ratio:

>>> FE = 1 - (A.subs(theta, 0)/A_e).series(p, 0, 4)

60 2 Analysis

>>> BE = 1 - (A.subs(theta, 1)/A_e).series(p, 0, 4)
>>> CN = 1 - (A.subs(theta, half)/A_e).series(p, 0, 4)
>>> FE
(1/2)*p**2 + (1/3)*p**3 + O(p**4)
>>> BE
-1/2*p**2 + (1/3)*p**3 + O(p**4)
>>> CN
(1/12)*p**3 + O(p**4)

The leading-order terms have the same powers as in the analysis of
A− Ae.

2.3.4 The global error at a point

The error in the amplification factor reflects the error when progressing
from time level tn to tn−1 only. That is, we disregard the error already
present in the solution at tn−1. The real error at a point, however,
depends on the error development over all previous time steps. This error,
en = un − ue(tn), is known as the global error. We may look at un for
some n and Taylor expand the mathematical expressions as functions
of p = a∆t to get a simple expression for the global error (for small p).
Continuing the sympy expression from previous section, we can write

>>> n = Symbol(’n’)
>>> u_e = exp(-p*n)
>>> u_n = A**n
>>> FE = u_e.series(p, 0, 4) - u_n.subs(theta, 0).series(p, 0, 4)
>>> BE = u_e.series(p, 0, 4) - u_n.subs(theta, 1).series(p, 0, 4)
>>> CN = u_e.series(p, 0, 4) - u_n.subs(theta, half).series(p, 0, 4)
>>> FE
(1/2)*n*p**2 - 1/2*n**2*p**3 + (1/3)*n*p**3 + O(p**4)
>>> BE
(1/2)*n**2*p**3 - 1/2*n*p**2 + (1/3)*n*p**3 + O(p**4)
>>> CN
(1/12)*n*p**3 + O(p**4)

Note that sympy does not sort the polynomial terms in the output, so p3

appears before p2 in the output of BE.
For a fixed time t, the parameter n in these expressions increases as

p→ 0 since t = n∆t = const and hence n must increase like ∆t−1. With
n substituted by t/∆t in the leading-order error terms, these become

2.3 Accuracy 61

en = 1
2np

2 = 1
2 ta

2∆t, Forward Euler (2.10)

en = −1
2np

2 = −1
2 ta

2∆t, Backward Euler (2.11)

en = 1
12np

3 = 1
12 ta

3∆t2, Crank-Nicolson (2.12)

The global error is therefore of second order (in ∆t) for the Crank-
Nicolson scheme and of first order for the other two schemes.

Convergence

When the global error en → 0 as ∆t→ 0, we say that the scheme
is convergent. It means that the numerical solution approaches the
exact solution as the mesh is refined, and this is a much desired
property of a numerical method.

2.3.5 Integrated error

It is common to study the norm of the numerical error, as explained
in detail in Section 1.2.10. The L2 norm of the error can be computed
by treating en as a function of t in sympy and performing symbolic
integration. From now on we shall do import sympy as sym and prefix
all functions in sympy by sym to explicitly notify ourselves that the
functions are from sympy. This is particularly advantageous when we use
mathematical functions like sin: sym.sin is for symbolic expressions,
while sin from numpy or math is for numerical computation. For the
Forward Euler scheme we have

import sympy as sym
p, n, a, dt, t, T, theta = sym.symbols(’p n a dt t T theta’)
A = (1-(1-theta)*p)/(1+theta*p)
u_e = sym.exp(-p*n)
u_n = A**n
error = u_e.series(p, 0, 4) - u_n.subs(theta, 0).series(p, 0, 4)
Introduce t and dt instead of n and p
error = error.subs(’n’, ’t/dt’).subs(p, ’a*dt’)
error = error.as_leading_term(dt) # study only the first term
print error
error_L2 = sym.sqrt(sym.integrate(error**2, (t, 0, T)))
print ’L2 error:’, sym.simplify(error_error_L2)

The output reads

62 2 Analysis

sqrt(30)*sqrt(T**3*a**4*dt**2*(6*T**2*a**2 - 15*T*a + 10))/60

which means that the L2 error behaves like a2∆t.
Strictly speaking, the numerical error is only defined at the mesh

points so it makes most sense to compute the `2 error

||en||`2 =

√√√√∆t Nt∑
n=0

(ue(tn)− un)2 .

We have obtained an exact analytical expression for the error at t = tn,
but here we use the leading-order error term only since we are mostly
interested in how the error behaves as a polynomial in ∆t or p, and then
the leading order term will dominate. For the Forward Euler scheme,
ue(tn)− un ≈ 1

2np
2, and we have

||en||2`2 = ∆t
Nt∑
n=0

1
4n

2p4 = ∆t
1
4p

4
Nt∑
n=0

n2 .

Now,
∑Nt
n=0 n

2 ≈ 1
3N

3
t . Using this approximation, setting Nt = T/∆t,

and taking the square root gives the expression

||en||`2 = 1
2

√
T 3

3 a2∆t . (2.13)

Calculations for the Backward Euler scheme are very similar and provide
the same result, while the Crank-Nicolson scheme leads to

||en||`2 = 1
12

√
T 3

3 a3∆t2 . (2.14)

Summary of errors

Both the global point-wise errors (2.10)-(2.12) and their time-
integrated versions (2.13) and (2.14) show that

• the Crank-Nicolson scheme is of second order in ∆t, and
• the Forward Euler and Backward Euler schemes are of first order

in ∆t.

2.3 Accuracy 63

2.3.6 Truncation error

The truncation error is a very frequently used error measure for finite
difference methods. It is defined as the error in the difference equation
that arises when inserting the exact solution. Contrary to many other
error measures, e.g., the true error en = ue(tn)− un, the truncation error
is a quantity that is easily computable.

Before reading on, it is wise to review Section 1.1.7 on how Taylor
polynomials were used to derive finite differences and quantify the error in
the formulas. Very similar reasoning, and almost identical mathematical
details, will be carried out below, but in a slightly different context. Now,
the focus is on the error when solving a differential equation, while in
Section 1.1.7 we derived errors for a finite difference formula. These errors
are tightly connected in the present model problem.

Let us illustrate the calculation of the truncation error for the Forward
Euler scheme. We start with the difference equation on operator form,

[D+
t u = −au]n,

which is the short form for

un+1 − un

∆t
= −aun .

The idea is to see how well the exact solution ue(t) fulfills this equation.
Since ue(t) in general will not obey the discrete equation, we get an error
in the discrete equation. This error is called a residual, denoted here by
Rn:

Rn = ue(tn+1)− ue(tn)
∆t

+ aue(tn) . (2.15)

The residual is defined at each mesh point and is therefore a mesh
function with a superscript n.

The interesting feature of Rn is to see how it depends on the discretiza-
tion parameter ∆t. The tool for reaching this goal is to Taylor expand
ue around the point where the difference equation is supposed to hold,
here t = tn. We have that

ue(tn+1) = ue(tn) + u′e(tn)∆t+ 1
2u
′′
e(tn)∆t2 + · · · ,

which may be used to reformulate the fraction in (2.15) so that

64 2 Analysis

Rn = u′e(tn) + 1
2u
′′
e(tn)∆t+ . . .+ aue(tn) .

Now, ue fulfills the ODE u′e = −aue, which means that the first and last
term cancel and we have

Rn = 1
2u
′′
e(tn)∆t+O(∆t2) .

This Rn is the truncation error, which for the Forward Euler is seen to
be of first order in ∆t as ∆→ 0.

The above procedure can be repeated for the Backward Euler and the
Crank-Nicolson schemes. We start with the scheme in operator notation,
write it out in detail, Taylor expand ue around the point t̃ at which the
difference equation is defined, collect terms that correspond to the ODE
(here u′e+aue), and identify the remaining terms as the residual R, which
is the truncation error. The Backward Euler scheme leads to

Rn ≈ −1
2u
′′
e(tn)∆t,

while the Crank-Nicolson scheme gives

Rn+ 1
2 ≈ 1

24u
′′′
e (tn+ 1

2
)∆t2,

when ∆t→ 0.
The order r of a finite difference scheme is often defined through the

leading term ∆tr in the truncation error. The above expressions point
out that the Forward and Backward Euler schemes are of first order,
while Crank-Nicolson is of second order. We have looked at other error
measures in other sections, like the error in amplification factor and the
error en = ue(tn)− un, and expressed these error measures in terms of
∆t to see the order of the method. Normally, calculating the truncation
error is more straightforward than deriving the expressions for other
error measures and therefore the easiest way to establish the order of a
scheme.

2.3.7 Consistency, stability, and convergence

Three fundamental concepts when solving differential equations by nu-
merical methods are consistency, stability, and convergence. We shall
briefly touch upon these concepts below in the context of the present
model problem.

2.3 Accuracy 65

Consistency means that the error in the difference equation, measured
through the truncation error, goes to zero as∆t→ 0. Since the truncation
error tells how well the exact solution fulfills the difference equation, and
the exact solution fulfills the differential equation, consistency ensures
that the difference equation approaches the differential equation in the
limit. The expressions for the truncation errors in the previous section
are all proportional to ∆t or ∆t2, hence they vanish as ∆t→ 0, and all
the schemes are consistent. Lack of consistency implies that we actually
solve some other differential equation in the limit ∆t→ 0 than we aim
at.

Stability means that the numerical solution exhibits the same qualita-
tive properties as the exact solution. This is obviously a feature we want
the numerical solution to have. In the present exponential decay model,
the exact solution is monotone and decaying. An increasing numerical
solution is not in accordance with the decaying nature of the exact solu-
tion and hence unstable. We can also say that an oscillating numerical
solution lacks the property of monotonicity of the exact solution and
is also unstable. We have seen that the Backward Euler scheme always
leads to monotone and decaying solutions, regardless of ∆t, and is hence
stable. The Forward Euler scheme can lead to increasing solutions and
oscillating solutions if ∆t is too large and is therefore unstable unless
∆t is sufficiently small. The Crank-Nicolson can never lead to increasing
solutions and has no problem to fulfill that stability property, but it can
produce oscillating solutions and is unstable in that sense, unless ∆t is
sufficiently small.

Convergence implies that the global (true) error mesh function en =
ue(tn)− un → 0 as ∆t→ 0. This is really what we want: the numerical
solution gets as close to the exact solution as we request by having a
sufficiently fine mesh.

Convergence is hard to establish theoretically, except in quite simple
problems like the present one. Stability and consistency are much easier
to calculate. A major breakthrough in the understanding of numerical
methods for differential equations came in 1956 when Lax and Richt-
meyer established equivalence between convergence on one hand and
consistency and stability on the other (the Lax equivalence theorem).
In practice it meant that one can first establish that a method is stable
and consistent, and then it is automatically convergent (which is much
harder to establish). The result holds for linear problems only, and in the
world of nonlinear differential equations the relations between consistency,
stability, and convergence are much more complicated.

http://en.wikipedia.org/wiki/Lax_equivalence_theorem

66 2 Analysis

We have seen in the previous analysis that the Forward Euler, Back-
ward Euler, and Crank-Nicolson schemes are convergent (en → 0), that
they are consistent (Rn → 0), and that they are stable under certain
conditions on the size of ∆t. We have also derived explicit mathematical
expressions for en, the truncation error, and the stability criteria.

2.4 Various types of errors in a differential equation
model

So far we have been concerned with one type of error, namely the
discretization error committed by replacing the differential equation
problem by a recursive set of difference equations. There are, however,
other types of errors that must be considered too. We can classify errors
into four groups:

1. model errors: how wrong is the ODE model?
2. data errors: how wrong are the input parameters?
3. discretization errors: how wrong is the numerical method?
4. rounding errors: how wrong is the computer arithmetics?

Below, we shall briefly describe and illustrate these four types of errors.
Each of the errors deserve its own chapter, at least, so the treatment
here is superficial to give some indication about the nature of size of the
errors in a specific case. Some of the required computer codes quickly
become more advanced than in the rest of the book, but we include to
code to document all the details that lie behind the investigations of the
errors.

2.4.1 Model errors
Any mathematical model like u′ = −au, u(0) = I, is just an approximate
description of a real-world phenomenon. How good this approximation
is can be determined by comparing physical experiments with what
the model predicts. This is the topic of validation and is obviously an
essential part of mathematical model. One difficulty with validation is
that we need to estimate the parameters in the model, and this brings
in data errors. Quantifying data errors is challenging, and a frequently
used method is to tune the parameters in the model to make model
predictions as close as possible to the experiments. That is, we do not

2.4 Various types of errors in a differential equation model 67

attempt to measure or estimate all input parameters, but instead find
values that “make the model good”. Another difficulty is that the response
in experiments also contains errors due to measurement techniques.

Let us try to quantify model errors in a very simple example involving
u′ = −au, u(0) = I, with constant a. Suppose a more accurate model
has a as a function of time rather than a constant. Here we take a(t) as
a simple linear function: a+ pt. Obviously, u with p > 0 will go faster to
zero with time than a constant a.

The solution of

u′ = (a+ pt)u, u(0) = I,

can be shown (see below) to be

u(t) = Ie−t(a+ 1
2pt) .

Let a Python function true_model(t, I, a, p) implement the above
u(t) and let the solution of our primary ODE u′ = −au be available as
the function model(t, I, a). We can now make some plots of the two
models and the error for some values of p. Figure 2.7 displays model versus
true_model for p = 0.01, 0.1, 1, while Figure 2.8 shows the difference
between the two models as a function of t for the same p values.

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
0.0

0.2

0.4

0.6

0.8

1.0 p=0.01

model
true model

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
0.0

0.2

0.4

0.6

0.8

1.0 p=0.1

model
true model

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
0.0

0.2

0.4

0.6

0.8

1.0 p=1

model
true model

Fig. 2.7 Comparison of two models for three values of p.

The code that was used to produce the plots looks like

from numpy import linspace, exp
from matplotlib.pyplot import \

plot, show, xlabel, ylabel, legend, savefig, figure, title

def model_errors():
p_values = [0.01, 0.1, 1]
a = 1
I = 1
t = linspace(0, 4, 101)
legends = []
Work with figure(1) for the discrepancy and figure(2+i)

68 2 Analysis

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
0.16

0.14

0.12

0.10

0.08

0.06

0.04

0.02

0.00

0.02

p=0.01
p=0.1
p=1

Fig. 2.8 Discrepancy of Comparison of two models for three values of p.

for plotting the model and the true model for p value no i
for i, p in enumerate(p_values):

u = model(t, I, a)
u_true = true_model(t, I, a, p)
discrepancy = u_true - u
figure(1)
plot(t, discrepancy)
figure(2+i)
plot(t, u, ’r-’, t, u_true, ’b--’)
legends.append(’p=%g’ % p)

figure(1)
legend(legends, loc=’lower right’)
savefig(’tmp1.png’); savefig(’tmp1.pdf’)
for i, p in enumerate(p_values):

figure(2+i)
legend([’model’, ’true model’])
title(’p=%g’ % p)
savefig(’tmp%d.png’ % (2+i)); savefig(’tmp%d.pdf’ % (2+i))

To derive the analytical solution of the model u′ = −(a+pt)u, u(0) = I,
we can use SymPy and the code below. This is somewhat advanced
SymPy use for a newbie, but serves to illustrate the possibilities to solve
differential equations by symbolic software.

def derive_true_solution():
import sympy as sym
u = sym.symbols(’u’, cls=sym.Function) # function u(t)
t, a, p, I = sym.symbols(’t a p I’, real=True)

2.4 Various types of errors in a differential equation model 69

def ode(u, t, a, p):
"""Define ODE: u’ = (a + p*t)*u. Return residual."""
return sym.diff(u, t) + (a + p*t)*u

eq = ode(u(t), t, a, p)
s = sym.dsolve(eq)
s is sym.Eq object u(t) == expression, we want u = expression,
so grab the right-hand side of the equality (Eq obj.)
u = s.rhs
print u
u contains C1, replace it with a symbol we can fit to
the initial condition
C1 = sym.symbols(’C1’, real=True)
u = u.subs(’C1’, C1)
print u
Initial condition equation
eq = u.subs(t, 0) - I
s = sym.solve(eq, C1) # solve eq wrt C1
print s
s is a list s[0] = ...
Replace C1 in u by the solution
u = u.subs(C1, s[0])
print ’u:’, u
print sym.latex(u) # latex formula for reports

Consistency check: u must fulfill ODE and initial condition
print ’ODE is fulfilled:’, sym.simplify(ode(u, t, a, p))
print ’u(0)-I:’, sym.simplify(u.subs(t, 0) - I)

Convert u expression to Python numerical function
(modules=’numpy’ allows numpy arrays as arguments,
we want this for t)
u_func = sym.lambdify([t, I, a, p], u, modules=’numpy’)
return u_func

true_model = derive_true_solution()

2.4.2 Data errors

By “data” we mean all the input parameters to a model, in our case I
and a. The values of these may contain errors, or at least uncertainty.
Suppose I and a are measured from some physical experiments. Ideally,
we have many samples of I and a and from these we can fit probability
distributions. Assume that I turns out to be normally distributed with
mean 1 and standard deviation 0.2, while a is uniformly distributed in
the interval [0.5, 1.5].

How will the uncertainty in I and a propagate through the model
u = Ie−at? That is, what is the uncertainty in u at a particular time t?

70 2 Analysis

This answer can easily be answered using Monte Carlo simulation. It
means that we draw a lot of samples from the distributions for I and a.
For each combination of I and a sample we compute the corresponding
u value for selected values of t. Afterwards, we can for each selected
t values make a histogram of all the computed u values to see what
the distribution of u values look like. Figure 2.9 shows the histograms
corresponding to t = 0, 1, 3. We see that the distribution of u values is
much like a symmetric normal distribution at t = 0, centered around
u = 1. At later times, the distribution gets more asymmetric and narrower.
It means that the uncertainty decreases with time.

From the computed u values we can easily calculate the mean and
standard deviation. The table below shows the mean and standard
deviation values along with the value if we just use the formula u = Ie−at

with the mean values of I and a: I = 1 and a = 1. As we see, there is
some discrepancy between this latter (naive) computation and the mean
value produced by Monte Carlo simulation.

time mean st.dev. u(t; I = a = 1)
0 1.00 0.200 1.00
1 0.38 0.135 0.37
3 0.07 0.060 0.14

Actually, u(t; I, a) becomes a stochastic variable for each t when I and a
are stochastic variables, as they are in the above Monte Carlo simulation.
The mean of the stochastic u(t; I, a) is not equal to u with mean values
of the input data, u(t; I = a = 1), unless u is linear in I and a (here u is
nonlinear in a).

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8
0.0

0.5

1.0

1.5

2.0 t=0

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8
0.0

0.5

1.0

1.5

2.0

2.5

3.0 t=1

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8
0

2

4

6

8

10 t=3

Fig. 2.9 Histogram of solution uncertainty at three time points, due to data errors.

Estimating statistical uncertainty in input data and investigating how
this uncertainty propagates to uncertainty in the response of a differential
equation model (or other models) are key topics in the scientific field
called uncertainty quantification, simply known as UQ. Estimation of
the statistical properties of input data can either be done directly from

2.4 Various types of errors in a differential equation model 71

physical experiments, or one can find the parameter values that provide a
“best fit” of model predictions with experiments. Monte Carlo simulation is
a general and widely used tool to solve the associated statistical problems.
The accuracy of the Monte Carlo results increases with increasing number
of samples N , typically the error behaves like N−1/2.

The computer code required to do the Monte Carlo simulation and
produce the plots in Figure 2.9 is shown below.

def data_errors():
from numpy import random, mean, std
from matplotlib.pyplot import hist
N = 10000
Draw random numbers for I and a
I_values = random.normal(1, 0.2, N)
a_values = random.uniform(0.5, 1.5, N)
Compute corresponding u values for some t values
t = [0, 1, 3]
u_values = {} # samples for various t values
u_mean = {}
u_std = {}
for t_ in t:

Compute u samples corresponding to I and a samples
u_values[t_] = [model(t_, I, a)

for I, a in zip(I_values, a_values)]
u_mean[t_] = mean(u_values[t_])
u_std[t_] = std(u_values[t_])

figure()
dummy1, bins, dummy2 = hist(

u_values[t_], bins=30, range=(0, I_values.max()),
normed=True, facecolor=’green’)

#plot(bins)
title(’t=%g’ % t_)
savefig(’tmp_%g.png’ % t_); savefig(’tmp_%g.pdf’ % t_)

Table of mean and standard deviation values
print ’time mean st.dev.’
for t_ in t:

print ’%3g %.2f %.3f’ % (t_, u_mean[t_], u_std[t_])

2.4.3 Discretization errors

The errors implied by solving the differential equation problem by the
θ-rule has been thoroughly analyzed in the previous sections. Below
are some plots of the error versus time for the Forward Euler (FE),
Backward Euler (BN), and Crank-Nicolson (CN) schemes for decreasing
values of ∆t. Since the difference in magnitude between the errors in the
CN scheme versus the FE and BN schemes grows significantly as ∆t is

72 2 Analysis

reduced (the error goes like ∆t2 for CN versus ∆t for FE/BE), we have
plotted the logarithm of the absolute value of the numerical error as a
mesh function.

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
t

6

5

4

3

2

1

lo
g(

ab
s(

nu
m

er
ic

al
 e

rr
or

))

∆t=0.8

BE
FE
CN

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
t

7

6

5

4

3

2

lo
g(

ab
s(

nu
m

er
ic

al
 e

rr
or

))

∆t=0.4

BE
FE
CN

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
t

10

9

8

7

6

5

4

3

lo
g(

ab
s(

nu
m

er
ic

al
 e

rr
or

))

∆t=0.1

BE
FE
CN

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
t

18

16

14

12

10

8

6

lo
g(

ab
s(

nu
m

er
ic

al
 e

rr
or

))

∆t=0.01

BE
FE
CN

Fig. 2.10 Discretization errors in various schemes for four time step values.

The table below presents exact figures of the discretization error for
various choices of ∆t and schemes.

∆t FE BE CN
0.4 9 · 10−2 6 · 10−2 5 · 10−3

0.1 2 · 10−2 2 · 10−2 3 · 10−4

0.01 2 · 10−3 2 · 10−3 3 · 10−6

The computer code used to generate the plots appear next. It makes use
of a solver function as shown in Section 1.2.3.

def discretization_errors():
from numpy import log, abs
I = 1
a = 1
T = 4
t = linspace(0, T, 101)
schemes = {’FE’: 0, ’BE’: 1, ’CN’: 0.5} # theta to scheme name
dt_values = [0.8, 0.4, 0.1, 0.01]
for dt in dt_values:

figure()

2.4 Various types of errors in a differential equation model 73

legends = []
for scheme in schemes:

theta = schemes[scheme]
u, t = solver(I, a, T, dt, theta)
u_e = model(t, I, a)
error = u_e - u
print ’%s: dt=%.2f, %d steps, max error: %.2E’ % \

(scheme, dt, len(u)-1, abs(error).max())
Plot log(error), but exclude error[0] since it is 0
plot(t[1:], log(abs(error[1:])))
legends.append(scheme)

xlabel(’t’); ylabel(’log(abs(numerical error))’)
legend(legends, loc=’upper right’)
title(r’$\Delta t=%g$’ % dt)
savefig(’tmp_dt%g.png’ % dt); savefig(’tmp_dt%g.pdf’ % dt)

2.4.4 Rounding errors

Real numbers on a computer are represented by floating-point numbers,
which means that just a finite number of digits are stored and used. There-
fore, the floating-point number is an approximation to the underlying
real number. When doing arithmetics with floating-point numbers, there
will be small approximation errors, called round-off errors or rounding
errors, that may or may not accumulate in comprehensive computations.

The cause and analysis of rounding errors are described in most books
on numerical analysis, see for instance Chapter 2 in Gander et al. [1].
For very simple algorithms it is possible to theoretically establish bounds
for the rounding errors, but for most algorithms one cannot know to
what extent rounding errors accumulate and potentially destroy the
final answer. Exercise 2.3 demonstrates the impact of rounding errors on
numerical differentiation and integration.

Here is a simplest possible example of the effect of rounding errors:

>>> 1.0/51*51
1.0
>>> 1.0/49*49
0.9999999999999999

We see that the latter result is not exact, but features an error of 10−16.
This is the typical level of a rounding error from an arithmetic operation
with the widely used 64 bit floating-point number (float object in
Python, often called double or double precision in other languages). One
cannot expect more accuracy than 10−16. The big question is if errors at
this level accumulate in a given numerical algorithm.

https://en.wikipedia.org/wiki/Floating_point

74 2 Analysis

What is the effect of using float objects and not exact arithmetics
when solving differential equations? We can investigate this question
through computer experiments if we have the ability to represent real
numbers to a desired accuracy. Fortunately, Python has a Decimal object
in the decimal module that allows us to use as many digits in floating-
point numbers as we like. We take 1000 digits as the true answer where
rounding errors are negligible, and then we run our numerical algorithm
(the Crank-Nicolson scheme to be precise) with Decimal objects for all
real numbers and compute the maximum error arising from using 4, 16,
64, and 128 digits.

When computing with numbers around unity in size and doing Nt = 40
time steps, we typically get a rounding error of 10−d, where d is the
number of digits used. The effect of rounding errors may accumulate
if we perform more operations, so increasing the number of time steps
to 4000 gives a rounding error of the order 10−d+2. Also, if we compute
with numbers that are much larger than unity, we lose accuracy due
to rounding errors. For example, for the u values implied by I = 1000
and a = 100 (u ∼ 103), the rounding errors increase to about 10−d+3.
Below is a table summarizing a set of experiments. A rough model for
the size of rounding errors is 10−d+q+r, where d is the number of digits,
the number of time steps is of the order 10q time steps, and the size of
the numbers in the arithmetic expressions are of order 10r.

digits u ∼ 1, Nt = 40 u ∼ 1, Nt = 4000 u ∼ 103, Nt = 40 u ∼ 103, Nt = 4000
4 3.05 · 10−4 2.51 · 10−1 3.05 · 10−1 9.82 · 102

16 1.71 · 10−16 1.42 · 10−14 1.58 · 10−13 4.84 · 10−11

64 2.99 · 10−64 1.80 · 10−62 2.06 · 10−61 1.04 · 10−57

128 1.60 · 10−128 1.56 · 10−126 2.41 · 10−125 1.07 · 10−122

We realize that rounding errors are at the lowest possible level if we
scale the differential equation model, see Section 4.1, so the numbers
entering the computations are of unity in size, and if we take a small
number of steps (40 steps gives a discretization error of 5 · 10−3 with
the Crank-Nicolson scheme). In general, rounding errors are negligible in
comparison with other errors in differential equation models.

The computer code for doing the reported experiments need a new
version of the solver function where we do arithmetics with Decimal
objects:

def solver_decimal(I, a, T, dt, theta):
"""Solve u’=-a*u, u(0)=I, for t in (0,T] with steps of dt."""
from numpy import zeros, linspace
from decimal import Decimal as D

https://docs.python.org/2/library/decimal.html

2.4 Various types of errors in a differential equation model 75

dt = D(dt)
a = D(a)
theta = D(theta)
Nt = int(round(D(T)/dt))
T = Nt*dt
u = zeros(Nt+1, dtype=object) # array of Decimal objects
t = linspace(0, float(T), Nt+1)

u[0] = D(I) # assign initial condition
for n in range(0, Nt): # n=0,1,...,Nt-1

u[n+1] = (1 - (1-theta)*a*dt)/(1 + theta*dt*a)*u[n]
return u, t

The function below carries out the experiments. We can con-
veniently set the number of digits as we want through the
decimal.getcontext().prec variable.

def rounding_errors(I=1, a=1, T=4, dt=0.1):
import decimal
from numpy import log, array, abs
digits_values = [4, 16, 64, 128]
"Exact" arithmetics is taken as 1000 decimals here
decimal.getcontext().prec = 1000
u_e, t = solver_decimal(I=I, a=a, T=T, dt=dt, theta=0.5)
for digits in digits_values:

decimal.getcontext().prec = digits # set no of digits
u, t = solver_decimal(I=I, a=a, T=T, dt=dt, theta=0.5)
error = u_e - u
error = array(error[1:], dtype=float)
print ’%d digits, %d steps, max abs(error): %.2E’ % \

(digits, len(u)-1, abs(error).max())

2.4.5 Discussion of the size of various errors

The previous computational examples of model, data, discretization, and
rounding errors are tied to one particular mathematical problem, so
it is in principle dangerous to make general conclusions. However, the
illustrations made point to some common trends that apply to differential
equation models.

First, rounding errors have very little impact compared to the other
types of errors. Second, numerical errors are in general smaller than
model and data errors, but more importantly, numerical errors are often
well understood and can be reduced by just increasing the computational
work (in our example by taking more smaller time steps).

Third, data errors may be significant, and it also takes a significant
amount of computational work to quantify them and their impact on

76 2 Analysis

the solution. Many types of input data are also difficult or impossible
to measure, so finding suitable values requires tuning of the data and
the model to a known (measured) response. Nevertheless, even if the
predictive precision of a model is limited because of severe errors or
uncertainty in input data, the model can still be of high value for inves-
tigating qualitative properties of the underlying phenomenon. Through
computer experiments with synthetic input data one can understand a
lot of the science or engineering that goes into the model.

Fourth, model errors are the most challenging type of error to deal with.
Simplicity of model is in general preferred over complexity, but adding
complexity is often the only way to improve the predictive capabilities
of a model. More complexity usually also means a need for more input
data and consequently the danger of increasing data errors.

2.5 Exercises

Problem 2.1: Visualize the accuracy of finite differences

The purpose of this exercise is to visualize the accuracy of finite difference
approximations of the derivative of a given function. For any finite
difference approximation, take the Forward Euler difference as an example,
and any specific function, take u = e−at, we may introduce an error
fraction

E = [D+
t u]n

u′(tn) = exp (−a(tn +∆t))− exp (−atn)
−a exp (−atn)∆t

= 1
a∆t

(1− exp (−a∆t)) ,

and view E as a function of ∆t. We expect that lim∆t→0 E = 1, while E
may deviate significantly from unity for large ∆t. How the error depends
on ∆t is best visualized in a graph where we use a logarithmic scale for
∆t, so we can cover many orders of magnitude of that quantity. Here
is a code segment creating an array of 100 intervals, on the logarithmic
scale, ranging from 10−6 to 10−0.5 and then plotting E versus p = a∆t
with logarithmic scale on the p axis:

from numpy import logspace, exp
from matplotlib.pyplot import semilogx
p = logspace(-6, -0.5, 101)

2.5 Exercises 77

y = (1-exp(-p))/p
semilogx(p, y)

Illustrate such errors for the finite difference operators [D+
t u]n (forward),

[D−t u]n (backward), and [Dtu]n (centered) in the same plot.
Perform a Taylor series expansions of the error fractions and find the

leading order r in the expressions of type 1 +Cpr +O(pr+1), where C is
some constant.
Hint. To save manual calculations and learn more about symbolic com-
puting, make functions for the three difference operators and use sympy
to perform the symbolic differences, differentiation, and Taylor series ex-
pansion. To plot a symbolic expression E against p, convert the expression
to a Python function first: E = sympy.lamdify([p], E).
Filename: decay_plot_fd_error.

Problem 2.2: Explore the θ-rule for exponential growth

This exercise asks you to solve the ODE u′ = −au with a < 0 such
that the ODE models exponential growth instead of exponential decay.
A central theme is to investigate numerical artifacts and non-physical
solution behavior.
a) Set a = −1 and run experiments with θ = 0, 0.5, 1 for various values
of ∆t to uncover numerical artifacts. Recall that the exact solution is
a monotone, growing function when a < 0. Oscillations or significantly
wrong growth are signs of wrong qualitative behavior.

From the experiments, select four values of ∆t that demonstrate the
kind of numerical solutions that are characteristic for this model.
b) Write up the amplification factor and plot it for θ = 0, 0.5, 1 together
with the exact one for a∆t < 0. Use the plot to explain the observations
made in the experiments.
Hint. Modify the decay_ampf_plot.py code (in the src/analysis di-
rectory).
Filename: exponential_growth.

Problem 2.3: Explore rounding errors in numerical calculus

a) Compute the absolute values of the errors in the numerical derivative
of e−t at t = 1

2 for three types of finite difference approximations: a

http://tinyurl.com/ofkw6kc/analysis/decay_ampf_plot.py

78 2 Analysis

forward difference, a backward difference, and a centered difference, for
∆t = 2−k, k = 0, 4, 8, 12, . . . , 60. When do rounding errors destroy the
accuracy?

b) Compute the absolute values of the errors in the numerical approxima-
tion of

∫ 4
0 e
−tdt using the Trapezoidal and the Midpoint integration meth-

ods. Make a table of the errors for n = 2k intervals, k = 1, 3, 5 = ldots, 21.
Is there any impact of rounding errors?

Hint. The Trapezoidal rule for
∫ b
a f(x)dx reads

∫ b

a
f(x)dx ≈ h(1

2f(a) + 1
2f(b) +

n−1∑
i=1

f(a+ ih)), h = b− a
n

.

The Midpoint rule is∫ b

a
f(x)dx ≈ h

n∑
i=1

f(a+ (i+ 1
2)h) .

Filename: rounding.

Generalizations 3

It is time to consider generalizations of the simple decay model u′ = −au
and also to look at additional numerical solution methods. We consider
first variable coefficients, u′ = a(t)u+ b(t), and later a completely general
scalar ODE u′ = f(u, t) and its generalization to a system of such general
ODEs. Among numerical methods, we treat implicit multi-step methods,
and several families of explicit methods: Leapfrog schemes, Runge-Kutta
methods, and Adams-Bashforth formulas.

3.1 Model extensions

This section looks at the generalizations to u′ = −a(t)u and u′ =
−a(t)u + b(t). We sketch the corresponding implementations of the θ-
rule for such variable-coefficient ODEs. Verification can no longer make
use of an exact solution of the numerical problem so we make use
of manufactured solutions, for deriving an exact solution of the ODE
problem, and then we can compute empirical convergence rates for the
method and see if these coincide with the expected rates from theory.
Finally, we see how our numerical methods can be applied to systems of
ODEs.

The example programs associated with this chapter are found in the
directory src/genz.

© 2016, Hans Petter Langtangen. Released under CC Attribution 4.0 license

http://tinyurl.com/ofkw6kc/genz

80 3 Generalizations

3.1.1 Generalization: including a variable coefficient

In the ODE for decay, u′ = −au, we now consider the case where a
depends on time:

u′(t) = −a(t)u(t), t ∈ (0, T], u(0) = I . (3.1)

A Forward Euler scheme consists of evaluating (3.1) at t = tn and
approximating the derivative with a forward difference [D+

t u]n:

un+1 − un

∆t
= −a(tn)un . (3.2)

The Backward Euler scheme becomes

un − un−1

∆t
= −a(tn)un . (3.3)

The Crank-Nicolson method builds on sampling the ODE at tn+ 1
2
. We

can evaluate a at tn+ 1
2
and use an average for u at times tn and tn+1:

un+1 − un

∆t
= −a(tn+ 1

2
)1
2(un + un+1) . (3.4)

Alternatively, we can use an average for the product au:

un+1 − un

∆t
= −1

2(a(tn)un + a(tn+1)un+1) . (3.5)

The θ-rule unifies the three mentioned schemes. One version is to have a
evaluated at the weighted time point (1− θ)tn + θtn+1,

un+1 − un

∆t
= −a((1− θ)tn + θtn+1)((1− θ)un + θun+1) . (3.6)

Another possibility is to apply a weighted average for the product au,

un+1 − un

∆t
= −(1− θ)a(tn)un − θa(tn+1)un+1 . (3.7)

With the finite difference operator notation the Forward Euler and
Backward Euler schemes can be summarized as

3.1 Model extensions 81

[D+
t u = −au]n, (3.8)

[D−t u = −au]n . (3.9)

The Crank-Nicolson and θ schemes depend on whether we evaluate a
at the sample point for the ODE or if we use an average. The various
versions are written as

[Dtu = −aut]n+ 1
2 , (3.10)

[Dtu = −aut]n+ 1
2 , (3.11)

[Dtu = −aut,θ]n+θ, (3.12)
[Dtu = −aut,θ]n+θ . (3.13)

3.1.2 Generalization: including a source term

A further extension of the model ODE is to include a source term b(t):

u′(t) = −a(t)u(t) + b(t), t ∈ (0, T], u(0) = I . (3.14)

The time point where we sample the ODE determines where b(t) is
evaluated. For the Crank-Nicolson scheme and the θ-rule we have a
choice of whether to evaluate a(t) and b(t) at the correct point or use an
average. The chosen strategy becomes particularly clear if we write up
the schemes in the operator notation:

[D+
t u = −au+ b]n, (3.15)

[D−t u = −au+ b]n, (3.16)
[Dtu = −aut + b]n+ 1

2 , (3.17)

[Dtu = −au+ b
t]n+ 1

2 , (3.18)
[Dtu = −aut,θ + b]n+θ, (3.19)

[Dtu = −au+ b
t,θ]n+θ . (3.20)

3.1.3 Implementation of the generalized model problem

Deriving the θ-rule formula. Writing out the θ-rule in (3.20), using
(1.44) and (1.45), we get

82 3 Generalizations

un+1 − un

∆t
= θ(−an+1un+1 + bn+1)) + (1− θ)(−anun + bn)), (3.21)

where an means evaluating a at t = tn and similar for an+1, bn, and bn+1.
We solve for un+1:

un+1 = ((1−∆t(1− θ)an)un +∆t(θbn+1 + (1− θ)bn))(1 +∆tθan+1)−1 .
(3.22)

Python code. Here is a suitable implementation of (3.21) where a(t)
and b(t) are given as Python functions:

def solver(I, a, b, T, dt, theta):
"""
Solve u’=-a(t)*u + b(t), u(0)=I,
for t in (0,T] with steps of dt.
a and b are Python functions of t.
"""
dt = float(dt) # avoid integer division
Nt = int(round(T/dt)) # no of time intervals
T = Nt*dt # adjust T to fit time step dt
u = zeros(Nt+1) # array of u[n] values
t = linspace(0, T, Nt+1) # time mesh

u[0] = I # assign initial condition
for n in range(0, Nt): # n=0,1,...,Nt-1

u[n+1] = ((1 - dt*(1-theta)*a(t[n]))*u[n] + \
dt*(theta*b(t[n+1]) + (1-theta)*b(t[n])))/\
(1 + dt*theta*a(t[n+1]))

return u, t

This function is found in the file decay_vc.py (vc stands for “variable
coefficients”).
Coding of variable coefficients. The solver function shown above
demands the arguments a and b to be Python functions of time t, say

def a(t):
return a_0 if t < tp else k*a_0

def b(t):
return 1

Here, a(t) has three parameters a0, tp, and k, which must be global
variables.

A better implementation, which avoids global variables, is to represent
a by a class where the parameters are attributes and where a special
method __call__ evaluates a(t):

class A:
def __init__(self, a0=1, k=2):

http://tinyurl.com/ofkw6kc/genz/decay_vc.py

3.1 Model extensions 83

self.a0, self.k = a0, k

def __call__(self, t):
return self.a0 if t < self.tp else self.k*self.a0

a = A(a0=2, k=1) # a behaves as a function a(t)

For quick tests it is cumbersome to write a complete function or a
class. The lambda function construction in Python is then convenient.
For example,

a = lambda t: a_0 if t < tp else k*a_0

is equivalent to the def a(t) definition above. In general,

f = lambda arg1, arg2, ...: expression

is equivalent to

def f(arg1, arg2, ...):
return expression

One can use lambda functions directly in calls. Say we want to solve
u′ = −u+ 1, u(0) = 2:

u, t = solver(2, lambda t: 1, lambda t: 1, T, dt, theta)

Whether to use a plain function, a class, or a lambda function de-
pends on the programmer’s taste. Lazy programmers prefer the lambda
construct, while very safe programmers go for the class solution.

3.1.4 Verifying a constant solution
An extremely useful partial verification method is to construct a test
problem with a very simple solution, usually u = const. Especially
the initial debugging of a program code can benefit greatly from such
tests, because 1) all relevant numerical methods will exactly reproduce a
constant solution, 2) many of the intermediate calculations are easy to
control by hand for a constant u, and 3) even a constant u can uncover
many bugs in an implementation.

The only constant solution for the problem u′ = −au is u = 0, but
too many bugs can escape from that trivial solution. It is much better to
search for a problem where u = C = const 6= 0. Then u′ = −a(t)u+ b(t)
is more appropriate: with u = C we can choose any a(t) and set b = a(t)C
and I = C. An appropriate test function is

def test_constant_solution():

84 3 Generalizations

"""
Test problem where u=u_const is the exact solution, to be
reproduced (to machine precision) by any relevant method.
"""
def u_exact(t):

return u_const

def a(t):
return 2.5*(1+t**3) # can be arbitrary

def b(t):
return a(t)*u_const

u_const = 2.15
theta = 0.4; I = u_const; dt = 4
Nt = 4 # enough with a few steps
u, t = solver(I=I, a=a, b=b, T=Nt*dt, dt=dt, theta=theta)
print u
u_e = u_exact(t)
difference = abs(u_e - u).max() # max deviation
tol = 1E-14
assert difference < tol

An interesting question is what type of bugs that will make the
computed un deviate from the exact solution C. Fortunately, the updating
formula and the initial condition must be absolutely correct for the test
to pass! Any attempt to make a wrong indexing in terms like a(t[n])
or any attempt to introduce an erroneous factor in the formula creates a
solution that is different from C.

3.1.5 Verification via manufactured solutions

Following the idea of the previous section, we can choose any formula as
the exact solution, insert the formula in the ODE problem and fit the
data a(t), b(t), and I to make the chosen formula fulfill the equation.
This powerful technique for generating exact solutions is very useful for
verification purposes and known as the method of manufactured solutions,
often abbreviated MMS.

One common choice of solution is a linear function in the independent
variable(s). The rationale behind such a simple variation is that almost
any relevant numerical solution method for differential equation problems
is able to reproduce a linear function exactly to machine precision (if
u is about unity in size; precision is lost if u takes on large values, see
Exercise 3.1). The linear solution also makes some stronger demands to
the numerical method and the implementation than the constant solution

3.1 Model extensions 85

used in Section 3.1.4, at least in more complicated applications. Still, the
constant solution is often ideal for initial debugging before proceeding
with a linear solution.

We choose a linear solution u(t) = ct+ d. From the initial condition it
follows that d = I. Inserting this u in the left-hand side of (3.14), i.e.,
the ODE, we get

c = −a(t)u+ b(t) .

Any function u = ct+ I is then a correct solution if we choose

b(t) = c+ a(t)(ct+ I) .

With this b(t) there are no restrictions on a(t) and c.
Let us prove that such a linear solution obeys the numerical schemes.

To this end, we must check that un = ca(tn)(ctn + I) fulfills the discrete
equations. For these calculations, and later calculations involving linear
solutions inserted in finite difference schemes, it is convenient to compute
the action of a difference operator on a linear function t:

[D+
t t]n = tn+1 − tn

∆t
= 1, (3.23)

[D−t t]n = tn − tn−1

∆t
= 1, (3.24)

[Dtt]n =
tn+ 1

2
− tn− 1

2

∆t
=

(n+ 1
2)∆t− (n− 1

2)∆t
∆t

= 1 . (3.25)

Clearly, all three finite difference approximations to the derivative are
exact for u(t) = t or its mesh function counterpart un = tn.

The difference equation for the Forward Euler scheme

[D+
t u = −au+ b]n,

with an = a(tn), bn = c+ a(tn)(ctn + I), and un = ctn + I then results in

c = −a(tn)(ctn + I) + c+ a(tn)(ctn + I) = c

which is always fulfilled. Similar calculations can be done for the Backward
Euler and Crank-Nicolson schemes, or the θ-rule for that matter. In all
cases, un = ctn + I is an exact solution of the discrete equations. That
is why we should expect that un − ue(tn) = 0 mathematically and
|un − ue(tn)| less than a small number about the machine precision for
n = 0, . . . , Nt.

86 3 Generalizations

The following function offers an implementation of this verification
test based on a linear exact solution:

def test_linear_solution():
"""
Test problem where u=c*t+I is the exact solution, to be
reproduced (to machine precision) by any relevant method.
"""
def u_exact(t):

return c*t + I

def a(t):
return t**0.5 # can be arbitrary

def b(t):
return c + a(t)*u_exact(t)

theta = 0.4; I = 0.1; dt = 0.1; c = -0.5
T = 4
Nt = int(T/dt) # no of steps
u, t = solver(I=I, a=a, b=b, T=Nt*dt, dt=dt, theta=theta)
u_e = u_exact(t)
difference = abs(u_e - u).max() # max deviation
print difference
tol = 1E-14 # depends on c!
assert difference < tol

Any error in the updating formula makes this test fail!
Choosing more complicated formulas as the exact solution, say cos(t),

will not make the numerical and exact solution coincide to machine
precision, because finite differencing of cos(t) does not exactly yield the
exact derivative − sin(t). In such cases, the verification procedure must be
based on measuring the convergence rates as exemplified in Section 3.1.6.
Convergence rates can be computed as long as one has an exact solution
of a problem that the solver can be tested on, but this can always be
obtained by the method of manufactured solutions.

3.1.6 Computing convergence rates

We expect that the error E in the numerical solution is reduced if the
mesh size ∆t is decreased. More specifically, many numerical methods
obey a power-law relation between E and ∆t:

E = C∆tr, (3.26)

where C and r are (usually unknown) constants independent of ∆t. The
formula (3.26) is viewed as an asymptotic model valid for sufficiently

3.1 Model extensions 87

small∆t. How small is normally hard to estimate without doing numerical
estimations of r.

The parameter r is known as the convergence rate. For example, if
the convergence rate is 2, halving ∆t reduces the error by a factor of 4.
Diminishing ∆t then has a greater impact on the error compared with
methods that have r = 1. For a given value of r, we refer to the method
as of r-th order. First- and second-order methods are most common in
scientific computing.

Estimating r. There are two alternative ways of estimating C and
r based on a set of m simulations with corresponding pairs (∆ti, Ei),
i = 0, . . . ,m− 1, and ∆ti < ∆ti−1 (i.e., decreasing cell size).

1. Take the logarithm of (3.26), lnE = r ln∆t+ lnC, and fit a straight
line to the data points (∆ti, Ei), i = 0, . . . ,m− 1.

2. Consider two consecutive experiments, (∆ti, Ei) and (∆ti−1, Ei−1).
Dividing the equation Ei−1 = C∆tri−1 by Ei = C∆tri and solving for
r yields

ri−1 = ln(Ei−1/Ei)
ln(∆ti−1/∆ti)

(3.27)

for i = 1, . . . ,m − 1. Note that we have introduced a subindex i − 1
on r in (3.27) because r estimated from a pair of experiments must be
expected to change with i.

The disadvantage of method 1 is that (3.26) might not be valid for the
coarsest meshes (largest ∆t values). Fitting a line to all the data points
is then misleading. Method 2 computes convergence rates for pairs of
experiments and allows us to see if the sequence ri converges to some
value as i→ m− 2. The final rm−2 can then be taken as the convergence
rate. If the coarsest meshes have a differing rate, the corresponding
time steps are probably too large for (3.26) to be valid. That is, those
time steps lie outside the asymptotic range of ∆t values where the error
behaves like (3.26).

Implementation. We can compute r0, r1, . . . , rm−2 from Ei and ∆ti by
the following function

def compute_rates(dt_values, E_values):
m = len(dt_values)
r = [log(E_values[i-1]/E_values[i])/

log(dt_values[i-1]/dt_values[i])
for i in range(1, m, 1)]

Round to two decimals
r = [round(r_, 2) for r_ in r]

88 3 Generalizations

return r

Experiments with a series of time step values and θ = 0, 1, 0.5 can be
set up as follows, here embedded in a real test function:

def test_convergence_rates():
Create a manufactured solution
define u_exact(t), a(t), b(t)

dt_values = [0.1*2**(-i) for i in range(7)]
I = u_exact(0)

for theta in (0, 1, 0.5):
E_values = []
for dt in dt_values:

u, t = solver(I=I, a=a, b=b, T=6, dt=dt, theta=theta)
u_e = u_exact(t)
e = u_e - u
E = sqrt(dt*sum(e**2))
E_values.append(E)

r = compute_rates(dt_values, E_values)
print ’theta=%g, r: %s’ % (theta, r)
expected_rate = 2 if theta == 0.5 else 1
tol = 0.1
diff = abs(expected_rate - r[-1])
assert diff < tol

The manufactured solution is conveniently computed by sympy. Let
us choose ue(t) = sin(t)e−2t and a(t) = t2. This implies that we must fit
b as b(t) = u′(t) − a(t). We first compute with sympy expressions and
then we convert the exact solution, a, and b to Python functions that we
can use in the subsequent numerical computing:

Create a manufactured solution with sympy
import sympy as sym
t = sym.symbols(’t’)
u_e = sym.sin(t)*sym.exp(-2*t)
a = t**2
b = sym.diff(u_e, t) + a*u_exact

Turn sympy expressions into Python function
u_exact = sym.lambdify([t], u_e, modules=’numpy’)
a = sym.lambdify([t], a, modules=’numpy’)
b = sym.lambdify([t], b, modules=’numpy’)

The complete code is found in the function test_convergence_rates
in the file decay_vc.py.

Running this code gives the output
Terminal

theta=0, r: [1.06, 1.03, 1.01, 1.01, 1.0, 1.0]
theta=1, r: [0.94, 0.97, 0.99, 0.99, 1.0, 1.0]
theta=0.5, r: [2.0, 2.0, 2.0, 2.0, 2.0, 2.0]

http://tinyurl.com/ofkw6kc/genz/decay_vc.py

3.1 Model extensions 89

We clearly see how the convergence rates approach the expected values.

Why convergence rates are important

The strong practical application of computing convergence rates is
for verification: wrong convergence rates point to errors in the code,
and correct convergence rates bring strong support for a correct
implementation. Experience shows that bugs in the code easily
destroy the expected convergence rate.

3.1.7 Extension to systems of ODEs

Many ODE models involve more than one unknown function and more
than one equation. Here is an example of two unknown functions u(t)
and v(t):

u′ = au+ bv, (3.28)
v′ = cu+ dv, (3.29)

for constants a, b, c, d. Applying the Forward Euler method to each
equation results in a simple updating formula:

un+1 = un +∆t(aun + bvn), (3.30)
vn+1 = un +∆t(cun + dvn) . (3.31)

On the other hand, the Crank-Nicolson or Backward Euler schemes result
in a 2×2 linear system for the new unknowns. The latter scheme becomes

un+1 = un +∆t(aun+1 + bvn+1), (3.32)
vn+1 = vn +∆t(cun+1 + dvn+1) . (3.33)

Collecting un+1 as well as vn+1 on the left-hand side results in

90 3 Generalizations

(1−∆ta)un+1 + bvn+1 = un, (3.34)
cun+1 + (1−∆td)vn+1 = vn, (3.35)

which is a system of two coupled, linear, algebraic equations in two
unknowns. These equations can be solved by hand (using standard
techniques for two algebraic equations with two unknowns x and y),
resulting in explicit formulas for un+1 and vn+1 that can be directly
implemented. For systems of ODEs with many equations and unknowns,
one will express the coupled equations at each time level in matrix form
and call software for numerical solution of linear systems of equations.

3.2 General first-order ODEs

We now turn the attention to general, nonlinear ODEs and systems
of such ODEs. Our focus is on numerical methods that can be readily
reused for time-discretization of PDEs, and diffusion PDEs in particular.
The methods are just briefly listed, and we refer to the rich literature for
more detailed descriptions and analysis - the books [12, 2, 3, 4] are all
excellent resources on numerical methods for ODEs. We also demonstrate
the Odespy Python interface to a range of different software for general
first-order ODE systems.

3.2.1 Generic form of first-order ODEs

ODEs are commonly written in the generic form

u′ = f(u, t), u(0) = I, (3.36)

where f(u, t) is some prescribed function. As an example, our most
general exponential decay model (3.14) has f(u, t) = −a(t)u(t) + b(t).

The unknown u in (3.36) may either be a scalar function of time t,
or a vector valued function of t in case of a system of ODEs with m
unknown components:

u(t) = (u(0)(t), u(1)(t), . . . , u(m−1)(t)) .

In that case, the right-hand side is a vector-valued function with m
components,

3.2 General first-order ODEs 91

f(u, t) = (f (0)(u(0)(t), . . . , u(m−1)(t)),
f (1)(u(0)(t), . . . , u(m−1)(t)),
...
f (m−1)(u(0)(t), . . . , u(m−1)(t))) .

Actually, any system of ODEs can be written in the form (3.36), but
higher-order ODEs then need auxiliary unknown functions to enable
conversion to a first-order system.

Next we list some well-known methods for u′ = f(u, t), valid both for
a single ODE (scalar u) and systems of ODEs (vector u).

3.2.2 The θ-rule

The θ-rule scheme applied to u′ = f(u, t) becomes

un+1 − un

∆t
= θf(un+1, tn+1) + (1− θ)f(un, tn) . (3.37)

Bringing the unknown un+1 to the left-hand side and the known terms
on the right-hand side gives

un+1 −∆tθf(un+1, tn+1) = un +∆t(1− θ)f(un, tn) . (3.38)

For a general f (not linear in u), this equation is nonlinear in the unknown
un+1 unless θ = 0. For a scalar ODE (m = 1), we have to solve a single
nonlinear algebraic equation for un+1, while for a system of ODEs, we
get a system of coupled, nonlinear algebraic equations. Newton’s method
is a popular solution approach in both cases. Note that with the Forward
Euler scheme (θ = 0) we do not have to deal with nonlinear equations,
because in that case we have an explicit updating formula for un+1. This
is known as an explicit scheme. With θ 6= 1 we have to solve (systems of)
algebraic equations, and the scheme is said to be implicit.

3.2.3 An implicit 2-step backward scheme

The implicit backward method with 2 steps applies a three-level backward
difference as approximation to u′(t),

92 3 Generalizations

u′(tn+1) ≈ 3un+1 − 4un + un−1

2∆t ,

which is an approximation of order ∆t2 to the first derivative. The
resulting scheme for u′ = f(u, t) reads

un+1 = 4
3u

n − 1
3u

n−1 + 2
3∆tf(un+1, tn+1) . (3.39)

Higher-order versions of the scheme (3.39) can be constructed by in-
cluding more time levels. These schemes are known as the Backward
Differentiation Formulas (BDF), and the particular version (3.39) is often
referred to as BDF2.

Note that the scheme (3.39) is implicit and requires solution of nonlin-
ear equations when f is nonlinear in u. The standard 1st-order Backward
Euler method or the Crank-Nicolson scheme can be used for the first
step.

3.2.4 Leapfrog schemes

The ordinary Leapfrog scheme. The derivative of u at some point tn
can be approximated by a central difference over two time steps,

u′(tn) ≈ un+1 − un−1

2∆t = [D2tu]n (3.40)

which is an approximation of second order in ∆t. The scheme can then
be written as

[D2tu = f(u, t)]n,

in operator notation. Solving for un+1 gives

un+1 = un−1 + 2∆tf(un, tn) . (3.41)

Observe that (3.41) is an explicit scheme, and that a nonlinear f (in u)
is trivial to handle since it only involves the known un value. Some other
scheme must be used as starter to compute u1, preferably the Forward
Euler scheme since it is also explicit.

The filtered Leapfrog scheme. Unfortunately, the Leapfrog scheme
(3.41) will develop growing oscillations with time (see Problem 3.6). A
remedy for such undesired oscillations is to introduce a filtering technique.

3.2 General first-order ODEs 93

First, a standard Leapfrog step is taken, according to (3.41), and then
the previous un value is adjusted according to

un ← un + γ(un−1 − 2un + un+1) . (3.42)

The γ-terms will effectively damp oscillations in the solution, especially
those with short wavelength (like point-to-point oscillations). A common
choice of γ is 0.6 (a value used in the famous NCAR Climate Model).

3.2.5 The 2nd-order Runge-Kutta method
The two-step scheme

u∗ = un +∆tf(un, tn), (3.43)

un+1 = un +∆t
1
2 (f(un, tn) + f(u∗, tn+1)) , (3.44)

essentially applies a Crank-Nicolson method (3.44) to the ODE, but
replaces the term f(un+1, tn+1) by a prediction f(u∗, tn+1) based on a
Forward Euler step (3.43). The scheme (3.43)-(3.44) is known as Huen’s
method, but is also a 2nd-order Runge-Kutta method. The scheme is
explicit, and the error is expected to behave as ∆t2.

3.2.6 A 2nd-order Taylor-series method
One way to compute un+1 given un is to use a Taylor polynomial. We
may write up a polynomial of 2nd degree:

un+1 = un + u′(tn)∆t+ 1
2u
′′(tn)∆t2 .

From the equation u′ = f(u, t) it follows that the derivatives of u can be
expressed in terms of f and its derivatives:

u′(tn) = f(un, tn),

u′′(tn) = ∂f

∂u
(un, tn)u′(tn) + ∂f

∂t

= f(un, tn)∂f
∂u

(un, tn) + ∂f

∂t
,

resulting in the scheme

94 3 Generalizations

un+1 = un + f(un, tn)∆t+ 1
2

(
f(un, tn)∂f

∂u
(un, tn) + ∂f

∂t

)
∆t2 . (3.45)

More terms in the series could be included in the Taylor polynomial to
obtain methods of higher order than 2.

3.2.7 The 2nd- and 3rd-order Adams-Bashforth schemes

The following method is known as the 2nd-order Adams-Bashforth
scheme:

un+1 = un + 1
2∆t

(
3f(un, tn)− f(un−1, tn−1)

)
. (3.46)

The scheme is explicit and requires another one-step scheme to compute
u1 (the Forward Euler scheme or Heun’s method, for instance). As the
name implies, the error behaves like ∆t2.

Another explicit scheme, involving four time levels, is the 3rd-order
Adams-Bashforth scheme

un+1 = un + 1
12
(
23f(un, tn)− 16f(un−1, tn−1) + 5f(un−2, tn−2)

)
.

(3.47)
The numerical error is of order ∆t3, and the scheme needs some method
for computing u1 and u2.

More general, higher-order Adams-Bashforth schemes (also called
explicit Adams methods) compute un+1 as a linear combination of f at
k + 1 previous time steps:

un+1 = un +
k∑
j=0

βjf(un−j , tn−j),

where βj are known coefficients.

3.2.8 The 4th-order Runge-Kutta method

The perhaps most widely used method to solve ODEs is the 4th-order
Runge-Kutta method, often called RK4. Its derivation is a nice illustration
of common numerical approximation strategies, so let us go through the
steps in detail to learn about algorithmic development.

3.2 General first-order ODEs 95

The starting point is to integrate the ODE u′ = f(u, t) from tn to
tn+1:

u(tn+1)− u(tn) =
tn+1∫
tn

f(u(t), t)dt .

We want to compute u(tn+1) and regard u(tn) as known. The task is to
find good approximations for the integral, since the integrand involves
the unknown u between tn and tn+1.

The integral can be approximated by the famous Simpson’s rule:

tn+1∫
tn

f(u(t), t)dt ≈ ∆t

6
(
fn + 4fn+ 1

2 + fn+1
)
.

The problem now is that we do not know fn+ 1
2 = f(un+ 1

2 , tn+ 1
2
) and

fn+1 = (un+1, tn+1) as we know only un and hence fn. The idea is to use
various approximations for fn+ 1

2 and fn+1 based on well-known schemes
for the ODE in the intervals [tn, tn+ 1

2
] and [tn, tn+1]. We split the integral

approximation into four terms:

tn+1∫
tn

f(u(t), t)dt ≈ ∆t

6
(
fn + 2f̂n+ 1

2 + 2f̃n+ 1
2 + f̄n+1

)
,

where f̂n+ 1
2 , f̃n+ 1

2 , and f̄n+1 are approximations to fn+ 1
2 and fn+1,

respectively, that can be based on already computed quantities. For f̂n+ 1
2

we can apply an approximation to un+ 1
2 using the Forward Euler method

with step 1
2∆t:

f̂n+ 1
2 = f(un + 1

2∆tf
n, tn+ 1

2
) (3.48)

Since this gives us a prediction of fn+ 1
2 , we can for f̃n+ 1

2 try a Backward
Euler method to approximate un+ 1

2 :

f̃n+ 1
2 = f(un + 1

2∆tf̂
n+ 1

2 , tn+ 1
2
) . (3.49)

With f̃n+ 1
2 as a hopefully good approximation to fn+ 1

2 , we can for the
final term f̄n+1 use a Crank-Nicolson method on [tn, tn+1] to approximate
un+1:

http://en.wikipedia.org/wiki/Simpson's_rule

96 3 Generalizations

f̄n+1 = f(un +∆tf̂n+ 1
2 , tn+1) . (3.50)

We have now used the Forward and Backward Euler methods as well as
the Crank-Nicolson method in the context of Simpson’s rule. The hope
is that the combination of these methods yields an overall time-stepping
scheme from tn to tn+1 that is much more accurate than the O(∆t) and
O(∆t2) of the individual steps. This is indeed true: the overall accuracy
is O(∆t4)!

To summarize, the 4th-order Runge-Kutta method becomes

un+1 = un + ∆t

6
(
fn + 2f̂n+ 1

2 + 2f̃n+ 1
2 + f̄n+1

)
, (3.51)

where the quantities on the right-hand side are computed from (3.48)-
(3.50). Note that the scheme is fully explicit so there is never any need
to solve linear or nonlinear algebraic equations. However, the stability is
conditional and depends on f . There is a whole range of implicit Runge-
Kutta methods that are unconditionally stable, but require solution of
algebraic equations involving f at each time step.

The simplest way to explore more sophisticated methods for ODEs is
to apply one of the many high-quality software packages that exist, as
the next section explains.

3.2.9 The Odespy software

A wide range of methods and software exist for solving (3.36). Many of
the methods are accessible through a unified Python interface offered by
the Odespy [10] package. Odespy features simple Python implementations
of the most fundamental schemes as well as Python interfaces to several
famous packages for solving ODEs: ODEPACK, Vode, rkc.f, rkf45.f, as
well as the ODE solvers in SciPy, SymPy, and odelab.

The code below illustrates the usage of Odespy the solving u′ = −au,
u(0) = I, t ∈ (0, T], by the famous 4th-order Runge-Kutta method, using
∆t = 1 and Nt = 6 steps:

def f(u, t):
return -a*u

import odespy
import numpy as np

I = 1; a = 0.5; Nt = 6; dt = 1
solver = odespy.RK4(f)

https://github.com/hplgit/odespy
https://computation.llnl.gov/casc/odepack/odepack_home.html
https://computation.llnl.gov/casc/odepack/odepack_home.html
http://www.netlib.org/ode/rkc.f
http://www.netlib.org/ode/rkf45.f
http://docs.scipy.org/doc/scipy/reference/generated/scipy.integrate.ode.html
http://docs.sympy.org/dev/modules/mpmath/calculus/odes.html
http://olivierverdier.github.com/odelab/

3.2 General first-order ODEs 97

solver.set_initial_condition(I)
t_mesh = np.linspace(0, Nt*dt, Nt+1)
u, t = solver.solve(t_mesh)

The previously listed methods for ODEs are all accessible in Odespy:

• the θ-rule: ThetaRule
• special cases of the θ-rule: ForwardEuler, BackwardEuler,

CrankNicolson
• the 2nd- and 4th-order Runge-Kutta methods: RK2 and RK4
• The BDF methods and the Adam-Bashforth methods: Vode, Lsode,

Lsoda, lsoda_scipy
• The Leapfrog schemes: Leapfrog and LeapfrogFiltered

3.2.10 Example: Runge-Kutta methods

Since all solvers have the same interface in Odespy, except for a potentially
different set of parameters in the solvers’ constructors, one can easily
make a list of solver objects and run a loop for comparing a lot of solvers.
The code below, found in complete form in decay_odespy.py, compares
the famous Runge-Kutta methods of orders 2, 3, and 4 with the exact
solution of the decay equation u′ = −au. Since we have quite long time
steps, we have included the only relevant θ-rule for large time steps, the
Backward Euler scheme (θ = 1), as well. Figure 3.1 shows the results.

import numpy as np
import matplotlib.pyplot as plt
import sys

def f(u, t):
return -a*u

I = 1; a = 2; T = 6
dt = float(sys.argv[1]) if len(sys.argv) >= 2 else 0.75
Nt = int(round(T/dt))
t = np.linspace(0, Nt*dt, Nt+1)

solvers = [odespy.RK2(f),
odespy.RK3(f),
odespy.RK4(f),]

BackwardEuler must use Newton solver to converge
(Picard is default and leads to divergence)
solvers.append(

odespy.BackwardEuler(f, nonlinear_solver=’Newton’))
Or tell BackwardEuler that it is a linear problem

http://tinyurl.com/ofkw6kc/genz/decay_odespy.py

98 3 Generalizations

solvers[-1] = odespy.BackwardEuler(f, f_is_linear=True,
jac=lambda u, t: -a)]

legends = []
for solver in solvers:

solver.set_initial_condition(I)
u, t = solver.solve(t)

plt.plot(t, u)
plt.hold(’on’)
legends.append(solver.__class__.__name__)

Compare with exact solution plotted on a very fine mesh
t_fine = np.linspace(0, T, 10001)
u_e = I*np.exp(-a*t_fine)
plt.plot(t_fine, u_e, ’-’) # avoid markers by specifying line type
legends.append(’exact’)

plt.legend(legends)
plt.title(’Time step: %g’ % dt)
plt.show()

With the odespy.BackwardEuler method we must either tell that the
problem is linear and provide the Jacobian of f(u, t), i.e., ∂f/∂u, as
the jac argument, or we have to assume that f is nonlinear, but then
specify Newton’s method as solver for the nonlinear equations (since the
equations are linear, Newton’s method will converge in one iteration).
By default, odespy.BackwardEuler assumes a nonlinear problem to be
solved by Picard iteration, but that leads to divergence in the present
problem.

Visualization tip

We use Matplotlib for plotting here, but one could alternatively
import scitools.std as plt instead. Plain use of Matplotlib as
done here results in curves with different colors, which may be
hard to distinguish on black-and-white paper. Using scitools.std,
curves are automatically given colors and markers, thus making
curves easy to distinguish on screen with colors and on black-and-
white paper. The automatic adding of markers is normally a bad
idea for a very fine mesh since all the markers get cluttered, but
scitools.std limits the number of markers in such cases. For the
exact solution we use a very fine mesh, but in the code above we
specify the line type as a solid line (-), which means no markers
and just a color to be automatically determined by the backend
used for plotting (Matplotlib by default, but scitools.std gives

3.2 General first-order ODEs 99

the opportunity to use other backends to produce the plot, e.g.,
Gnuplot or Grace).

Also note the that the legends are based on the class names of
the solvers, and in Python the name of the class type (as a string)
of an object obj is obtained by obj.__class__.__name__.

Fig. 3.1 Behavior of different schemes for the decay equation.

The runs in Figure 3.1 and other experiments reveal that the 2nd-order
Runge-Kutta method (RK2) is unstable for ∆t > 1 and decays slower than
the Backward Euler scheme for large and moderate ∆t (see Exercise 3.5
for an analysis). However, for fine ∆t = 0.25 the 2nd-order Runge-Kutta
method approaches the exact solution faster than the Backward Euler
scheme. That is, the latter scheme does a better job for larger ∆t, while
the higher order scheme is superior for smaller ∆t. This is a typical trend
also for most schemes for ordinary and partial differential equations.

100 3 Generalizations

The 3rd-order Runge-Kutta method (RK3) also has artifacts in the
form of oscillatory behavior for the larger ∆t values, much like that of
the Crank-Nicolson scheme. For finer ∆t, the 3rd-order Runge-Kutta
method converges quickly to the exact solution.

The 4th-order Runge-Kutta method (RK4) is slightly inferior to the
Backward Euler scheme on the coarsest mesh, but is then clearly superior
to all the other schemes. It is definitely the method of choice for all the
tested schemes.

Remark about using the θ-rule in Odespy. The Odespy package as-
sumes that the ODE is written as u′ = f(u, t) with an f that is possibly
nonlinear in u. The θ-rule for u′ = f(u, t) leads to

un+1 = un +∆t
(
θf(un+1, tn+1) + (1− θ)f(un, tn)

)
,

which is a nonlinear equation in un+1. Odespy’s implementation of the θ-
rule (ThetaRule) and the specialized Backward Euler (BackwardEuler)
and Crank-Nicolson (CrankNicolson) schemes must invoke iterative
methods for solving the nonlinear equation in un+1. This is done even
when f is linear in u, as in the model problem u′ = −au, where we
can easily solve for un+1 by hand. Therefore, we need to specify use of
Newton’s method to solve the equations. (Odespy allows other methods
than Newton’s to be used, for instance Picard iteration, but that method
is not suitable. The reason is that it applies the Forward Euler scheme
to generate a start value for the iterations. Forward Euler may give very
wrong solutions for large ∆t values. Newton’s method, on the other hand,
is insensitive to the start value in linear problems.)

3.2.11 Example: Adaptive Runge-Kutta methods

Odespy also offers solution methods that can adapt the size of ∆t with
time to match a desired accuracy in the solution. Intuitively, small time
steps will be chosen in areas where the solution is changing rapidly, while
larger time steps can be used where the solution is slowly varying. Some
kind of error estimator is used to adjust the next time step at each time
level.

A very popular adaptive method for solving ODEs is the Dormand-
Prince Runge-Kutta method of order 4 and 5. The 5th-order method
is used as a reference solution and the difference between the 4th- and
5th-order methods is used as an indicator of the error in the numerical

3.2 General first-order ODEs 101

solution. The Dormand-Prince method is the default choice in MATLAB’s
widely used ode45 routine.

We can easily set up Odespy to use the Dormand-Prince method and
see how it selects the optimal time steps. To this end, we request only
one time step from t = 0 to t = T and ask the method to compute the
necessary non-uniform time mesh to meet a certain error tolerance. The
code goes like

import odespy
import numpy as np
import decay_mod
import sys
#import matplotlib.pyplot as plt
import scitools.std as plt

def f(u, t):
return -a*u

def u_exact(t):
return I*np.exp(-a*t)

I = 1; a = 2; T = 5
tol = float(sys.argv[1])
solver = odespy.DormandPrince(f, atol=tol, rtol=0.1*tol)

Nt = 1 # just one step - let the scheme find its intermediate points
t_mesh = np.linspace(0, T, Nt+1)
t_fine = np.linspace(0, T, 10001)

solver.set_initial_condition(I)
u, t = solver.solve(t_mesh)

u and t will only consist of [I, u^Nt] and [0,T]
solver.u_all and solver.t_all contains all computed points
plt.plot(solver.t_all, solver.u_all, ’ko’)
plt.hold(’on’)
plt.plot(t_fine, u_exact(t_fine), ’b-’)
plt.legend([’tol=%.0E’ % tol, ’exact’])
plt.savefig(’tmp_odespy_adaptive.png’)
plt.show()

Running four cases with tolerances 10−1, 10−3, 10−5, and 10−7, gives
the results in Figure 3.2. Intuitively, one would expect denser points
in the beginning of the decay and larger time steps when the solution
flattens out.

102 3 Generalizations

Fig. 3.2 Choice of adaptive time mesh by the Dormand-Prince method for different
tolerances.

3.3 Exercises

Exercise 3.1: Experiment with precision in tests and the size
of u

It is claimed in Section 3.1.5 that most numerical methods will reproduce
a linear exact solution to machine precision. Test this assertion using
the test function test_linear_solution in the decay_vc.py program.
Vary the parameter c from very small, via c=1 to many larger values,
and print out the maximum difference between the numerical solution
and the exact solution. What is the relevant value of the tolerance in the
float comparison in each case?
Filename: test_precision.

http://tinyurl.com/ofkw6kc/genz/decay_vc.py

3.3 Exercises 103

Exercise 3.2: Implement the 2-step backward scheme
Implement the 2-step backward method (3.39) for the model u′(t) =
−a(t)u(t) + b(t), u(0) = I. Allow the first step to be computed by either
the Backward Euler scheme or the Crank-Nicolson scheme. Verify the
implementation by choosing a(t) and b(t) such that the exact solution is
linear in t (see Section 3.1.5). Show mathematically that a linear solution
is indeed a solution of the discrete equations.

Compute convergence rates (see Section 3.1.6) in a test case using
a = const and b = 0, where we easily have an exact solution, and
determine if the choice of a first-order scheme (Backward Euler) for the
first step has any impact on the overall accuracy of this scheme. The
expected error goes like O(∆t2). Filename: decay_backward2step.

Exercise 3.3: Implement the 2nd-order Adams-Bashforth
scheme
Implement the 2nd-order Adams-Bashforth method (3.46) for the decay
problem u′ = −a(t)u + b(t), u(0) = I, t ∈ (0, T]. Use the Forward
Euler method for the first step such that the overall scheme is explicit.
Verify the implementation using an exact solution that is linear in time.
Analyze the scheme by searching for solutions un = An when a = const
and b = 0. Compare this second-order scheme to the Crank-Nicolson
scheme. Filename: decay_AdamsBashforth2.

Exercise 3.4: Implement the 3rd-order Adams-Bashforth
scheme
Implement the 3rd-order Adams-Bashforth method (3.47) for the decay
problem u′ = −a(t)u + b(t), u(0) = I, t ∈ (0, T]. Since the scheme is
explicit, allow it to be started by two steps with the Forward Euler
method. Investigate experimentally the case where b = 0 and a is a
constant: Can we have oscillatory solutions for large ∆t? Filename:
decay_AdamsBashforth3.

Exercise 3.5: Analyze explicit 2nd-order methods
Show that the schemes (3.44) and (3.45) are identical in the case f(u, t) =
−a, where a > 0 is a constant. Assume that the numerical solution reads

104 3 Generalizations

un = An for some unknown amplification factor A to be determined.
Find A and derive stability criteria. Can the scheme produce oscillatory
solutions of u′ = −au? Plot the numerical and exact amplification factor.
Filename: decay_RK2_Taylor2.

Project 3.6: Implement and investigate the Leapfrog scheme

A Leapfrog scheme for the ODE u′(t) = −a(t)u(t) + b(t) is defined by

[D2tu = −au+ b]n . (3.52)

A separate method is needed to compute u1. The Forward Euler scheme
is a possible candidate.
a) Implement the Leapfrog scheme for the model equation. Plot the
solution in the case a = 1, b = 0, I = 1, ∆t = 0.01, t ∈ [0, 4]. Compare
with the exact solution ue(t) = e−t.
b) Show mathematically that a linear solution in t fulfills the Forward
Euler scheme for the first step and the Leapfrog scheme for the subsequent
steps. Use this linear solution to verify the implementation, and automate
the verification through a test function.
Hint. It can be wise to automate the calculations such that it is easy
to redo the calculations for other types of solutions. Here is a possible
sympy function that takes a symbolic expression u (implemented as a
Python function of t), fits the b term, and checks if u fulfills the discrete
equations:

import sympy as sym

def analyze(u):
t, dt, a = sym.symbols(’t dt a’)

print ’Analyzing u_e(t)=%s’ % u(t)
print ’u(0)=%s’ % u(t).subs(t, 0)

Fit source term to the given u(t)
b = sym.diff(u(t), t) + a*u(t)
b = sym.simplify(b)
print ’Source term b:’, b

Residual in discrete equations; Forward Euler step
R_step1 = (u(t+dt) - u(t))/dt + a*u(t) - b
R_step1 = sym.simplify(R_step1)
print ’Residual Forward Euler step:’, R_step1

3.3 Exercises 105

Residual in discrete equations; Leapfrog steps
R = (u(t+dt) - u(t-dt))/(2*dt) + a*u(t) - b
R = sym.simplify(R)
print ’Residual Leapfrog steps:’, R

def u_e(t):
return c*t + I

analyze(u_e)
or short form: analyze(lambda t: c*t + I)

c) Show that a second-order polynomial in t cannot be a solution of the
discrete equations. However, if a Crank-Nicolson scheme is used for the
first step, a second-order polynomial solves the equations exactly.
d) Create a manufactured solution u(t) = sin(t) for the ODE u′ =
−au+b. Compute the convergence rate of the Leapfrog scheme using this
manufactured solution. The expected convergence rate of the Leapfrog
scheme is O(∆t2). Does the use of a 1st-order method for the first step
impact the convergence rate?
e) Set up a set of experiments to demonstrate that the Leapfrog scheme
(3.52) is associated with numerical artifacts (instabilities). Document the
main results from this investigation.
f) Analyze and explain the instabilities of the Leapfrog scheme (3.52):

1. Choose a = const and b = 0. Assume that an exact solution of the
discrete equations has the form un = An, where A is an amplification
factor to be determined. Derive an equation for A by inserting un = An

in the Leapfrog scheme.
2. Compute A either by hand and/or with the aid of sympy. The polyno-

mial for A has two roots, A1 and A2. Let un be a linear combination
un = C1A

n
1 + C2A

n
2 .

3. Show that one of the roots is the reason for instability.
4. Compare A with the exact expression, using a Taylor series approxi-

mation.
5. How can C1 and C2 be determined?

g) Since the original Leapfrog scheme is unconditionally unstable as
time grows, it demands some stabilization. This can be done by filtering,
where we first find un+1 from the original Leapfrog scheme and then
replace un by un + γ(un−1 − 2un + un+1), where γ can be taken as 0.6.
Implement the filtered Leapfrog scheme and check that it can handle
tests where the original Leapfrog scheme is unstable.
Filename: decay_leapfrog.

106 3 Generalizations

Problem 3.7: Make a unified implementation of many
schemes

Consider the linear ODE problem u′(t) = −a(t)u(t) + b(t), u(0) = I.
Explicit schemes for this problem can be written in the general form

un+1 =
m∑
j=0

cju
n−j , (3.53)

for some choice of c0, . . . , cm. Find expressions for the cj coefficients in
case of the θ-rule, the three-level backward scheme, the Leapfrog scheme,
the 2nd-order Runge-Kutta method, and the 3rd-order Adams-Bashforth
scheme.

Make a class ExpDecay that implements the general updating formula
(3.53). The formula cannot be applied for n < m, and for those n values,
other schemes must be used. Assume for simplicity that we just repeat
Crank-Nicolson steps until (3.53) can be used. Use a subclass to specify
the list c0, . . . , cm for a particular method, and implement subclasses for
all the mentioned schemes. Verify the implementation by testing with
a linear solution, which should be exactly reproduced by all methods.
Filename: decay_schemes_unified.

Models 4

This chapter presents many mathematical models that all end up with
ODEs of the type u′ = −au+ b. The applications are taken from biology,
finance, and physics, and cover population growth or decay, interacting
predator-prey populations, compound interest and inflation, radioactive
decay, chemical and biochemical reaction, spreading of diseases, cooling
of objects, compaction of geological media, pressure variations in the
atmosphere, viscoelastic response in materials, and air resistance on
falling or rising bodies.

Before we turn to the applications, however, we take a brief look at
the technique of scaling, which is so useful in many applications.

4.1 Scaling

Real applications of a model u′ = −au + b will often involve a lot of
parameters in the expressions for a and b. It can be quite a challenge
to find relevant values of all parameters. In simple problems, however,
it turns out that it is not always necessary to estimate all parameters
because we can lump them into one or a few dimensionless numbers
by using a very attractive technique called scaling. It simply means
to stretch the u and t axis in the present problem - and suddenly all
parameters in the problem are lumped into one parameter if b 6= 0 and
no parameter when b = 0!

© 2016, Hans Petter Langtangen. Released under CC Attribution 4.0 license

108 4 Models

4.1.1 Dimensionless variables

Scaling means that we introduce a new function ū(t̄), with

ū = u− um
uc

, t̄ = t

tc
,

where um is a characteristic value of u, uc is a characteristic size of the
range of u values, and tc is a characteristic size of the range of t where u
shows significant variation. Choosing um, uc, and tc is not always easy
and is often an art in complicated problems. We just state one choice
first:

uc = I, um = b/a, tc = 1/a .

Inserting u = um+ucū and t = tct̄ in the problem u′ = −au+b, assuming
a and b are constants, results (after some algebra) in the scaled problem

dū

dt̄
= −ū, ū(0) = 1− β,

where

β = b

Ia
.

4.1.2 Dimensionless numbers

The parameter β is a dimensionless number. From the equation we see
that b must have the same unit as the term au. The initial condition I
must have the same unit as u, so Ia has the same unit as b, making the
fraction b/(Ia) dimensionless.

An important observation is that ū depends on t̄ and β. That is, only
the special combination of b/(Ia) matters, not what the individual values
of b, a, and I are. The original unscaled function u depends on t, b, a,
and I.

A second observation is striking: if b = 0, the scaled problem is
independent of a and I! In practice this means that we can perform a
single numerical simulation of the scaled problem and recover the solution
of any problem for a given a and I by stretching the axis in the plot:
u = Iū and t = t̄/a. For b 6= 0, we simulate the scaled problem for a few
β values and recover the physical solution u by translating and stretching
the u axis and stretching the t axis.

4.2 Evolution of a population 109

In general, scaling combines the parameters in a problem to a set of
dimensionless parameters. The number of dimensionless parameters is
usually much smaller than the number of original parameters. Section 4.11
presents an example where 11 parameters are reduced to one!

4.1.3 A scaling for vanishing initial condition

The scaling breaks down if I = 0. In that case we may choose um = 0,
uc = b/a, and tc = 1/b, resulting in a slightly different scaled problem:

dū

dt̄
= 1− ū, ū(0) = 0 .

As with b = 0, the case I = 0 has a scaled problem with no physical
parameters!

It is common to drop the bars after scaling and write the scaled
problem as u′ = −u, u(0) = 1 − β, or u′ = 1 − u, u(0) = 0. Any
implementation of the problem u′ = −au + b, u(0) = I, can be reused
for the scaled problem by setting a = 1, b = 0, and I = 1 − β in the
code, if I 6= 0, or one sets a = 1, b = 1, and I = 0 when the physical
I is zero. Falling bodies in fluids, as described in Section 4.11, involves
u′ = −au + b with seven physical parameters. All these vanish in the
scaled version of the problem if we start the motion from rest!

Many more details about scaling are presented in the author’s book
Scaling of Differential Equations [9].

4.2 Evolution of a population

4.2.1 Exponential growth

Let N be the number of individuals in a population occupying some
spatial domain. Despite N being an integer in this problem, we shall
compute with N as a real number and view N(t) as a continuous function
of time. The basic model assumption is that in a time interval ∆t the
number of newcomers to the populations (newborns) is proportional
to N , with proportionality constant b̄. The amount of newcomers will
increase the population and result in

N(t+∆t) = N(t) + b̄N(t) .

110 4 Models

It is obvious that a long time interval ∆t will result in more newcomers
and hence a larger b̄. Therefore, we introduce b = b̄/∆t: the number of
newcomers per unit time and per individual. We must then multiply b
by the length of the time interval considered and by the population size
to get the total number of new individuals, b∆tN .

If the number of removals from the population (deaths) is also propor-
tional to N , with proportionality constant d∆t, the population evolves
according to

N(t+∆t) = N(t) + b∆tN(t)− d∆tN(t) .

Dividing by ∆t and letting ∆t→ 0, we get the ODE

N ′ = (b− d)N, N(0) = N0 . (4.1)

In a population where the death rate (d) is larger than then newborn
rate (b), b − d < 0, and the population experiences exponential decay
rather than exponential growth.

In some populations there is an immigration of individuals into the
spatial domain. With I individuals coming in per time unit, the equation
for the population change becomes

N(t+∆t) = N(t) + b∆tN(t)− d∆tN(t) +∆tI .

The corresponding ODE reads

N ′ = (b− d)N + I, N(0) = N0 . (4.2)

Emigration is also modeled by this I term if we just change its sign:
I < 0. So, the I term models migration in and out of the domain in
general.

Some simplification arises if we introduce a fractional measure of the
population: u = N/N0 and set r = b−d. The ODE problem now becomes

u′ = ru+ f, u(0) = 1, (4.3)

where f = I/N0 measures the net immigration per time unit as the
fraction of the initial population. Very often, r is approximately constant,
but f is usually a function of time.

4.3 Compound interest and inflation 111

4.2.2 Logistic growth

The growth rate r of a population decreases if the environment has
limited resources. Suppose the environment can sustain at most Nmax
individuals. We may then assume that the growth rate approaches zero as
N approaches Nmax, i.e., as u approaches M = Nmax/N0. The simplest
possible evolution of r is then a linear function: r(t) = %(1 − u(t)/M),
where % is the initial growth rate when the population is small relative to
the maximum size and there is enough resources. Using this r(t) in (4.3)
results in the logistic model for the evolution of a population (assuming
for the moment that f = 0):

u′ = %(1− u/M)u, u(0) = 1 . (4.4)

Initially, u will grow at rate %, but the growth will decay as u approaches
M , and then there is no more change in u, causing u → M as t → ∞.
Note that the logistic equation u′ = %(1− u/M)u is nonlinear because
of the quadratic term −u2%/M .

4.3 Compound interest and inflation

Say the annual interest rate is r percent and that the bank adds the
interest once a year to your investment. If un is the investment in year
n, the investment in year un+1 grows to

un+1 = un + r

100u
n .

In reality, the interest rate is added every day. We therefore introduce
a parameter m for the number of periods per year when the interest
is added. If n counts the periods, we have the fundamental model for
compound interest:

un+1 = un + r

100mun . (4.5)

This model is a difference equation, but it can be transformed to a
continuous differential equation through a limit process. The first step
is to derive a formula for the growth of the investment over a time t.
Starting with an investment u0, and assuming that r is constant in time,
we get

112 4 Models

un+1 =
(

1 + r

100m

)
un

=
(

1 + r

100m

)2
un−1

...

=
(

1 + r

100m

)n+1
u0

Introducing time t, which here is a real-numbered counter for years, we
have that n = mt, so we can write

umt =
(

1 + r

100m

)mt
u0 .

The second step is to assume continuous compounding, meaning that the
interest is added continuously. This implies m → ∞, and in the limit
one gets the formula

u(t) = u0e
rt/100, (4.6)

which is nothing but the solution of the ODE problem

u′ = r

100u, u(0) = u0 . (4.7)

This is then taken as the ODE model for compound interest if r > 0.
However, the reasoning applies equally well to inflation, which is just
the case r < 0. One may also take the r in (4.7) as the net growth of
an investment, where r takes both compound interest and inflation into
account. Note that for real applications we must use a time-dependent r
in (4.7).

Introducing a = r
100 , continuous inflation of an initial fortune I is then

a process exhibiting exponential decay according to

u′ = −au, u(0) = I .

4.4 Newton’s law of cooling

When a body at some temperature is placed in a cooling environment,
experience shows that the temperature falls rapidly in the beginning, and
then the change in temperature levels off until the body’s temperature
equals that of the surroundings. Newton carried out some experiments

4.5 Radioactive decay 113

on cooling hot iron and found that the temperature evolved as a “geo-
metric progression at times in arithmetic progression”, meaning that the
temperature decayed exponentially. Later, this result was formulated as
a differential equation: the rate of change of the temperature in a body
is proportional to the temperature difference between the body and its
surroundings. This statement is known as Newton’s law of cooling, which
mathematically can be expressed as

dT

dt
= −k(T − Ts), (4.8)

where T is the temperature of the body, Ts is the temperature of the
surroundings (which may be time-dependent), t is time, and k is a
positive constant. Equation (4.8) is primarily viewed as an empirical
law, valid when heat is efficiently convected away from the surface of the
body by a flowing fluid such as air at constant temperature Ts. The heat
transfer coefficient k reflects the transfer of heat from the body to the
surroundings and must be determined from physical experiments.

The cooling law (4.8) needs an initial condition T (0) = T0.

4.5 Radioactive decay

An atomic nucleus of an unstable atom may lose energy by emitting
ionizing particles and thereby be transformed to a nucleus with a different
number of protons and neutrons. This process is known as radioactive
decay. Actually, the process is stochastic when viewed for a single atom,
because it is impossible to predict exactly when a particular atom emits
a particle. Nevertheless, with a large number of atoms, N , one may
view the process as deterministic and compute the mean behavior of the
decay. Below we reason intuitively about an ODE for the mean behavior.
Thereafter, we show mathematically that a detailed stochastic model for
single atoms leads to the same mean behavior.

4.5.1 Deterministic model

Suppose at time t, the number of the original atom type is N(t). A basic
model assumption is that the transformation of the atoms of the original
type in a small time interval ∆t is proportional to N , so that

http://en.wikipedia.org/wiki/Radioactive_decay
http://en.wikipedia.org/wiki/Radioactive_decay

114 4 Models

N(t+∆t) = N(t)− a∆tN(t),

where a > 0 is a constant. The proportionality factor is a∆t, i.e., propor-
tional to∆t since a longer time interval will produce more transformations.
We can introduce u = N(t)/N(0), divide by ∆t, and let ∆t→ 0:

lim
r→0

N0
u(t+∆t)− u(t)

∆t
= −aN0u(t) .

The left-hand side is the derivative of u. Dividing by the N0 gives the
following ODE for u:

u′ = −au, u(0) = 1 . (4.9)

The parameter a can for a given nucleus be expressed through the half-
life t1/2, which is the time taken for the decay to reduce the initial amount
by one half, i.e., u(t1/2) = 0.5. With u(t) = e−at, we get t1/2 = a−1 ln 2
or a = ln 2/t1/2.

4.5.2 Stochastic model
Originally, we have N0 atoms. Up to some particular time t, each atom
may either have decayed or not. If not, they have “survived”. We want
to count how many original atoms that have survived. The survival of
a single atom at time t is a random event. Since there are only two
outcomes, survival or decay, we have a Bernoulli trial. Let p be the
probability of survival (implying that the probability of decay is 1− p).
If each atom survives independently of the others, and the probability of
survival is the same for every atom, we have N0 Bernoulli trials, known
as a binomial experiment from probability theory. The probability P (N)
that N out of the N0 atoms have survived at time t is then given by the
famous binomial distribution

P (N) = N0!
N !(N0 −N)!p

N (1− p)N0−N .

The mean (or expected) value E[P] of P (N) is known to be N0p.
It remains to estimate p. Let the interval [0, t] be divided into m small

subintervals of length ∆t. We make the assumption that the probability
of decay of a single atom in an interval of length ∆t is p̃, and that this
probability is proportional to ∆t: p̃ = λ∆t (it sounds natural that the
probability of decay increases with ∆t). The corresponding probability of
survival is 1− λ∆t. Believing that λ is independent of time, we have, for

http://en.wikipedia.org/wiki/Bernoulli_trial

4.5 Radioactive decay 115

each interval of length ∆t, a Bernoulli trial: the atom either survives or
decays in that interval. Now, p should be the probability that the atom
survives in all the intervals, i.e., that we have m successful Bernoulli
trials in a row and therefore

p = (1− λ∆t)m .

The expected number of atoms of the original type at time t is

E[P] = N0p = N0(1− λ∆t)m, m = t/∆t . (4.10)

To see the relation between the two types of Bernoulli trials and the
ODE above, we go to the limit ∆t→ 0, m→∞. It is possible to show
that

p = lim
m→∞

(1− λ∆t)m = lim
m→∞

(
1− λ t

m

)m
= e−λt

This is the famous exponential waiting time (or arrival time) distribution
for a Poisson process in probability theory (obtained here, as often done,
as the limit of a binomial experiment). The probability of decay, or
more precisely that at least one atom has undergone a transition, is
1− p = 1− e−λt. This is the exponential distribution. The limit means
that m is very large, hence ∆t is very small, and p̃ = λ∆t is very small
since the intensity of the events, λ, is assumed finite. This situation
corresponds to a very small probability that an atom will decay in a very
short time interval, which is a reasonable model. The same model occurs
in lots of different applications, e.g., when waiting for a taxi, or when
finding defects along a rope.

4.5.3 Relation between stochastic and deterministic models
With p = e−λt we get the expected number of original atoms at t
as N0p = N0e

−λt, which is exactly the solution of the ODE model
N ′ = −λN . This also gives an interpretation of a via λ or vice versa. Our
important finding here is that the ODE model captures the mean behavior
of the underlying stochastic model. This is, however, not always the
common relation between microscopic stochastic models and macroscopic
“averaged” models.

Also of interest, is that a Forward Euler discretization of N ′ = −λN ,
N(0) = N0, gives Nm = N0(1 − λ∆t)m at time tm = m∆t, which is
exactly the expected value of the stochastic experiment with N0 atoms

http://en.wikipedia.org/wiki/Exponential_distribution

116 4 Models

and m small intervals of length ∆t, where each atom can decay with
probability λ∆t in an interval.

A fundamental question is how accurate the ODE model is. The under-
lying stochastic model fluctuates around its expected value. A measure of
the fluctuations is the standard deviation of the binomial experiment with
N0 atoms, which can be shown to be Std[P] =

√
N0p(1− p). Compared

to the size of the expectation, we get the normalized standard deviation

√
Var[P]
E[P] = N

−1/2
0

√
p−1 − 1 = N

−1/2
0

√
(1− e−λt)−1 − 1 ≈ (N0λt)−1/2,

showing that the normalized fluctuations are very small if N0 is very
large, which is usually the case.

4.5.4 Generalization of the radioactive decay modeling

The modeling in Section 4.5 is in fact very general, despite a focus on a
particular physical process. We may instead of atoms and decay speak
about a set of items, where each item can undergo a stochastic transition
from one state to another. In Section 4.6 the item is a molecule and the
transition is a chemical reaction, while in Section 4.7 the item is an ill
person and the transition is recovering from the illness (or an immune
person who loses her immunity).

From the modeling in Section 4.5 we can establish a deterministic
model for a large number of items and a stochastic model for an arbi-
trary number of items, even a single one. The stochastic model has a
parameter λ reflecting the probability that a transition takes place in a
time interval of unit length (or equivalently, that the probability is λ∆t
for a transition during a time interval of length ∆t). The probability of
making a transition before time t is given by

F (t) = 1− e−λt .

The corresponding probability density is f(t) = F ′(t) = e−λt. The
expected value of F (t), i.e., the expected time to transition, is λ−1. This
interpretation of λ makes it easy to measure its value: just carry out a
large number of experiments, measure the time to transition, and take
one over the average of these times as an estimate of λ. The variance is
λ−2.

4.6 Chemical kinetics 117

The deterministic model counts how many items, N(t), that have
undergone the transition (on average), and N(t) is governed by the ODE

N ′ = −λN(t), N(0) = N0 .

4.6 Chemical kinetics

4.6.1 Irreversible reaction of two substances

Consider two chemical substances, A and B, and a chemical reaction
that turns A into B. In a small time interval, some of the molecules
of type A are transformed into molecules of B. This process is, from a
mathematical modeling point of view, equivalent to the radioactive decay
process described in the previous section. We can therefore apply the
same modeling approach. If NA is the number of molecules of substance
A, we have that NA is governed by the differential equation

dNA

dt
= −kNA,

where (the constant) k is called the rate constant of the reaction. Rather
than using the number of molecules, we use the concentration of molecules:
[A](t) = NA(t)/NA(0). We see that d[A]/dt = NA(0)−1dNA/dt. Replac-
ing NA by [A] in the equation for NA leads to the equation for the
concentration [A]:

d[A]
dt

= −k[A], t ∈ (0, T], [A](0) = 1, . (4.11)

Since substance A is transformed to substance B, we have that the
concentration of [B] grows by the loss of [A]:

d[B]
dt

= k[A], [B](0) = 0 .

The mathematical model can either be (4.11) or the system

118 4 Models

d[A]
dt

= −k[A], t ∈ (0, T] (4.12)

d[B]
dt

= k[A], t ∈ (0, T] (4.13)

[A](0) = 1, (4.14)
[B](0) = 0 . (4.15)

This reaction is known as a first-order reaction, where each molecule of
A makes an independent decision about whether to complete the reaction,
i.e., independent of what happens to any other molecule.

An n-th order reaction is modeled by

d[A]
dt

= −k[A]n, (4.16)

d[B]
dt

= k[A]n, (4.17)

for t ∈ (0, T] with initial conditions [A](0) = 1 and [B](0) = 0. Here, n
can be a real number, but is most often an integer. Note that the sum of
the concentrations is constant since

d[A]
dt

+ d[B]
dt

= 0 ⇒ [A](t)+[B](t) = const = [A](0)+[B](0) = 1+0 .

4.6.2 Reversible reaction of two substances

Let the chemical reaction turn substance A into B and substance B into
A. The rate of change of [A] has then two contributions: a loss kA[A] and
a gain kB[B]:

d[A]
dt

= −kA[A] + kB[B], t ∈ (0, T], [A](0) = A0 . (4.18)

Similarly for substance B,

d[B]
dt

= kA[A]− kB[B], t ∈ (0, T], [B](0) = B0 . (4.19)

This time we have allowed for arbitrary initial concentrations. Again,

4.6 Chemical kinetics 119

d[A]
dt

+ d[B]
dt

= 0 ⇒ [A](t) + [B](t) = A0 +B0 .

4.6.3 Irreversible reaction of two substances into a third

Now we consider two chemical substances, A and B, reacting with each
other and producing a substance C. In a small time interval ∆t, molecules
of type A and B are occasionally colliding, and in some of the collisions,
a chemical reaction occurs, which turns A and B into a molecule of type
C. (More generally, MA molecules of A and MB molecules of B react to
form MC molecules of C.) The number of possible pairings, and thereby
collisions, of A and B is NANB , where NA is the number of molecules of
A, and NB is the number of molecules of B. A fraction k of these collisions,
k̂∆tNANB, features a chemical reaction and produce NC molecules of C.
The fraction is thought to be proportional to ∆t: considering a twice as
long time interval, twice as many molecules collide, and twice as many
reactions occur. The increase in molecules of substance C is now found
from the reasoning

NC(t+∆t) = NC(t) + k̂∆tNANB .

Dividing by ∆t,

NC(t+∆t)−NC(t)
∆t

= k̂NANB,

and letting ∆t→ 0, gives the differential equation

dNC

dt
= k̂NANB .

(This equation is known as the important law of mass action discovered
by the Norwegian scientists Cato M. Guldberg and Peter Waage. A more
general form of the right-hand side is k̂Nα

AN
β
B. All the constants k̂, α,

and β must be determined from experiments.)
Working instead with concentrations, we introduce [C](t) =

NC(t)/NC(0), with similar definitions for [A] and [B] we get

d[C]
dt

= k[A][B] . (4.20)

The constant k is related to k̂ by k = k̂NA(0)NB(0)/NC(0). The gain in
C is a loss of A and B:

https://en.wikipedia.org/wiki/Law_of_mass_action

120 4 Models

d[A]
dt

= −k[A][B], (4.21)

d[B]
dt

= −k[A][B] . (4.22)

4.6.4 A biochemical reaction

A common reaction (known as Michaelis-Menton kinetics) turns a sub-
strate S into a product P with aid of an enzyme E. The reaction is a
two-stage process: first S and E reacts to form a complex ES, where the
enzyme and substrate are bound to each other, and then ES is turned
into E and P. In the first stage, S and E react to produce a growth of ES
according to the law of mass action:

d[S]
dt

= −k+[E][S],

d[ES]
dt

= k+[E][S] .

The complex ES reacts and produces the product P at rate −kv[ES] and
E at rate −k−[ES]. The total set of reactions can then be expressed by

d[ES]
dt

= k+[E][S]− kv[ES]− k−[ES], (4.23)

d[P]
dt

= kv[ES], (4.24)

d[S]
dt

= −k+[E][S] + k−[ES], (4.25)

d[E]
dt

= −k+[E][S] + k−[ES] + kv[ES] . (4.26)

The initial conditions are [ES](0) = [P](0) = 0, and [S] = S0, [E] = E0.
The constants k+, k−, and kv must be determined from experiments.

https://en.wikipedia.org/wiki/Michaelis-Menten_kinetics

4.7 Spreading of diseases 121

4.7 Spreading of diseases

The modeling of spreading of diseases is very similar to the modeling
of chemical reactions in Section 4.6. The field of epidemiology speaks
about susceptibles: people who can get a disease; infectives: people who
are infected and can infect susceptibles; and recovered: people who have
recovered from the disease and become immune. Three categories are
accordingly defined: S for susceptibles, I for infectives, and R for recovered.
The number in each category is tracked by the functions S(t), I(t), and
R(t).

To model how many people that get infected in a small time interval
∆t, we reason as with reactions in Section 4.6. The possible number of
pairings (“collisions”) between susceptibles and infected is SI. A fraction
of these, β∆tSI, will actually meet and the infected succeed in infecting
the susceptible, where β is a parameter to be empirically estimated. This
leads to a loss of susceptibles and a gain of infected:

S(t+∆t) = S(t)− β∆tSI,
I(t+∆t) = I(t) + β∆tSI .

In the same time interval, a fraction ν∆tI of the infected is recovered. It
follows from Section 4.5.4 that the parameter ν−1 is interpreted as the
average waiting time to leave the I category, i.e., the average length of
the disease. The ν∆tI term is a loss for the I category, but a gain for
the R category:

I(t+∆t) = I(t) + β∆tSI − ν∆tI,R(t+∆t) = R(t) + ν∆tI .

Dividing these equations by ∆t and going to the limit ∆t→ 0, gives the
ODE system

dS

dt
= −βSI, (4.27)

dI

dt
= βSI − νI, (4.28)

dR

dt
= νI, (4.29)

122 4 Models

with initial values S(0) = S0, I(0) = I0, and R(0) = 0. By adding the
equations, we realize that

dS

dt
+ dI

dt
+ dR

dt
= 0 ⇒ S + I +R = const = N,

where N is the total number in the population under consideration. This
property can be used as a partial verification during simulations.

Equations (4.27)-(4.29) are known as the SIR model in epidemiology.
The model can easily be extended to incorporate vaccination programs,
immunity loss after some time, etc. Typical diseases that can be simulated
by the SIR model and its variants are measles, smallpox, flu, plague, and
HIV.

4.8 Predator-prey models in ecology

A model for the interaction of predator and prey species can be based
on reasoning from population dynamics and the SIR model. Let H(t) be
the number of preys in a region, and let L(t) be the number of predators.
For example, H may be hares and L lynx, or rabbits and foxes.

The population of the prey evolves due to births and deaths, exactly
as in a population dynamics model from Section 4.2.1. During a time
interval ∆t the increase in the population is therefore

H(t+∆t)−H(t) = a∆tH(t),

where a is a parameter to be measured from data. The increase is
proportional to H, and the proportionality constant a∆t is proportional
to ∆t, because doubling the interval will double the increase.

However, the prey population has an additional loss because they are
eaten by predators. All the prey and predator animals can form LH pairs
in total (assuming all individuals meet randomly). A small fraction b∆t
of such meetings, during a time interval ∆t, ends up with the predator
eating the prey. The increase in the prey population is therefore adjusted
to

H(t+∆t)−H(t) = a∆tH(t)− b∆tH(t)L(t) .

The predator population increases as a result of eating preys. The
amount of eaten preys is b∆tLH, but only a fraction d∆tLH of this
amount contributes to increasing the predator population. In addition,

4.9 Decay of atmospheric pressure with altitude 123

predators die and this loss is set to c∆tL. To summarize, the increase in
the predator population is given by

L(t+∆t)− L(t) = d∆tL(t)H(t)− c∆tL(t) .

Dividing by ∆t in the equations for H and L and letting t→ 0 results in

lim
∆t→0

H(t+∆t)−H(t)
∆t

= H ′(t) = aH(t)− bL(t)H(t),

lim
∆t→0

L(t+∆t)− L(t)
∆t

= L′(t) = dL(t)H(t)− cL(t) .

We can simplify the notation to the following two ODEs:

H ′ = H(a− bL), (4.30)
L′ = L(dH − c) . (4.31)

This is a so-called Lokta-Volterra model. It contains four parameters
that must be estimated from data: a, b, c, and d. In addition, two initial
conditions are needed for H(0) and L(0).

4.9 Decay of atmospheric pressure with altitude

4.9.1 The general model

Vertical equilibrium of air in the atmosphere is governed by the equation

dp

dz
= −%g . (4.32)

Here, p(z) is the air pressure, % is the density of air, and g = 9.807 m/s2

is a standard value of the acceleration of gravity. (Equation (4.32) follows
directly from the general Navier-Stokes equations for fluid motion, with
the assumption that the air does not move.)

The pressure is related to density and temperature through the ideal
gas law

% = Mp

R∗T
, (4.33)

124 4 Models

where M is the molar mass of the Earth’s air (0.029 kg/mol), R∗ is the
universal gas constant (8.314 Nm/(mol K)), and T is the temperature in
Kelvin. All variables p, %, and T vary with the height z. Inserting (4.33)
in (4.32) results in an ODE with a variable coefficient:

dp

dz
= − Mg

R∗T (z)p . (4.34)

4.9.2 Multiple atmospheric layers

The atmosphere can be approximately modeled by seven layers. In each
layer, (4.34) is applied with a linear temperature of the form

T (z) = T̄i + Li(z − hi),

where z = hi denotes the bottom of layer number i, having temperature
T̄i, and Li is a constant in layer number i. The table below lists hi (m),
T̄i (K), and Li (K/m) for the layers i = 0, . . . , 6.

i hi T̄i Li

0 0 288 -0.0065
1 11,000 216 0.0
2 20,000 216 0.001
3 32,000 228 0.0028
4 47,000 270 0.0
5 51,000 270 -0.0028
6 71,000 214 -0.002

For implementation it might be convenient to write (4.34) on the form

dp

dz
= − Mg

R∗(T̄ (z) + L(z)(z − h(z)))
p, (4.35)

where T̄ (z), L(z), and h(z) are piecewise constant functions with values
given in the table. The value of the pressure at the sea level z = 0,
p0 = p(0), is 101325 Pa.

4.9.3 Simplifications

Constant layer temperature. One common simplification is to assume
that the temperature is constant within each layer. This means that
L = 0.

4.10 Compaction of sediments 125

One-layer model. Another commonly used approximation is to work
with one layer instead of seven. This one-layer model is based on T (z) =
T0−Lz, with sea level standard temperature T0 = 288 K and temperature
lapse rate L = 0.0065 K/m.

4.10 Compaction of sediments

Sediments, originally made from materials like sand and mud, get com-
pacted through geological time by the weight of new material that is
deposited on the sea bottom. The porosity φ of the sediments tells how
much void (fluid) space there is between the sand and mud grains. The
porosity drops with depth, due to the weight of the sediments above.
This makes the void space shrink, and thereby compaction increases.

A typical assumption is that the change in φ at some depth z is
negatively proportional to φ. This assumption leads to the differential
equation problem

dφ

dz
= −cφ, φ(0) = φ0, (4.36)

where the z axis points downwards, z = 0 is the surface with known
porosity, and c > 0 is a constant.

The upper part of the Earth’s crust consists of many geological layers
stacked on top of each other, as indicated in Figure 4.1. The model (4.36)
can be applied for each layer. In layer number i, we have the unknown
porosity function φi(z) fulfilling φ′i(z) = −ciz, since the constant c in the
model (4.36) depends on the type of sediment in the layer. Alternatively,
we can use (4.36) to describe the porosity through all layers if c is taken
as a piecewise constant function of z, equal to ci in layer i. From the
figure we see that new layers of sediments are deposited on top of older
ones as time progresses. The compaction, as measured by φ, is rapid
in the beginning and then decreases (exponentially) with depth in each
layer.

When we drill a well at present time through the right-most column
of sediments in Figure 4.1, we can measure the thickness of the sediment
in (say) the bottom layer. Let L1 be this thickness. Assuming that the
volume of sediment remains constant through time, we have that the
initial volume,

∫ L1,0
0 φ1dz, must equal the volume seen today,

∫ `
`−L1

φ1dz,
where ` is the depth of the bottom of the sediment in the present day

http://en.wikipedia.org/wiki/Density_of_air

126 4 Models

Fig. 4.1 Illustration of the compaction of geological layers (with different colors) through
time.

configuration. After having solved for φ1 as a function of z, we can then
find the original thickness L1,0 of the sediment from the equation∫ L1,0

0
φ1dz =

∫ `

`−L1

φ1dz .

In hydrocarbon exploration it is important to know L1,0 and the com-
paction history of the various layers of sediments.

4.11 Vertical motion of a body in a viscous fluid

A body moving vertically through a fluid (liquid or gas) is subject to
three different types of forces: the gravity force, the drag force, and the
buoyancy force.

4.11.1 Overview of forces

Taking the upward direction as positive, the gravity force is Fg = −mg,
where m is the mass of the body and g is the acceleration of gravity. The
uplift or buoyancy force (“Archimedes force”) is Fb = %gV , where % is
the density of the fluid and V is the volume of the body.

http://en.wikipedia.org/wiki/Drag_(physics)

4.11 Vertical motion of a body in a viscous fluid 127

The drag force is of two types, depending on the Reynolds number

Re = %d|v|
µ

, (4.37)

where d is the diameter of the body in the direction perpendicular to the
flow, v is the velocity of the body, and µ is the dynamic viscosity of the
fluid. When Re < 1, the drag force is fairly well modeled by the so-called
Stokes’ drag, which for a spherical body of diameter d reads

F
(S)
d = −3πdµv . (4.38)

Quantities are taken as positive in the upwards vertical direction, so if
v > 0 and the body moves upwards, the drag force acts downwards and
become negative, in accordance with the minus sign in expression for
F

(S)
d .
For large Re, typically Re > 103, the drag force is quadratic in the

velocity:
F

(q)
d = −1

2CD%A|v|v, (4.39)

where CD is a dimensionless drag coefficient depending on the body’s
shape, and A is the cross-sectional area as produced by a cut plane,
perpendicular to the motion, through the thickest part of the body. The
superscripts q and S in F (S)

d and F (q)
d indicate Stokes drag and quadratic

drag, respectively.

4.11.2 Equation of motion
All the mentioned forces act in the vertical direction. Newton’s second
law of motion applied to the body says that the sum of these forces
must equal the mass of the body times its acceleration a in the vertical
direction.

ma = Fg + F
(S)
d + Fb .

Here we have chosen to model the fluid resistance by the Stokes drag.
Inserting the expressions for the forces yields

ma = −mg − 3πdµv + %gV .

The unknowns here are v and a, i.e., we have two unknowns but only one
equation. From kinematics in physics we know that the acceleration is the

128 4 Models

time derivative of the velocity: a = dv/dt. This is our second equation.
We can easily eliminate a and get a single differential equation for v:

m
dv

dt
= −mg − 3πdµv + %gV .

A small rewrite of this equation is handy: We express m as %bV , where
%b is the density of the body, and we divide by the mass to get

v′(t) = −3πdµ
%bV

v + g

(
%

%b
− 1

)
. (4.40)

We may introduce the constants

a = 3πdµ
%bV

, b = g

(
%

%b
− 1

)
, (4.41)

so that the structure of the differential equation becomes obvious:

v′(t) = −av(t) + b . (4.42)

The corresponding initial condition is v(0) = v0 for some prescribed
starting velocity v0.

This derivation can be repeated with the quadratic drag force F (q)
d ,

leading to the result

v′(t) = −1
2CD

%A

%bV
|v|v + g

(
%

%b
− 1

)
. (4.43)

Defining

a = 1
2CD

%A

%bV
, (4.44)

and b as above, we can write (4.43) as

v′(t) = −a|v|v + b . (4.45)

4.11.3 Terminal velocity

An interesting aspect of (4.42) and (4.45) is whether v will approach
a final constant value, the so-called terminal velocity vT , as t→∞. A
constant v means that v′(t) → 0 as t → ∞ and therefore the terminal
velocity vT solves

4.11 Vertical motion of a body in a viscous fluid 129

0 = −avT + b

and
0 = −a|vT |vT + b .

The former equation implies vT = b/a, while the latter has solutions
vT = −

√
|b|/a for a falling body (vT < 0) and vT =

√
b/a for a rising

body (vT > 0).

4.11.4 A Crank-Nicolson scheme
Both governing equations, the Stokes’ drag model (4.42) and the quadratic
drag model (4.45), can be readily solved by the Forward Euler scheme.
For higher accuracy one can use the Crank-Nicolson method, but a
straightforward application of this method gives a nonlinear equation in
the new unknown value vn+1 when applied to (4.45):

vn+1 − vn

∆t
= −a1

2(|vn+1|vn+1 + |vn|vn) + b . (4.46)

The first term on the right-hand side of (4.46) is the arithmetic average
of −|v|v evaluated at time levels n and n+ 1.

Instead of approximating the term −|v|v by an arithmetic average, we
can use a geometric mean:

(|v|v)n+ 1
2 ≈ |vn|vn+1 . (4.47)

The error is of second order in ∆t, just as for the arithmetic average and
the centered finite difference approximation in (4.46). With the geometric
mean, the resulting discrete equation

vn+1 − vn

∆t
= −a|vn|vn+1 + b

becomes a linear equation in vn+1, and we can therefore easily solve for
vn+1:

vn+1 = vn +∆tbn+ 1
2

1 +∆tan+ 1
2 |vn|

. (4.48)

Using a geometric mean instead of an arithmetic mean in the Crank-
Nicolson scheme is an attractive method for avoiding a nonlinear algebraic
equation when discretizing a nonlinear ODE.

130 4 Models

4.11.5 Physical data

Suitable values of µ are 1.8 · 10−5 Pa s for air and 8.9 · 10−4 Pa s for
water. Densities can be taken as 1.2 kg/m3 for air and as 1.0 · 103 kg/m3

for water. For considerable vertical displacement in the atmosphere one
should take into account that the density of air varies with the altitude,
see Section 4.9. One possible density variation arises from the one-layer
model in the mentioned section.

Any density variation makes b time dependent and we need bn+ 1
2 in

(4.48). To compute the density that enters bn+ 1
2 we must also compute

the vertical position z(t) of the body. Since v = dz/dt, we can use a
centered difference approximation:

zn+ 1
2 − zn− 1

2

∆t
= vn ⇒ zn+ 1

2 = zn−
1
2 +∆t vn .

This zn+ 1
2 is used in the expression for b to compute %(zn+ 1

2) and then
bn+ 1

2 .
The drag coefficient CD depends heavily on the shape of the body.

Some values are: 0.45 for a sphere, 0.42 for a semi-sphere, 1.05 for a cube,
0.82 for a long cylinder (when the center axis is in the vertical direction),
0.75 for a rocket, 1.0-1.3 for a man in upright position, 1.3 for a flat plate
perpendicular to the flow, and 0.04 for a streamlined, droplet-like body.

4.11.6 Verification

To verify the program, one may assume a heavy body in air such that the
Fb force can be neglected, and further assume a small velocity such that
the air resistance Fd can also be neglected. This can be obtained by setting
µ and % to zero. The motion then leads to the velocity v(t) = v0 − gt,
which is linear in t and therefore should be reproduced to machine
precision (say tolerance 10−15) by any implementation based on the
Crank-Nicolson or Forward Euler schemes.

Another verification, but not as powerful as the one above, can be
based on computing the terminal velocity and comparing with the exact
expressions. The advantage of this verification is that we can also test
the situation % 6= 0.

As always, the method of manufactured solutions can be applied to
test the implementation of all terms in the governing equation, but then
the solution has no physical relevance in general.

http://en.wikipedia.org/wiki/Drag_coefficient

4.12 Viscoelastic materials 131

4.11.7 Scaling

Applying scaling, as described in Section 4.1, will for the linear case
reduce the need to estimate values for seven parameters down to choosing
one value of a single dimensionless parameter

β =
%bgV

(
%
%b
− 1

)
3πdµI ,

provided I 6= 0. If the motion starts from rest, I = 0, the scaled problem
reads

ū′ = 1− ū, ū(0) = 0,

and there is no need for estimating physical parameters (!). This means
that there is a single universal solution to the problem of a falling body
starting from rest: ū(t) = 1 − e−t̄. All real physical cases correspond
to stretching the t̄ axis and the ū axis in this dimensionless solution.
More precisely, the physical velocity u(t) is related to the dimensionless
velocity ū(t̄) through

u =
%bgV

(
%
%b
− 1

)
3πdµ ū(t/(g(%/%b−1))) =

%bgV
(
%
%b
− 1

)
3πdµ (1−et/(g(%/%b−1))) .

4.12 Viscoelastic materials

When stretching a rod made of a perfectly elastic material, the elongation
(change in the rod’s length) is proportional to the magnitude of the applied
force. Mathematical models for material behavior under application of
external forces use strain ε and stress σ instead of elongation and forces.
Strain is relative change in elongation and stress is force per unit area. An
elastic material has a linear relation between stress and strain: σ = Eε.
This is a good model for many materials, but frequently the velocity of
the deformation (or more precisely, the strain rate ε′) also influences the
stress. This is particularly the case for materials like organic polymers,
rubber, and wood. When the stress depends on both the strain and the
strain rate, the material is said to be viscoelastic. A common model
relating forces to deformation is the Kelvin-Voigt model:

https://en.wikipedia.org/wiki/Kelvin-Voigt_material

132 4 Models

σ(t) = Eε(t) + ηε′(t) . (4.49)

Compared to a perfectly elastic material, which deforms instantaneously
when a force is acting, a Kelvin-Voigt material will spend some time to
elongate. For example, when an elastic rod is subject to a constant force
σ at t = 0, the strain immediately adjusts to ε = σ/E. A Kelvin-Voigt
material, however, has a response ε(t) = σ

E (1 − eEt/η). Removing the
force when the strain is ε(t1) = I will for an elastic material immediately
bring the strain back to zero, while a Kelvin-Voigt material will decay:
ε = Ie−(t−t1)E/η).

Introducing u for ε and treating σ(t) as a given function, we can write
the Kelvin-Voigt model in our standard form

u′(t) = −au(t) + b(t), (4.50)

with a = E/η and b(t) = σ(t)/η. An initial condition, usually u(0) = 0,
is needed.

4.13 Decay ODEs from solving a PDE by Fourier
expansions

Suppose we have a partial differential equation

∂u

∂t
= α

∂2u

∂x2 + f(x, t),

with boundary conditions u(0, t) = u(L, t) = 0 and initial condition
u(x, 0) = I(x). One may express the solution as

u(x, t) =
m∑
k=1

Ak(t)eikxπ/L,

for appropriate unknown functions Ak, k = 1, . . . ,m. We use the complex
exponential eikxπ/L for easy algebra, but the physical u is taken as the
real part of any complex expression. Note that the expansion in terms of
eikxπ/L is compatible with the boundary conditions: all functions eikxπ/L
vanish for x = 0 and x = L. Suppose we can express I(x) as

I(x) =
m∑
k=1

Ike
ikxπ/L .

4.14 Exercises 133

Such an expansion can be computed by well-known Fourier expansion
techniques, but those details are not important here. Also, suppose we
can express the given f(x, t) as

f(x, t) =
m∑
k=1

bk(t)eikxπ/L .

Inserting the expansions for u and f in the differential equations demands
that all terms corresponding to a given k must be equal. The calculations
result in the follow system of ODEs:

A′k(t) = −αk
2π2

L2 + bk(t), k = 1, . . . ,m .

From the initial condition

u(x, 0) =
∑
k

Ak(0)eikxπ/L = I(x) =
∑
k

Ike
(ikxπ/L),

so it follows that Ak(0) = Ik, k = 1, . . . ,m. We then have m equations
of the form A′k = −aAk + b, Ak(0) = Ik, for appropriate definitions of
a and b. These ODE problems are independent of each other such that
we can solve one problem at a time. The outlined technique is a quite
common solution approach to partial differential equations.
Remark. Since ak depends on k and the stability of the Forward Euler
scheme demands ak∆t ≤ 1, we get that ∆t ≤ α−1L2π−2k−2 for this
scheme. Usually, quite large k values are needed to accurately represent
the given functions I and f so that ∆t in the Forward Euler scheme needs
to be very small for these large values of k. Therefore, the Crank-Nicolson
and Backward Euler schemes, which allow larger ∆t without any growth
in the solutions, are more popular choices when creating time-stepping
algorithms for partial differential equations of the type considered in this
example.

4.14 Exercises

Problem 4.1: Radioactive decay of Carbon-14

The Carbon-14 isotope, whose radioactive decay is used extensively in
dating organic material that is tens of thousands of years old, has a
half-life of 5, 730 years. Determine the age of an organic material that

http://en.wikipedia.org/wiki/Carbon-14

134 4 Models

contains 8.4 percent of its initial amount of Carbon-14. Use a time unit of
1 year in the computations. The uncertainty in the half time of Carbon-14
is ±40 years. What is the corresponding uncertainty in the estimate of
the age?
Hint 1. Let A be the amount of Carbon-14. The ODE problem is then
A′(t) = −aA(t), A(0) = I. Introduced the scaled amount u = A/I.
The ODE problem for u is u′ = −au, u(0) = 1. Measure time in years.
Simulate until the first mesh point tm such that u(tm) ≤ 0.084.
Hint 2. Use simulations with 5, 730± 40 y as input and find the corre-
sponding uncertainty interval for the result.
Filename: carbon14.

Exercise 4.2: Derive schemes for Newton’s law of cooling

Show in detail how we can apply the ideas of the Forward Euler, Backward
Euler, and Crank-Nicolson discretizations to derive explicit computational
formulas for new temperature values in Newton’s law of cooling (see
Section 4.4):

dT

dt
= −k(T − Ts(t)), T (0) = T0 .

Here, T is the temperature of the body, Ts(t) is the temperature of the
surroundings, t is time, k is the heat transfer coefficient, and T0 is the
initial temperature of the body. Summarize the discretizations in a θ-rule
such that you can get the three schemes from a single formula by varying
the θ parameter.
Filename: schemes_cooling.

Exercise 4.3: Implement schemes for Newton’s law of cooling

The goal of this exercise is to implement the schemes from Exercise 4.2
and investigate several approaches for verifying the implementation.
a) Implement the θ-rule from Exercise 4.2 in a function

cooling(T0, k, T_s, t_end, dt, theta=0.5)

where T0 is the initial temperature, k is the heat transfer coefficient, T_s
is a function of t for the temperature of the surroundings, t_end is the
end time of the simulation, dt is the time step, and theta corresponds

4.14 Exercises 135

to θ. The cooling function should return the temperature as an array T
of values at the mesh points and the time mesh t.
b) In the case limt→∞ Ts(t) = C = const, explain why T (t) → C.
Construct an example where you can illustrate this property in a plot.
Implement a corresponding test function that checks the correctness of
the asymptotic value of the solution.
c) A piecewise constant surrounding temperature,

Ts(t) =
{
C0, 0 ≤ t ≤ t∗

C1, t > t∗,

corresponds to a sudden change in the environment at t = t∗. Choose
C0 = 2T0, C1 = 1

2T0, and t∗ = 3/k. Plot the solution T (t) and explain
why it seems physically reasonable.
d) We know from the ODE u′ = −au that the Crank-Nicolson scheme
can give non-physical oscillations for ∆t > 2/a. In the present problem,
this results indicates that the Crank-Nicolson scheme give undesired
oscillations for ∆t > 2/k. Discuss if this a potential problem in the
physical case from c).
e) Find an expression for the exact solution of T ′ = −k(T − Ts(t)),
T (0) = T0. Construct a test case and compare the numerical and exact
solution in a plot.

Find a value of the time step ∆t such that the two solution curves
cannot (visually) be distinguished from each other. Many scientists will
claim that such a plot provides evidence for a correct implementation, but
point out why there still may be errors in the code. Can you introduce
bugs in the cooling function and still achieve visually coinciding curves?
Hint. The exact solution can be derived by multiplying (4.8) by the
integrating factor ekt.
f) Implement a test function for checking that the solution returned by
the cooling function is identical to the exact numerical solution of the
problem (to machine precision) when Ts is constant.
Hint. The exact solution of the discrete equations in the case Ts is a
constant can be found by introducing u = T − Ts to get a problem
u′ = −ku, u(0) = T0 − Ts. The solution of the discrete equations is
then of the form un = (T0 − Ts)An for some amplification factor A. The
expression for T n is then T n = Ts(tn) + un = Ts + (T0 − Ts)An. We find
that

136 4 Models

A = 1− (1− θ)k∆t
1 + θk∆t

.

The test function, testing several θ values for a quite coarse mesh, may
take the form

def test_discrete_solution():
"""
Compare the numerical solution with an exact solution of the scheme
when the T_s is constant.
"""
T_s = 10
T0 = 2
k = 1.2
dt = 0.1 # can use any mesh
N_t = 6 # any no of steps will do
t_end = dt*N_t
t = np.linspace(0, t_end, N_t+1)

for theta in [0, 0.5, 1, 0.2]:
u, t = cooling(T0, k, lambda t: T_s , t_end, dt, theta)
A = (1 - (1-theta)*k*dt)/(1 + theta*k*dt)
u_discrete_exact = T_s + (T0-T_s)*A**(np.arange(len(t)))
diff = np.abs(u - u_discrete_exact).max()
print ’diff computed and exact discrete solution:’, diff
tol = 1E-14
success = diff < tol
assert success, ’diff=%g’ % diff

Running this function shows that the diff variable is 3.55E-15 as
maximum so a tolerance of 10−14 is appropriate. This is a good test that
the cooling function works!
Filename: cooling.

Exercise 4.4: Find time of murder from body temperature

A detective measures the temperature of a dead body to be 26.7 C at
2 pm. One hour later the temperature is 25.8 C. The question is when
death occurred.

Assume that Newton’s law of cooling (4.8) is an appropriate mathe-
matical model for the evolution of the temperature in the body. First,
determine k in (4.8) by formulating a Forward Euler approximation with
one time steep from time 2 am to time 3 am, where knowing the two
temperatures allows for finding k. Assume the temperature in the air
to be 20 C. Thereafter, simulate the temperature evolution from the
time of murder, taken as t = 0, when T = 37 C, until the temperature

4.14 Exercises 137

reaches 25.8 C. The corresponding time allows for answering when death
occurred.
Filename: detective.

Exercise 4.5: Simulate an oscillating cooling process

The surrounding temperature Ts in Newton’s law of cooling (4.8) may
vary in time. Assume that the variations are periodic with period P and
amplitude a around a constant mean temperature Tm:

Ts(t) = Tm + a sin
(2π
P
t

)
. (4.51)

Simulate a process with the following data: k = 0.05 min−1, T (0) = 5 C,
Tm = 25 C, a = 2.5 C, and P = 1 h, P = 10 min, and P = 6 h. Plot the
T solutions and Ts in the same plot.
Filename: osc_cooling.

Exercise 4.6: Simulate stochastic radioactive decay

The purpose of this exercise is to implement the stochastic model de-
scribed in Section 4.5 and show that its mean behavior approximates the
solution of the corresponding ODE model.

The simulation goes on for a time interval [0, T] divided into Nt

intervals of length ∆t. We start with N0 atoms. In some time interval,
we have N atoms that have survived. Simulate N Bernoulli trials with
probability λ∆t in this interval by drawing N random numbers, each
being 0 (survival) or 1 (decay), where the probability of getting 1 is
λ∆t. We are interested in the number of decays, d, and the number of
survived atoms in the next interval is then N − d. The Bernoulli trials
are simulated by drawing N uniformly distributed real numbers on [0, 1]
and saying that 1 corresponds to a value less than λ∆t:

Given lambda_, dt, N
import numpy as np
uniform = np.random.uniform(N)
Bernoulli_trials = np.asarray(uniform < lambda_*dt, dtype=np.int)
d = Bernoulli_trials.size

Observe that uniform < lambda_*dt is a boolean array whose true and
false values become 1 and 0, respectively, when converted to an integer
array.

138 4 Models

Repeat the simulation over [0, T] a large number of times, compute
the average value of N in each interval, and compare with the solution
of the corresponding ODE model. Filename: stochastic_decay.

Problem 4.7: Radioactive decay of two substances

Consider two radioactive substances A and B. The nuclei in substance
A decay to form nuclei of type B with a half-life A1/2, while substance
B decay to form type A nuclei with a half-life B1/2. Letting uA and uB
be the fractions of the initial amount of material in substance A and B,
respectively, the following system of ODEs governs the evolution of uA(t)
and uB(t):

1
ln 2u

′
A = uB/B1/2 − uA/A1/2, (4.52)

1
ln 2u

′
B = uA/A1/2 − uB/B1/2, (4.53)

with uA(0) = uB(0) = 1.
a) Make a simulation program that solves for uA(t) and uB(t).
b) Verify the implementation by computing analytically the limiting
values of uA and uB as t → ∞ (assume u′A, u′B → 0) and comparing
these with those obtained numerically.
c) Run the program for the case of A1/2 = 10 minutes and B1/2 = 50
minutes. Use a time unit of 1 minute. Plot uA and uB versus time in the
same plot.
Filename: radioactive_decay_2subst.

Exercise 4.8: Simulate a simple chemical reaction

Consider the simple chemical reaction where a substance A is turned
into a substance B according to

d[A]
dt

= −k[A],

d[B]
dt

= k[A],

4.14 Exercises 139

where [A] and [B] are the concentrations of A and B, respectively. It
may be a challenge to find appropriate values of k, but we can avoid this
problem by working with a scaled model (as explained in Section 4.1).
Scale the model above, using a time scale 1/k, and use the initial con-
centration of [A] as scale for [A] and [B]. Show that the scaled system
reads

du

dt
= −u,

dv

dt
= u,

with initial conditions u(0) = 1, and v(0) = α, where α = [B](0)/[A](0)
is a dimensionless number, and u and v are the scaled concentrations
of [A] and [B], respectively. Implement a numerical scheme that can be
used to find the solutions u(t) and v(t). Visualize u and v in the same
plot. Filename: chemcial_kinetics_AB.

Exercise 4.9: Simulate an n-th order chemical reaction

An n-order chemical reaction, generalizing the model in Exercise 4.8,
takes the form

d[A]
dt

= −k[A]n,

d[B]
dt

= k[A]n,

where symbols are as defined in Exercise 4.8. Bring this model on di-
mensionless form, using a time scale [A](0)n−1/k, and show that the
dimensionless model simplifies to

140 4 Models

du

dt
= −un,

dv

dt
= un,

with u(0) = 1 and v(0) = α = [B](0)/[A](0). Solve numerically
for u(t) and show a plot with u for n = 0.5, 1, 2, 4. Filename:
chemcial_kinetics_ABn.

Exercise 4.10: Simulate a biochemical process

The purpose of this exercise is to simulate the ODE system (4.23)-(4.26)
modeling a simple biochemical process.

a) Scale (4.23)-(4.26) such that we can work with dimensionless parame-
ters, which are easier to prescribe. Introduce

Q̄ = [ES]
Qc

, P̄ = P

Pc
, S̄ = S

S0
, Ē = E

E0
, t̄ = t

tc
,

where appropriate scales are

Qc = S0E0

K
, Pc = Qc, tc = 1

k+E0
,

with K = (kv+k−)/k+ (Michaelis constant). Show that the scaled system
becomes

dQ̄

dt̄
= α(ĒS̄ − Q̄), (4.54)

dP̄

dt̄
= βQ̄, (4.55)

dS̄

dt̄
= −ĒS̄ + (1− βα−1)Q̄, (4.56)

ε
dĒ

dt̄
= −ĒS̄ + Q̄, (4.57)

where we have three dimensionless parameters

α = K

E0
, β = kv

k+E0
, ε = E0

S0
.

4.14 Exercises 141

The corresponding initial conditions are Q̄ = P̄ = 0 and S̄ = Ē = 1.

b) Implement a function for solving (4.54)-(4.57).

c) There are two conservation equations implied by (4.23)-(4.26):

[ES] + [E] = E0, (4.58)
[ES] + [S] + [P] = S0 . (4.59)

Derive these two equations. Use these properties in the function in b) to
do a partial verification of the solution at each time step.

d) Simulate a case with T = 8, α = 1.5, β = 1, and two ε values: 0.9
and 0.1.
Filename: biochem.

Exercise 4.11: Simulate spreading of a disease

The SIR model (4.27)-(4.29) can be used to simulate spreading of an
epidemic disease.

a) Estimating the parameter β is difficult so it can be handy to scale
the equations. Use tc = 1/ν as time scale, and scale S, I, and R by
the population size N = S(0) + I(0) + R(0). Show that the resulting
dimensionless model becomes

dS̄

dt̄
= −R0S̄Ī, (4.60)

dĪ

dt̄
= R0S̄Ī − Ī , (4.61)

dR̄

dt̄
= I, (4.62)

S̄(0) = 1− α, (4.63)
Ī(0) = α, (4.64)
R̄(0) = 0, (4.65)

where R0 and α are the only parameters in the problem:

R0 = Nβ

ν
, α = I(0)

N
.

142 4 Models

A quantity with a bar denotes a dimensionless version of that quantity,
e.g, t̄ is dimensionless time, and t̄ = νt.

b) Show that the R0 parameter governs whether the disease will spread
or not at t = 0.

Hint. Spreading means dI/dt > 0.

c) Implement the scaled SIR model. Check at every time step, as a
verification, that S̄ + Ī + R̄ = 1.

d) Simulate the spreading of a disease where R0 = 2, 5 and 2 percent of
the population is infected at time t = 0.
Filename: SIR.

Exercise 4.12: Simulate predator-prey interaction

Section 4.8 describes a model for the interaction of predator and prey
populations, such as lynx and hares.

a) Scale the equations (4.30)-(4.31). Use the initial populationH(0) = H0
of H has scale for H and L, and let the time scale be 1/(bH0).

b) Implement the scaled model from a). Run illustrating cases how the
two populations develop.

c) The scaling in a) used a scale for H and L based on the initial
condition H(0) = H0. An alternative scaling is to make the ODEs as
simple as possible by introducing separate scales Hc and Lc for H and
L, respectively. Fit Hc, Lc, and the time scale tc such that there are as
few dimensionless parameters as possible in the ODEs. Scale the initial
conditions. Compare the number and type of dimensionless parameters
with a).

d) Compute with the scaled model from c) and create plots to illustrate
the typical solutions.
Filename: predator_prey.

Exercise 4.13: Simulate the pressure drop in the atmosphere

We consider the models for atmospheric pressure in Section 4.9. Make a
program with three functions,

4.14 Exercises 143

• one computing the pressure p(z) using a seven-layer model and varying
L,

• one computing p(z) using a seven-layer model, but with constant
temperature in each layer, and

• one computing p(z) based on the one-layer model.

How can these implementations be verified? Should ease of verification
impact how you code the functions? Compare the three models in a plot.
Filename: atmospheric_pressure.

Exercise 4.14: Make a program for vertical motion in a fluid

Implement the Stokes’ drag model (4.40) and the quadratic drag model
(4.43) from Section 4.11, using the Crank-Nicolson scheme and a geometric
mean for |v|v as explained, and assume constant fluid density. At each
time level, compute the Reynolds number Re and choose the Stokes’ drag
model if Re < 1 and the quadratic drag model otherwise.

The computation of the numerical solution should take place either
in a stand-alone function or in a solver class that looks up a problem
class for physical data. Create a module and equip it with pytest/nose
compatible test functions for automatically verifying the code.

Verification tests can be based on

• the terminal velocity (see Section 4.11),
• the exact solution when the drag force is neglected (see Section 4.11),
• the method of manufactured solutions (see Section 3.1.5) combined

with computing convergence rates (see Section 3.1.6).

Use, e.g., a quadratic polynomial for the velocity in the method of
manufactured solutions. The expected error is O(∆t2) from the centered
finite difference approximation and the geometric mean approximation
for |v|v.

A solution that is linear in t will also be an exact solution of the
discrete equations in many problems. Show that this is true for linear
drag (by adding a source term that depends on t), but not for quadratic
drag because of the geometric mean approximation. Use the method of
manufactured solutions to add a source term in the discrete equations for
quadratic drag such that a linear function of t is a solution. Add a test
function for checking that the linear function is reproduced to machine
precision in the case of both linear and quadratic drag.

144 4 Models

Apply the software to a case where a ball rises in water. The buoyancy
force is here the driving force, but the drag will be significant and balance
the other forces after a short time. A soccer ball has radius 11 cm and
mass 0.43 kg. Start the motion from rest, set the density of water, %, to
1000 kg/m3, set the dynamic viscosity, µ, to 10−3 Pa s, and use a drag
coefficient for a sphere: 0.45. Plot the velocity of the rising ball. Filename:
vertical_motion.

Project 4.15: Simulate parachuting

The aim of this project is to develop a general solver for the vertical
motion of a body with quadratic air drag, verify the solver, apply the
solver to a skydiver in free fall, and finally apply the solver to a complete
parachute jump.

All the pieces of software implemented in this project should be realized
as Python functions and/or classes and collected in one module.

a) Set up the differential equation problem that governs the velocity of
the motion. The parachute jumper is subject to the gravity force and
a quadratic drag force. Assume constant density. Add an extra source
term to be used for program verification. Identify the input data to the
problem.

b) Make a Python module for computing the velocity of the motion.
Also equip the module with functionality for plotting the velocity.

Hint 1. Use the Crank-Nicolson scheme with a geometric mean of |v|v
in time to linearize the equation of motion with quadratic drag.

Hint 2. You can either use functions or classes for implementation. If you
choose functions, make a function solver that takes all the input data
in the problem as arguments and that returns the velocity (as a mesh
function) and the time mesh. In case of a class-based implementation,
introduce a problem class with the physical data and a solver class with
the numerical data and a solve method that stores the velocity and the
mesh in the class.

Allow for a time-dependent area and drag coefficient in the formula
for the drag force.

c) Show that a linear function of t does not fulfill the discrete equations
because of the geometric mean approximation used for the quadratic
drag term. Fit a source term, as in the method of manufactured solutions,

4.14 Exercises 145

such that a linear function of t is a solution of the discrete equations.
Make a test function to check that this solution is reproduced to machine
precision.

d) The expected error in this problem goes like ∆t2 because we use
a centered finite difference approximation with error O(∆t2) and a
geometric mean approximation with error O(∆t2). Use the method of
manufactured solutions combined with computing convergence rate to
verify the code. Make a test function for checking that the convergence
rate is correct.

e) Compute the drag force, the gravity force, and the buoyancy force as
a function of time. Create a plot with these three forces.

Hint. You can either make a function forces(v, t, plot=None) that
returns the forces (as mesh functions) and t, and shows a plot on the
screen and also saves the plot to a file with name stored in plot if plot
is not None, or you can extend the solver class with computation of forces
and include plotting of forces in the visualization class.

f) Compute the velocity of a skydiver in free fall before the parachute
opens.

Hint. Meade and Struthers [11] provide some data relevant to skydiving.
The mass of the human body and equipment can be set to 100 kg. A
skydiver in spread-eagle formation has a cross-section of 0.5 m2 in the
horizontal plane. The density of air decreases with altitude, but can be
taken as constant, 1 kg/m3, for altitudes relevant to skydiving (0-4000
m). The drag coefficient for a man in upright position can be set to 1.2.
Start with a zero velocity. A free fall typically has a terminating velocity
of 45 m/s. (This value can be used to tune other parameters.)

g) The next task is to simulate a parachute jumper during free fall
and after the parachute opens. At time tp, the parachute opens and the
drag coefficient and the cross-sectional area change dramatically. Use
the program to simulate a jump from z = 3000 m to the ground z = 0.
What is the maximum acceleration, measured in units of g, experienced
by the jumper?

Hint. Following Meade and Struthers [11], one can set the cross-section
area perpendicular to the motion to 44 m2 when the parachute is open.
Assume that it takes 8 s to increase the area linearly from the original to
the final value. The drag coefficient for an open parachute can be taken as
1.8, but tuned using the known value of the typical terminating velocity

http://en.wikipedia.org/wiki/Parachuting

146 4 Models

reached before landing: 5.3 m/s. One can take the drag coefficient as a
piecewise constant function with an abrupt change at tp. The parachute
is typically released after tp = 60 s, but larger values of tp can be used
to make plots more illustrative.
Filename: parachuting.

Exercise 4.16: Formulate vertical motion in the atmosphere

Vertical motion of a body in the atmosphere needs to take into account
a varying air density if the range of altitudes is many kilometers. In this
case, % varies with the altitude z. The equation of motion for the body
is given in Section 4.11. Let us assume quadratic drag force (otherwise
the body has to be very, very small). A differential equation problem for
the air density, based on the information for the one-layer atmospheric
model in Section 4.9, can be set up as

p′(z) = − Mg

R∗(T0 + Lz)p, (4.66)

% = p
M

R∗T
. (4.67)

To evaluate p(z) we need the altitude z. From the principle that the
velocity is the derivative of the position we have that

z′(t) = v(t), (4.68)

where v is the velocity of the body.
Explain in detail how the governing equations can be discretized by

the Forward Euler and the Crank-Nicolson methods. Discuss pros and
cons of the two methods. Filename: falling_in_variable_density.

Exercise 4.17: Simulate vertical motion in the atmosphere

Implement the Forward Euler or the Crank-Nicolson scheme derived in
Exercise 4.16. Demonstrate the effect of air density variation on a falling
human, e.g., the famous fall of Felix Baumgartner. The drag coefficient
can be set to 1.2. Filename: falling_in_variable_density.

http://en.wikipedia.org/wiki/Felix_Baumgartner

4.14 Exercises 147

Problem 4.18: Compute y = |x| by solving an ODE
Consider the ODE problem

y′(x) =
{
−1, x < 0,
1, x ≥ 0 x ∈ (−1, 1], y(1−) = 1,

which has the solution y(x) = |x|. Using a mesh x0 = −1, x1 = 0, and
x2 = 1, calculate by hand y1 and y2 from the Forward Euler, Backward
Euler, Crank-Nicolson, and Leapfrog methods. Use all of the former
three methods for computing the y1 value to be used in the Leapfrog
calculation of y2. Thereafter, visualize how these schemes perform for a
uniformly partitioned mesh with N = 10 and N = 11 points. Filename:
signum.

Problem 4.19: Simulate fortune growth with random interest
rate
The goal of this exercise is to compute the value of a fortune subject
to inflation and a random interest rate. Suppose that the inflation is
constant at i percent per year and that the annual interest rate, p, changes
randomly at each time step, starting at some value p0 at t = 0. The
random change is from a value pn at t = tn to pn +∆p with probability
0.25 and pn−∆p with probability 0.25. No change occurs with probability
0.5. There is also no change if pn+1 exceeds 15 or becomes below 1. Use
a time step of one month, p0 = i, initial fortune scaled to 1, and simulate
1000 scenarios of length 20 years. Compute the mean evolution of one
unit of money and the corresponding standard deviation. Plot the mean
curve along with the mean plus one standard deviation and the mean
minus one standard deviation. This will illustrate the uncertainty in the
mean curve.
Hint 1. The following code snippet computes pn+1:

import random

def new_interest_rate(p_n, dp=0.5):
r = random.random() # uniformly distr. random number in [0,1)
if 0 <= r < 0.25:

p_np1 = p_n + dp
elif 0.25 <= r < 0.5:

p_np1 = p_n - dp
else:

p_np1 = p_n

148 4 Models

return (p_np1 if 1 <= p_np1 <= 15 else p_n)

Hint 2. If ui(t) is the value of the fortune in experiment number i,
i = 0, . . . , N − 1, the mean evolution of the fortune is

ū(t) = 1
N

N−1∑
i=0

ui(t),

and the standard deviation is

s(t) =

√√√√ 1
N − 1

(
−(ū(t))2 +

N−1∑
i=0

(ui(t))2

)
.

Suppose ui(t) is stored in an array u. The mean and the standard
deviation of the fortune is most efficiently computed by using two ac-
cumulation arrays, sum_u and sum_u2, and performing sum_u += u and
sum_u2 += u**2 after every experiment. This technique avoids storing
all the ui(t) time series for computing the statistics.
Filename: random_interest.

Exercise 4.20: Simulate a population in a changing
environment

We shall study a population modeled by (4.3) where the environment,
represented by r and f , undergoes changes with time.

a) Assume that there is a sudden drop (increase) in the birth (death)
rate at time t = tr, because of limited nutrition or food supply:

r(t) =
{
%, t < tr,
%− A, t ≥ tr,

This drop in population growth is compensated by a sudden net immi-
gration at time tf > tr:

f(t) =
{

0, t < tf ,
f0, t ≥ ta,

Start with % and make A > %. Experiment with these and other parame-
ters to illustrate the interplay of growth and decay in such a problem.

4.14 Exercises 149

b) Now we assume that the environmental conditions changes periodically
with time so that we may take

r(t) = %+ A sin
(2π
P
t

)
.

That is, the combined birth and death rate oscillates around % with a
maximum change of ±A repeating over a period of length P in time. Set
f = 0 and experiment with the other parameters to illustrate typical
features of the solution.
Filename: population.py.

Exercise 4.21: Simulate logistic growth

Solve the logistic ODE (4.4) using a Crank-Nicolson scheme where
(un+ 1

2)2 is approximated by a geometric mean:

(un+ 1
2)2 ≈ un+1un .

This trick makes the discrete equation linear in un+1. Filename:
logistic_CN.

Exercise 4.22: Rederive the equation for continuous
compound interest

The ODE model (4.7) was derived under the assumption that r was
constant. Perform an alternative derivation without this assumption: 1)
start with (4.5); 2) introduce a time step ∆t instead of m: ∆t = 1/m
if t is measured in years; 3) divide by ∆t and take the limit ∆t → 0.
Simulate a case where the inflation is at a constant level I percent per
year and the interest rate oscillates: r = −I/2 + r0 sin(2πt). Compare
solutions for r0 = I, 3I/2, 2I. Filename: interest_modeling.

Exercise 4.23: Simulate the deformation of a viscoelastic
material

Stretching a rod made of polymer will cause deformations that are well
described with a Kelvin-Voigt material model (4.49). At t = 0 we apply
a constant force σ = σ0, but at t = t1, we remove the force so σ = 0.

150 4 Models

Compute numerically the corresponding strain (elongation divided by
the rod’s length) and visualize how it responds in time.

Hint. To avoid finding proper values of the E and η parameters for a
polymer, one can scale the problem. A common dimensionless time is
t̄ = tE/η. Note that ε is already dimensionless by definition, but it takes
on small values, say up to 0.1, so we introduce a scaling: ū = 10ε such
that ū takes on values up to about unity.

Show that the material model then takes the form ū′ = −ū+10σ(t)/E.
Work with the dimensionless force F = 10σ(t)/E, and let F = 1 for
t̄ ∈ (0, t̄1) and F = 0 for t̄ ≥ t̄1. A possible choice of t1 is the characteristic
time η/E, which means that t̄1 = 1.
Filename: KelvinVoigt.

Scientific software engineering 5

Teaching material on scientific computing has traditionally been very
focused on the mathematics and the applications, while details on how
the computer is programmed to solve the problems have received little
attention. Many end up writing as simple programs as possible, without
being aware of much useful computer science technology that would
increase the fun, efficiency, and reliability of the their scientific computing
activities.

This chapter demonstrates a series of good practices and tools from
modern computer science, using the simple mathematical problem u′ =
−au, u(0) = I, such that we minimize the mathematical details and
can go more in depth with implementations. The goal is to increase the
technological quality of computer programming and make it match the
more well-established quality of the mathematics of scientific computing.

The conventions and techniques outlined here will save you a lot of
time when you incrementally extend software over time from simpler to
more complicated problems. In particular, you will benefit from many
good habits:

• new code is added in a modular fashion to a library (modules),
• programs are run through convenient user interfaces,
• it takes one quick command to let all your code undergo heavy testing,
• tedious manual work with running programs is automated,
• your scientific investigations are reproducible,
• scientific reports with top quality typesetting are produced both for

paper and electronic devices.

© 2016, Hans Petter Langtangen. Released under CC Attribution 4.0 license

152 5 Scientific software engineering

5.1 Implementations with functions and modules

All previous examples in this book have implemented numerical algo-
rithms as Python functions. This is a good style that readers are expected
to adopt. However, this author has experienced that many students and
engineers are inclined to make “flat” programs, i.e., a sequence of state-
ments without any use of functions, just to get the problem solved as
quickly as possible. Since this programming style is so widespread, es-
pecially among people with MATLAB experience, we shall look at the
weaknesses of flat programs and show how they can be refactored into
more reusable programs based on functions.

5.1.1 Mathematical problem and solution technique

We address the differential equation problem

u′(t) = −au(t), t ∈ (0, T], (5.1)
u(0) = I, (5.2)

where a, I, and T are prescribed parameters, and u(t) is the unknown
function to be estimated. This mathematical model is relevant for physical
phenomena featuring exponential decay in time, e.g., vertical pressure
variation in the atmosphere, cooling of an object, and radioactive decay.

As we learned in Chapter 1.1.2, the time domain is discretized with
points 0 = t0 < t1 · · · < tNt = T , here with a constant spacing ∆t
between the mesh points: ∆t = tn − tn−1, n = 1, . . . , Nt. Let un be the
numerical approximation to the exact solution at tn. A family of popular
numerical methods are provided by the θ scheme,

un+1 = 1− (1− θ)a∆t
1 + θa∆t

un, (5.3)

for n = 0, 1, . . . , Nt−1. This formula produces the Forward Euler scheme
when θ = 0, the Backward Euler scheme when θ = 1, and the Crank-
Nicolson scheme when θ = 1/2.

5.1 Implementations with functions and modules 153

5.1.2 A first, quick implementation

Solving (5.3) in a program is very straightforward: just make a loop over
n and evaluate the formula. The u(tn) values for discrete n can be stored
in an array. This makes it easy to also plot the solution. It would be
natural to also add the exact solution curve u(t) = Ie−at to the plot.

Many have programming habits that would lead them to write a simple
program like this:

from numpy import *
from matplotlib.pyplot import *

A = 1
a = 2
T = 4
dt = 0.2
N = int(round(T/dt))
y = zeros(N+1)
t = linspace(0, T, N+1)
theta = 1
y[0] = A
for n in range(0, N):

y[n+1] = (1 - (1-theta)*a*dt)/(1 + theta*dt*a)*y[n]

y_e = A*exp(-a*t) - y
error = y_e - y
E = sqrt(dt*sum(error**2))
print ’Norm of the error: %.3E’ % E
plot(t, y, ’r--o’)
t_e = linspace(0, T, 1001)
y_e = A*exp(-a*t_e)
plot(t_e, y_e, ’b-’)
legend([’numerical, theta=%g’ % theta, ’exact’])
xlabel(’t’)
ylabel(’y’)
show()

This program is easy to read, and as long as it is correct, many will
claim that it has sufficient quality. Nevertheless, the program suffers from
two serious flaws:

1. The notation in the program does not correspond exactly to the
notation in the mathematical problem: the solution is called y and
corresponds to u in the mathematical description, the variable A
corresponds to the mathematical parameter I, N in the program is
called Nt in the mathematics.

2. There are no comments in the program.

154 5 Scientific software engineering

These kind of flaws quickly become crucial if present in code for compli-
cated mathematical problems and code that is meant to be extended to
other problems.

We also note that the program is flat in the sense that it does not
contain functions. Usually, this is a bad habit, but let us first correct the
two mentioned flaws.

5.1.3 A more decent program

A code of better quality arises from fixing the notation and adding
comments:

from numpy import *
from matplotlib.pyplot import *

I = 1
a = 2
T = 4
dt = 0.2
Nt = int(round(T/dt)) # no of time intervals
u = zeros(Nt+1) # array of u[n] values
t = linspace(0, T, Nt+1) # time mesh
theta = 1 # Backward Euler method

u[0] = I # assign initial condition
for n in range(0, Nt): # n=0,1,...,Nt-1

u[n+1] = (1 - (1-theta)*a*dt)/(1 + theta*dt*a)*u[n]

Compute norm of the error
u_e = I*exp(-a*t) - u # exact u at the mesh points
error = u_e - u
E = sqrt(dt*sum(error**2))
print ’Norm of the error: %.3E’ % E

Compare numerical (u) and exact solution (u_e) in a plot
plot(t, u, ’r--o’)
t_e = linspace(0, T, 1001) # very fine mesh for u_e
u_e = I*exp(-a*t_e)
plot(t_e, u_e, ’b-’)
legend([’numerical, theta=%g’ % theta, ’exact’])
xlabel(’t’)
ylabel(’u’)
show()

Comments in a program. There is obviously not just one way to
comment a program, and opinions may differ as to what code should be
commented. The guiding principle is, however, that comments should

5.1 Implementations with functions and modules 155

make the program easy to understand for the human eye. Do not comment
obvious constructions, but focus on ideas and (“what happens in the next
statements?”) and on explaining code that can be found complicated.

Refactoring into functions. At first sight, our updated program seems
like a good starting point for playing around with the mathematical
problem: we can just change parameters and rerun. Although such edit-
and-rerun sessions are good for initial exploration, one will soon extend
the experiments and start developing the code further. Say we want to
compare θ = 0, 1, 0.5 in the same plot. This extension requires changes all
over the code and quickly leads to errors. To do something serious with
this program, we have to break it into smaller pieces and make sure each
piece is well tested, and ensure that the program is sufficiently general
and can be reused in new contexts without changes. The next natural step
is therefore to isolate the numerical computations and the visualization in
separate Python functions. Such a rewrite of a code, without essentially
changing the functionality, but just improve the quality of the code,
is known as refactoring. After quickly putting together and testing a
program, the next step is to refactor it so it becomes better prepared for
extensions.

Program file vs IDE vs notebook. There are basically three different
ways of working with Python code:

1. One writes the code in a file, using a text editor (such as Emacs or
Vim) and runs it in a terminal window.

2. One applies an Integrated Development Environment (the simplest
is IDLE, which comes with standard Python) containing a graphical
user interface with an editor and an element where Python code can
be run.

3. One applies the Jupyter Notebook (previously known as IPython
Notebook), which offers an interactive environment for Python code
where plots are automatically inserted after the code, see Figure 5.1.

It appears that method 1 and 2 are quite equivalent, but the notebook
encourages more experimental code and therefore also flat programs.
Consequently, notebook users will normally need to think more about
refactoring code and increase the use of functions after initial experimen-
tation.

156 5 Scientific software engineering

Fig. 5.1 Experimental code in a notebook.

5.1.4 Prefixing imported functions by the module name

Import statements of the form from module import * import all func-
tions and variables in module.py into the current file. This is often
referred to as “import star”, and many find this convenient, but it is not
considered as a good programming style in Python. For example, when
doing

from numpy import *
from matplotlib.pyplot import *

we get mathematical functions like sin and exp as well as MATLAB-
style functions like linspace and plot, which can be called by these
well-known names. Unfortunately, it sometimes becomes confusing to
know where a particular function comes from, i.e., what modules you
need to import. Is a desired function from numpy or matplotlib.pyplot?
Or is it our own function? These questions are easy to answer if functions
in modules are prefixed by the module name. Doing an additional from
math import * is really crucial: now sin, cos, and other mathematical
functions are imported and their names hide those previously imported
from numpy. That is, sin is now a sine function that accepts a float
argument, not an array.

5.1 Implementations with functions and modules 157

Doing the import such that module functions must have a prefix is
generally recommended:

import numpy
import matplotlib.pyplot

t = numpy.linspace(0, T, Nt+1)
u_e = I*numpy.exp(-a*t)
matplotlib.pyplot.plot(t, u_e)

The modules numpy and matplotlib.pyplot are frequently used, and
since their full names are quite tedious to write, two standard abbrevia-
tions have evolved in the Python scientific computing community:

import numpy as np
import matplotlib.pyplot as plt

t = np.linspace(0, T, Nt+1)
u_e = I*np.exp(-a*t)
plt.plot(t, u_e)

The downside of prefixing functions by the module name is that
mathematical expressions like e−at sin(2πt) get cluttered with module
names,

numpy.exp(-a*t)*numpy.sin(2(numpy.pi*t)
or
np.exp(-a*t)*np.sin(2*np.pi*t)

Such an expression looks like exp(-a*t)*sin(2*pi*t) in most other
programming languages. Similarly, np.linspace and plt.plot look less
familiar to people who are used to MATLAB and who have not adopted
Python’s prefix style. Whether to do from module import * or import
module depends on personal taste and the problem at hand. In these
writings we use from module import * in more basic, shorter programs
where similarity with MATLAB could be an advantage. However, in
reusable modules we prefix calls to module functions by their function
name, or do explicit import of the needed functions:

from numpy import exp, sum, sqrt

def u_exact(t, I, a):
return I*exp(-a*t)

error = u_exact(t, I, a) - u
E = sqrt(dt*sum(error**2))

158 5 Scientific software engineering

Prefixing module functions or not?

It can be advantageous to do a combination: mathematical functions
in formulas are imported without prefix, while module functions in
general are called with a prefix. For the numpy package we can do

import numpy as np
from numpy import exp, sum, sqrt

such that mathematical expression can apply exp, sum, and sqrt
and hence look as close to the mathematical formulas as possible
(without a disturbing prefix). Other calls to numpy function are done
with the prefix, as in np.linspace.

5.1.5 Implementing the numerical algorithm in a function

The solution formula (5.3) is completely general and should be available
as a Python function solver with all input data as function arguments
and all output data returned to the calling code. With this solver
function we can solve all types of problems (5.1)-(5.2) by an easy-to-read
one-line statement:

u, t = solver(I=1, a=2, T=4, dt=0.2, theta=0.5)

Refactoring the numerical method in the previous flat program in
terms of a solver function and prefixing calls to module functions by
the module name leads to this code:

def solver(I, a, T, dt, theta):
"""Solve u’=-a*u, u(0)=I, for t in (0,T] with steps of dt."""
dt = float(dt) # avoid integer division
Nt = int(round(T/dt)) # no of time intervals
T = Nt*dt # adjust T to fit time step dt
u = np.zeros(Nt+1) # array of u[n] values
t = np.linspace(0, T, Nt+1) # time mesh

u[0] = I # assign initial condition
for n in range(0, Nt): # n=0,1,...,Nt-1

u[n+1] = (1 - (1-theta)*a*dt)/(1 + theta*dt*a)*u[n]
return u, t

5.1 Implementations with functions and modules 159

Tip: Always use a doc string to document a function!

Python has a convention for documenting the purpose and usage of
a function in a doc string: simply place the documentation in a one-
or multi-line triple-quoted string right after the function header.

Be careful with unintended integer division!

Note that we in the solver function explicitly covert dt to a float
object. If not, the updating formula for u[n+1] may evaluate to
zero because of integer division when theta, a, and dt are integers!

5.1.6 Do not have several versions of a code
One of the most serious flaws in computational work is to have several
slightly different implementations of the same computational algorithms
lying around in various program files. This is very likely to happen,
because busy scientists often want to test a slight variation of a code
to see what happens. A quick copy-and-edit does the task, but such
quick hacks tend to survive. When a real correction is needed in the
implementation, it is difficult to ensure that the correction is done in all
relevant files. In fact, this is a general problem in programming, which
has led to an important principle.

The DRY principle: Don’t repeat yourself!

When implementing a particular functionality in a computer pro-
gram, make sure this functionality and its variations are imple-
mented in just one piece of code. That is, if you need to revise the
implementation, there should be one and only one place to edit. It
follows that you should never duplicate code (don’t repeat yourself!),
and code snippets that are similar should be factored into one piece
(function) and parameterized (by function arguments).

The DRY principle means that our solver function should not be
copied to a new file if we need some modifications. Instead, we should try
to extend solver such that the new and old needs are met by a single

160 5 Scientific software engineering

function. Sometimes this process requires a new refactoring, but having
a numerical method in one and only one place is a great advantage.

5.1.7 Making a module

As soon as you start making Python functions in a program, you should
make sure the program file fulfills the requirement of a module. This
means that you can import and reuse your functions in other programs
too. For example, if our solver function resides in a module file decay.py,
another program may reuse of the function either by

from decay import solver
u, t = solver(I=1, a=2, T=4, dt=0.2, theta=0.5)

or by a slightly different import statement, combined with a subsequent
prefix of the function name by the name of the module:

import decay
u, t = decay.solver(I=1, a=2, T=4, dt=0.2, theta=0.5)

The requirements for a program file to also qualify for a module are
simple:

1. The filename without .py must be a valid Python variable name.
2. The main program must be executed (through statements or a function

call) in the test block.

The test block is normally placed at the end of a module file:

if __name__ == ’__main__’:
Statements

When the module file is executed as a stand-alone program, the if test is
true and the indented statements are run. If the module file is imported,
however, __name__ equals the module name and the test block is not
executed.

To demonstrate the difference, consider the trivial module file
hello.py with one function and a call to this function as main pro-
gram:

def hello(arg=’World!’):
print ’Hello, ’ + arg

if __name__ == ’__main__’:
hello()

5.1 Implementations with functions and modules 161

Without the test block, the code reads

def hello(arg=’World!’):
print ’Hello, ’ + arg

hello()

With this latter version of the file, any attempt to import hello will, at
the same time, execute the call hello() and hence write “Hello, World!”
to the screen. Such output is not desired when importing a module! To
make import and execution of code independent for another program that
wants to use the function hello, the module hello must be written with
a test block. Furthermore, running the file itself as python hello.py
will make the block active and lead to the desired printing.

All coming functions are placed in a module!

The many functions to be explained in the following text are put in
one module file decay.py.

What more than the solver function is needed in our decay module
to do everything we did in the previous, flat program? We need import
statements for numpy and matplotlib as well as another function for
producing the plot. It can also be convenient to put the exact solution
in a Python function. Our module decay.py then looks like this:

import numpy as np
import matplotlib.pyplot as plt

def solver(I, a, T, dt, theta):
...

def u_exact(t, I, a):
return I*np.exp(-a*t)

def experiment_compare_numerical_and_exact():
I = 1; a = 2; T = 4; dt = 0.4; theta = 1
u, t = solver(I, a, T, dt, theta)

t_e = np.linspace(0, T, 1001) # very fine mesh for u_e
u_e = u_exact(t_e, I, a)

plt.plot(t, u, ’r--o’) # dashed red line with circles
plt.plot(t_e, u_e, ’b-’) # blue line for u_e
plt.legend([’numerical, theta=%g’ % theta, ’exact’])
plt.xlabel(’t’)
plt.ylabel(’u’)

http://tinyurl.com/ofkw6kc/softeng/decay.py

162 5 Scientific software engineering

plotfile = ’tmp’
plt.savefig(plotfile + ’.png’); plt.savefig(plotfile + ’.pdf’)

error = u_exact(t, I, a) - u
E = np.sqrt(dt*np.sum(error**2))
print ’Error norm:’, E

if __name__ == ’__main__’:
experiment_compare_numerical_and_exact()

We could consider doing from numpy import exp, sqrt, sum to make
the mathematical expressions with these functions closer to the mathe-
matical formulas, but here we employed the prefix since the formulas are
so simple and easy to read.

This module file does exactly the same as the previous, flat program,
but now it becomes much easier to extend the code with more functions
that produce other plots, other experiments, etc. Even more important,
though, is that the numerical algorithm is coded and tested once and
for all in the solver function, and any need to solve the mathematical
problem is a matter of one function call.

5.1.8 Example on extending the module code

Let us specifically demonstrate one extension of the flat program in
Section 5.1.2 that would require substantial editing of the flat code
(Section 5.1.3), while in a structured module (Section 5.1.7), we can
simply add a new function without affecting the existing code.

Our example that illustrates the extension is to make a comparison
between the numerical solutions for various schemes (θ values) and the
exact solution:

5.1 Implementations with functions and modules 163

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
0.0

0.2

0.4

0.6

0.8

1.0
theta=0
theta=1
theta=0.5
exact

Wait a minute!
Look at the flat program in Section 5.1.2, and try to imagine which
edits that are required to solve this new problem.

With the solver function at hand, we can simply create a function
with a loop over theta values and add the necessary plot statements:

def experiment_compare_schemes():
"""Compare theta=0,1,0.5 in the same plot."""
I = 1; a = 2; T = 4; dt = 0.4
legends = []
for theta in [0, 1, 0.5]:

u, t = solver(I, a, T, dt, theta)
plt.plot(t, u, ’--o’)
legends.append(’theta=%g’ % theta)

t_e = np.linspace(0, T, 1001) # very fine mesh for u_e
u_e = u_exact(t_e, I, a)
plt.plot(t_e, u_e, ’b-’)
legends.append(’exact’)
plt.legend(legends, loc=’upper right’)
plotfile = ’tmp’
plt.savefig(plotfile + ’.png’); plt.savefig(plotfile + ’.pdf’)

A call to this experiment_compare_schemes function must be placed
in the test block, or you can run the program from IPython instead:

In[1]: from decay import *

In[2]: experiment_compare_schemes()

164 5 Scientific software engineering

We do not present how the flat program from Section 5.1.3 must be
refactored to produce the desired plots, but simply state that the danger
of introducing bugs is significantly larger than when just writing an
additional function in the decay module.

5.1.9 Documenting functions and modules

We have already emphasized the importance of documenting functions
with a doc string (see Section 5.1.5). Now it is time to show how doc
strings should be structured in order to take advantage of the documen-
tation utilities in the numpy module. The idea is to follow a convention
that in itself makes a good pure text doc string in the terminal window
and at the same time can be translated to beautiful HTML manuals for
the web.

The conventions for numpy style doc strings are well documented, so
here we just present a basic example that the reader can adopt. Input
arguments to a function are listed under the heading Parameters, while
returned values are listed under Returns. It is a good idea to also add
an Examples section on the usage of the function. More complicated
software may have additional sections, see pydoc numpy.load for an ex-
ample. The markup language available for doc strings is Sphinx-extended
reStructuredText. The example below shows typical constructs: 1) how in-
line mathematics is written with the :math: directive, 2) how arguments
to the functions are referred to using single backticks (inline monospace
font for code applies double backticks), and 3) how arguments and return
values are listed with types and explanation.

def solver(I, a, T, dt, theta):
"""
Solve :math:‘u’=-au‘ with :math:‘u(0)=I‘ for :math:‘t \in (0,T]‘
with steps of ‘dt‘ and the method implied by ‘theta‘.

Parameters

I: float

Initial condition.
a: float

Parameter in the differential equation.
T: float

Total simulation time.
theta: float, int

Parameter in the numerical scheme. 0 gives
Forward Euler, 1 Backward Euler, and 0.5
the centered Crank-Nicolson scheme.

https://github.com/numpy/numpy/blob/master/doc/HOWTO_DOCUMENT.rst.txt

5.1 Implementations with functions and modules 165

Returns

‘u‘: array

Solution array.
‘t‘: array

Array with time points corresponding to ‘u‘.

Examples

Solve :math:‘u’ = -\\frac{1}{2}u, u(0)=1.5‘
with the Crank-Nicolson method:

>>> u, t = solver(I=1.5, a=0.5, T=9, theta=0.5)
>>> import matplotlib.pyplot as plt
>>> plt.plot(t, u)
>>> plt.show()
"""

If you follow such doc string conventions in your software, you can easily
produce nice manuals that meet the standard expected within the Python
scientific computing community.

Sphinx requires quite a number of manual steps to prepare a manual,
so it is recommended to use a premade script to automate the steps.
(By default, the script generates documentation for all *.py files in
the current directory. You need to do a pip install of sphinx and
numpydoc to make the script work.) Figure 5.2 provides an example of
what the above doc strings look like when Sphinx has transformed them
to HTML.

Fig. 5.2 Example on Sphinx API manual in HTML.

http://sphinx-doc.org/
http://tinyurl.com/ofkw6kc/softeng/make_sphinx_api.py

166 5 Scientific software engineering

5.1.10 Logging intermediate results

Sometimes one may wish that a simulation program could write out
intermediate results for inspection. This could be accomplished by a
(global) verbose variable and code like

if verbose >= 2:
print ’u[%d]=%g’ % (i, u[i])

The professional way to do report intermediate results and problems is,
however, to use a logger. This is an object that writes messages to a log
file. The messages are classified as debug, info, and warning.

Introductory example. Here is a simple example using defining a logger,
using Python’s logging module:

import logging
Configure logger
logging.basicConfig(

filename=’myprog.log’, filemode=’w’, level=logging.WARNING,
format=’%(asctime)s - %(levelname)s - %(message)s’,
datefmt=’%m/%d/%Y %I:%M:%S %p’)

Perform logging
logging.info(’Here is some general info.’)
logging.warning(’Here is a warning.’)
logging.debug(’Here is some debugging info.’)
logging.critical(’Dividing by zero!’)
logging.error(’Encountered an error.’)

Running this program gives the following output in the log file
myprog.log:

09/26/2015 09:25:10 AM - INFO - Here is some general info.
09/26/2015 09:25:10 AM - WARNING - Here is a warning.
09/26/2015 09:25:10 AM - CRITICAL - Dividing by zero!
09/26/2015 09:25:10 AM - ERROR - Encountered an error.

The logger has different levels of messages, ordered as critical, error,
warning, info, and debug. The level argument to logging.basicConfig
sets the level and thereby determines what the logger will print to the file:
all messages at the specified and lower levels are printed. For example, in
the above example we set the level to be info, and therefore the critical,
error, warning, and info messages were printed, but not the debug message.
Setting level to debug (logging.DEBUG) prints all messages, while level
critical prints only the critical messages.

The filemode argument is set to w such that any existing log file
is overwritten (the default is a, which means append new messages to

5.1 Implementations with functions and modules 167

an existing log file, but this is seldom what you want in mathematical
computations).

The messages are preceded by the date and time and the level of the
message. This output is governed by the format argument: asctime is
the date and time, levelname is the name of the message level, and
message is the message itself. Setting format=’%(message)s’ ensures
that just the message and nothing more is printed on each line. The
datefmt string specifies the formatting of the date and time, using the
rules of the time.strftime function.

Using a logger in our solver function. Let us let a logger write out
intermediate results and some debugging results in the solver function.
Such messages are useful for monitoring the simulation and for debugging
it, respectively.

def solver_with_logging(I, a, T, dt, theta):
"""Solve u’=-a*u, u(0)=I, for t in (0,T] with steps of dt."""
dt = float(dt) # avoid integer division
Nt = int(round(T/dt)) # no of time intervals
T = Nt*dt # adjust T to fit time step dt
u = np.zeros(Nt+1) # array of u[n] values
t = np.linspace(0, T, Nt+1) # time mesh
logging.debug(’solver: dt=%g, Nt=%g, T=%g’ % (dt, Nt, T))

u[0] = I # assign initial condition
for n in range(0, Nt): # n=0,1,...,Nt-1

u[n+1] = (1 - (1-theta)*a*dt)/(1 + theta*dt*a)*u[n]

logging.info(’u[%d]=%g’ % (n, u[n]))
logging.debug(’1 - (1-theta)*a*dt: %g, %s’ %

(1-(1-theta)*a*dt,
str(type(1-(1-theta)*a*dt))[7:-2]))

logging.debug(’1 + theta*dt*a: %g, %s’ %
(1 + theta*dt*a,
str(type(1 + theta*dt*a))[7:-2]))

return u, t

The application code that calls solver_with_logging needs to configure
the logger. The decay module offers a default configure function:

import logging

def configure_basic_logger():
logging.basicConfig(

filename=’decay.log’, filemode=’w’, level=logging.DEBUG,
format=’%(asctime)s - %(levelname)s - %(message)s’,
datefmt=’%Y.%m.%d %I:%M:%S %p’)

https://docs.python.org/2/library/time.html#time.strftime

168 5 Scientific software engineering

If the user of a library does not configure a logger or call this configure
function, the library should prevent error messages by declaring a default
logger that does nothing:

import logging
logging.getLogger(’decay’).addHandler(logging.NullHandler())

We can run the new solver function with logging in a shell:

>>> import decay
>>> decay.configure_basic_logger()
>>> u, t = decay.solver_with_logging(I=1, a=0.5, T=10, \

dt=0.5, theta=0.5)

During this execution, each logging message is appended to the log file.
Suppose we add some pause (time.sleep(2)) at each time level such
that the execution takes some time. In another terminal window we can
then monitor the evolution of decay.log and the simulation by the tail
-f Unix command:

Terminal> tail -f decay.log
2015.09.26 05:37:41 AM - INFO - u[0]=1
2015.09.26 05:37:41 AM - INFO - u[1]=0.777778
2015.09.26 05:37:41 AM - INFO - u[2]=0.604938
2015.09.26 05:37:41 AM - INFO - u[3]=0.470508
2015.09.26 05:37:41 AM - INFO - u[4]=0.36595
2015.09.26 05:37:41 AM - INFO - u[5]=0.284628

Especially in simulation where each time step demands considerable CPU
time (minutes, hours), it can be handy to monitor such a log file to see
the evolution of the simulation.

If we want to look more closely into the numerator and denomi-
nator of the formula for un+1, we can change the logging level to
level=logging.DEBUG and get output in decay.log like

2015.09.26 05:40:01 AM - DEBUG - solver: dt=0.5, Nt=20, T=10
2015.09.26 05:40:01 AM - INFO - u[0]=1
2015.09.26 05:40:01 AM - DEBUG - 1 - (1-theta)*a*dt: 0.875, float
2015.09.26 05:40:01 AM - DEBUG - 1 + theta*dt*a: 1.125, float
2015.09.26 05:40:01 AM - INFO - u[1]=0.777778
2015.09.26 05:40:01 AM - DEBUG - 1 - (1-theta)*a*dt: 0.875, float
2015.09.26 05:40:01 AM - DEBUG - 1 + theta*dt*a: 1.125, float
2015.09.26 05:40:01 AM - INFO - u[2]=0.604938
2015.09.26 05:40:01 AM - DEBUG - 1 - (1-theta)*a*dt: 0.875, float
2015.09.26 05:40:01 AM - DEBUG - 1 + theta*dt*a: 1.125, float
2015.09.26 05:40:01 AM - INFO - u[3]=0.470508
2015.09.26 05:40:01 AM - DEBUG - 1 - (1-theta)*a*dt: 0.875, float
2015.09.26 05:40:01 AM - DEBUG - 1 + theta*dt*a: 1.125, float
2015.09.26 05:40:01 AM - INFO - u[4]=0.36595
2015.09.26 05:40:01 AM - DEBUG - 1 - (1-theta)*a*dt: 0.875, float
2015.09.26 05:40:01 AM - DEBUG - 1 + theta*dt*a: 1.125, float

5.2 User interfaces 169

Logging can be much more sophisticated than shown above. One can,
e.g., output critical messages to the screen and all messages to a file.
This requires more code as demonstrated in the Logging Cookbook.

5.2 User interfaces

It is good programming practice to let programs read input from some
user interface, rather than requiring users to edit parameter values in the
source code. With effective user interfaces it becomes easier and safer to
apply the code for scientific investigations and in particular to automate
large-scale investigations by other programs (see Section 5.6).

Reading input data can be done in many ways. We have to decide
on the functionality of the user interface, i.e., how we want to operate
the program when providing input. Thereafter, we use appropriate tools
to implement the particular user interface. There are four basic types
of user interface, listed here according to implementational complexity,
from lowest to highest:

1. Questions and answers in the terminal window
2. Command-line arguments
3. Reading data from files
4. Graphical user interfaces (GUIs)

Personal preferences of user interfaces differ substantially, and it is
difficult to present recommendations or pros and cons. Alternatives 2
and 4 are most popular and will be addressed next. The goal is to
make it easy for the user to set physical and numerical parameters in
our decay.py program. However, we use a little toy program, called
prog.py, as introductory example:

delta = 0.5
p = 2
from math import exp
result = delta*exp(-p)
print result

The essential content is that prog.py has two input parameters: delta
and p. A user interface will replace the first two assignments to delta
and p.

https://docs.python.org/2/howto/logging-cookbook.html

170 5 Scientific software engineering

5.2.1 Command-line arguments

The command-line arguments are all the words that appear on the
command line after the program name. Running a program prog.py as
python prog.py arg1 arg2 means that there are two command-line
arguments (separated by white space): arg1 and arg2. Python stores
all command-line arguments in a special list sys.argv. (The name argv
stems from the C language and stands for “argument values”. In C there
is also an integer variable called argc reflecting the number of arguments,
or “argument counter”. A lot of programming languages have adopted
the variable name argv for the command-line arguments.) Here is an
example on a program what_is_sys_argv.py that can show us what
the command-line arguments are

import sys
print sys.argv

A sample run goes like
Terminal

Terminal> python what_is_sys_argv.py 5.0 ’two words’ -1E+4
[’what_is_sys_argv.py’, ’5.0’, ’two words’, ’-1E+4’]

We make two observations:

• sys.argv[0] is the name of the program, and the sublist
sys.argv[1:] contains all the command-line arguments.

• Each command-line argument is available as a string. A conversion to
float is necessary if we want to compute with the numbers 5.0 and
104.

There are, in principle, two ways of programming with command-line
arguments in Python:

• Positional arguments: Decide upon a sequence of parameters on the
command line and read their values directly from the sys.argv[1:]
list.

• Option-value pairs: Use –option value on the command line to
replace the default value of an input parameter option by value (and
utilize the argparse.ArgumentParser tool for implementation).

Suppose we want to run some program prog.py with specification of
two parameters p and delta on the command line. With positional
command-line arguments we write

5.2 User interfaces 171

Terminal

Terminal> python prog.py 2 0.5

and must know that the first argument 2 represents p and the next 0.5
is the value of delta. With option-value pairs we can run

Terminal

Terminal> python prog.py --delta 0.5 --p 2

Now, both p and delta are supposed to have default values in the
program, so we need to specify only the parameter that is to be changed
from its default value, e.g.,

Terminal

Terminal> python prog.py --p 2 # p=2, default delta
Terminal> python prog.py --delta 0.7 # delta-0.7, default a
Terminal> python prog.py # default a and delta

How do we extend the prog.py code for positional arguments and
option-value pairs? Positional arguments require very simple code:

import sys
p = float(sys.argv[1])
delta = float(sys.argv[2])

from math import exp
result = delta*exp(-p)
print result

If the user forgets to supply two command-line arguments, Python will
raise an IndexError exception and produce a long error message. To
avoid that, we should use a try-except construction:

import sys
try:

p = float(sys.argv[1])
delta = float(sys.argv[2])

except IndexError:
print ’Usage: %s p delta’ % sys.argv[0]
sys.exit(1)

from math import exp
result = delta*exp(-p)
print result

Using sys.exit(1) aborts the program. The value 1 (actually any value
different from 0) notifies the operating system that the program failed.

172 5 Scientific software engineering

Command-line arguments are strings!

Note that all elements in sys.argv are string objects. If the values
are used in mathematical computations, we need to explicitly convert
the strings to numbers.

Option-value pairs requires more programming and is actually better
explained in a more comprehensive example below. Minimal code for our
prog.py program reads

import argparse
parser = argparse.ArgumentParser()
parser.add_argument(’--p’, default=1.0)
parser.add_argument(’--delta’, default=0.1)

args = parser.parse_args()
p = args.p
delta = args.delta

from math import exp
result = delta*exp(-p)
print result

Because the default values of delta and p are float numbers, the
args.delta and args.p variables are automatically of type float.

Our next task is to use these basic code constructs to equip our
decay.py module with command-line interfaces.

5.2.2 Positional command-line arguments
For our decay.py module file, we want to include functionality such that
we can read I, a, T , θ, and a range of ∆t values from the command line.
A plot is then to be made, comparing the different numerical solutions
for different ∆t values against the exact solution. The technical details
of getting the command-line information into the program is covered in
the next two sections.

The simplest way of reading the input parameters is to decide on
their sequence on the command line and just index the sys.argv list
accordingly. Say the sequence of input data for some functionality in
decay.py is I, a, T , θ followed by an arbitrary number of ∆t values.
This code extracts these positional command-line arguments:

def read_command_line_positional():
if len(sys.argv) < 6:

5.2 User interfaces 173

print ’Usage: %s I a T on/off BE/FE/CN dt1 dt2 dt3 ...’ % \
sys.argv[0]; sys.exit(1) # abort

I = float(sys.argv[1])
a = float(sys.argv[2])
T = float(sys.argv[3])
theta = float(sys.argv[4])
dt_values = [float(arg) for arg in sys.argv[5:]]

return I, a, T, theta, dt_values

Note that we may use a try-except construction instead of the if test.
A run like

Terminal

Terminal> python decay.py 1 0.5 4 0.5 1.5 0.75 0.1

results in

sys.argv = [’decay.py’, ’1’, ’0.5’, ’4’, ’0.5’, ’1.5’, ’0.75’, ’0.1’]

and consequently the assignments I=1.0, a=0.5, T=4.0, thet=0.5, and
dt_values = [1.5, 0.75, 0.1].

Instead of specifying the θ value, we could be a bit more sophisticated
and let the user write the name of the scheme: BE for Backward Euler, FE
for Forward Euler, and CN for Crank-Nicolson. Then we must map this
string to the proper θ value, an operation elegantly done by a dictionary:

scheme = sys.argv[4]
scheme2theta = {’BE’: 1, ’CN’: 0.5, ’FE’: 0}
if scheme in scheme2theta:

theta = scheme2theta[scheme]
else:

print ’Invalid scheme name:’, scheme; sys.exit(1)

Now we can do
Terminal

Terminal> python decay.py 1 0.5 4 CN 1.5 0.75 0.1

and get ‘theta=0.5‘in the code.

5.2.3 Option-value pairs on the command line

Now we want to specify option-value pairs on the command line, using
–I for I (I), –a for a (a), –T for T (T), –scheme for the scheme name
(BE, FE, CN), and –dt for the sequence of dt (∆t) values. Each parameter

174 5 Scientific software engineering

must have a sensible default value so that we specify the option on the
command line only when the default value is not suitable. Here is a
typical run:

Terminal

Terminal> python decay.py --I 2.5 --dt 0.1 0.2 0.01 --a 0.4

Observe the major advantage over positional command-line arguments:
the input is much easier to read and much easier to write. With positional
arguments it is easy to mess up the sequence of the input parameters
and quite challenging to detect errors too, unless there are just a couple
of arguments.

Python’s ArgumentParser tool in the argparse module makes it easy
to create a professional command-line interface to any program. The doc-
umentation of ArgumentParser demonstrates its versatile applications,
so we shall here just list an example containing the most basic features.
It always pays off to use ArgumentParser rather than trying to manually
inspect and interpret option-value pairs in sys.argv!

The use of ArgumentParser typically involves three steps:

import argparse
parser = argparse.ArgumentParser()

Step 1: add arguments
parser.add_argument(’--option_name’, ...)

Step 2: interpret the command line
args = parser.parse_args()

Step 3: extract values
value = args.option_name

A function for setting up all the options is handy:

def define_command_line_options():
import argparse
parser = argparse.ArgumentParser()
parser.add_argument(

’--I’, ’--initial_condition’, type=float,
default=1.0, help=’initial condition, u(0)’,
metavar=’I’)

parser.add_argument(
’--a’, type=float, default=1.0,
help=’coefficient in ODE’, metavar=’a’)

parser.add_argument(
’--T’, ’--stop_time’, type=float,
default=1.0, help=’end time of simulation’,
metavar=’T’)

parser.add_argument(

http://docs.python.org/library/argparse.html

5.2 User interfaces 175

’--scheme’, type=str, default=’CN’,
help=’FE, BE, or CN’)

parser.add_argument(
’--dt’, ’--time_step_values’, type=float,
default=[1.0], help=’time step values’,
metavar=’dt’, nargs=’+’, dest=’dt_values’)

return parser

Each command-line option is defined through the parser.add_argument
method1. Alternative options, like the short –I and the more explaining
version --initial_condition can be defined. Other arguments are
type for the Python object type, a default value, and a help string, which
gets printed if the command-line argument -h or –help is included. The
metavar argument specifies the value associated with the option when
the help string is printed. For example, the option for I has this help
output:

Terminal

Terminal> python decay.py -h
...
--I I, --initial_condition I

initial condition, u(0)
...

The structure of this output is

--I metavar, --initial_condition metavar
help-string

Finally, the –dt option demonstrates how to allow for more than one
value (separated by blanks) through the nargs=’+’ keyword argument.
After the command line is parsed, we get an object where the values
of the options are stored as attributes. The attribute name is specified
by the dist keyword argument, which for the –dt option is dt_values.
Without the dest argument, the value of an option –opt is stored as the
attribute opt.

The code below demonstrates how to read the command line and
extract the values for each option:

def read_command_line_argparse():
parser = define_command_line_options()
args = parser.parse_args()
scheme2theta = {’BE’: 1, ’CN’: 0.5, ’FE’: 0}
data = (args.I, args.a, args.T, scheme2theta[args.scheme],

args.dt_values)

1 We use the expression method here, because parser is a class variable and functions in
classes are known as methods in Python and many other languages. Readers not familiar
with class programming can just substitute this use of method by function.

176 5 Scientific software engineering

return data

As seen, the values of the command-line options are available as attributes
in args: args.opt holds the value of option –opt, unless we used the
dest argument (as for --dt_values) for specifying the attribute name.
The args.opt attribute has the object type specified by type (str by
default).

The making of the plot is not dependent on whether we read data
from the command line as positional arguments or option-value pairs:

def experiment_compare_dt(option_value_pairs=False):
I, a, T, theta, dt_values = \

read_command_line_argparse() if option_value_pairs else \
read_command_line_positional()

legends = []
for dt in dt_values:

u, t = solver(I, a, T, dt, theta)
plt.plot(t, u)
legends.append(’dt=%g’ % dt)

t_e = np.linspace(0, T, 1001) # very fine mesh for u_e
u_e = u_exact(t_e, I, a)
plt.plot(t_e, u_e, ’--’)
legends.append(’exact’)
plt.legend(legends, loc=’upper right’)
plt.title(’theta=%g’ % theta)
plotfile = ’tmp’
plt.savefig(plotfile + ’.png’); plt.savefig(plotfile + ’.pdf’)

5.2.4 Creating a graphical web user interface

The Python package Parampool can be used to automatically generate
a web-based graphical user interface (GUI) for our simulation program.
Although the programming technique dramatically simplifies the efforts
to create a GUI, the forthcoming material on equipping our decay module
with a GUI is quite technical and of significantly less importance than
knowing how to make a command-line interface.

Making a compute function. The first step is to identify a function
that performs the computations and that takes the necessary input
variables as arguments. This is called the compute function in Parampool
terminology. The purpose of this function is to take values of I, a, T
together with a sequence of ∆t values and a sequence of θ and plot
the numerical against the exact solution for each pair of (θ,∆t). The
plots can be arranged as a table with the columns being scheme type (θ

https://github.com/hplgit/parampool

5.2 User interfaces 177

value) and the rows reflecting the discretization parameter (∆t value).
Figure 5.3 displays what the graphical web interface may look like after
results are computed (there are 3× 3 plots in the GUI, but only 2× 2
are visible in the figure).

Fig. 5.3 Automatically generated graphical web interface.

To tell Parampool what type of input data we have, we assign default
values of the right type to all arguments in the compute function, here
called main_GUI:

def main_GUI(I=1.0, a=.2, T=4.0,
dt_values=[1.25, 0.75, 0.5, 0.1],
theta_values=[0, 0.5, 1]):

The compute function must return the HTML code we want for
displaying the result in a web page. Here we want to show a table of plots.
Assume for now that the HTML code for one plot and the value of the
norm of the error can be computed by some other function compute4web.
The main_GUI function can then loop over ∆t and θ values and put each
plot in an HTML table. Appropriate code goes like

def main_GUI(I=1.0, a=.2, T=4.0,
dt_values=[1.25, 0.75, 0.5, 0.1],
theta_values=[0, 0.5, 1]):

178 5 Scientific software engineering

Build HTML code for web page. Arrange plots in columns
corresponding to the theta values, with dt down the rows
theta2name = {0: ’FE’, 1: ’BE’, 0.5: ’CN’}
html_text = ’<table>\n’
for dt in dt_values:

html_text += ’<tr>\n’
for theta in theta_values:

E, html = compute4web(I, a, T, dt, theta)
html_text += """

<td>
<center>%s, dt=%g, error: %.3E</center>

%s
</td>
""" % (theta2name[theta], dt, E, html)

html_text += ’</tr>\n’
html_text += ’</table>\n’
return html_text

Making one plot is done in compute4web. The statements should be
straightforward from earlier examples, but there is one new feature: we
use a tool in Parampool to embed the PNG code for a plot file directly
in an HTML image tag. The details are hidden from the programmer,
who can just rely on relevant HTML code in the string html_text. The
function looks like

def compute4web(I, a, T, dt, theta=0.5):
"""
Run a case with the solver, compute error measure,
and plot the numerical and exact solutions in a PNG
plot whose data are embedded in an HTML image tag.
"""
u, t = solver(I, a, T, dt, theta)
u_e = u_exact(t, I, a)
e = u_e - u
E = np.sqrt(dt*np.sum(e**2))

plt.figure()
t_e = np.linspace(0, T, 1001) # fine mesh for u_e
u_e = u_exact(t_e, I, a)
plt.plot(t, u, ’r--o’)
plt.plot(t_e, u_e, ’b-’)
plt.legend([’numerical’, ’exact’])
plt.xlabel(’t’)
plt.ylabel(’u’)
plt.title(’theta=%g, dt=%g’ % (theta, dt))
Save plot to HTML img tag with PNG code as embedded data
from parampool.utils import save_png_to_str
html_text = save_png_to_str(plt, plotwidth=400)

return E, html_text

5.3 Tests for verifying implementations 179

Generating the user interface. The web GUI is automatically generated
by the following code, placed in the file decay_GUI_generate.py.

from parampool.generator.flask import generate
from decay import main_GUI
generate(main_GUI,

filename_controller=’decay_GUI_controller.py’,
filename_template=’decay_GUI_view.py’,
filename_model=’decay_GUI_model.py’)

Running the decay_GUI_generate.py program results in three new files
whose names are specified in the call to generate:

1. decay_GUI_model.py defines HTML widgets to be used to set input
data in the web interface,

2. templates/decay_GUI_views.py defines the layout of the web page,
3. decay_GUI_controller.py runs the web application.

We only need to run the last program, and there is no need to look into
these files.
Running the web application. The web GUI is started by

Terminal

Terminal> python decay_GUI_controller.py

Open a web browser at the location 127.0.0.1:5000. Input fields for
I, a, T, dt_values, and theta_values are presented. Figure 5.3 shows
a part of the resulting page if we run with the default values for the
input parameters. With the techniques demonstrated here, one can easily
create a tailored web GUI for a particular type of application and use it
to interactively explore physical and numerical effects.

5.3 Tests for verifying implementations

Any module with functions should have a set of tests that can check
the correctness of the implementations. There exists well-established
procedures and corresponding tools for automating the execution of
such tests. These tools allow large test sets to be run with a one-line
command, making it easy to check that the software still works (as far as
the tests can tell!). Here we shall illustrate two important software testing
techniques: doctest and unit testing. The first one is Python specific, while
unit testing is the dominating test technique in the software industry
today.

http://tinyurl.com/ofkw6kc/softeng/decay_GUI_generate.py

180 5 Scientific software engineering

5.3.1 Doctests

A doc string, the first string after the function header, is used to document
the purpose of functions and their arguments (see Section 5.1.5). Very
often it is instructive to include an example in the doc string on how
to use the function. Interactive examples in the Python shell are most
illustrative as we can see the output resulting from the statements and
expressions. For example, in the solver function, we can include an
example on calling this function and printing the computed u and t
arrays:

def solver(I, a, T, dt, theta):
"""
Solve u’=-a*u, u(0)=I, for t in (0,T] with steps of dt.

>>> u, t = solver(I=0.8, a=1.2, T=1.5, dt=0.5, theta=0.5)
>>> for n in range(len(t)):
... print ’t=%.1f, u=%.14f’ % (t[n], u[n])
t=0.0, u=0.80000000000000
t=0.5, u=0.43076923076923
t=1.0, u=0.23195266272189
t=1.5, u=0.12489758761948
"""
...

When such interactive demonstrations are inserted in doc strings,
Python’s doctestmodule can be used to automate running all commands
in interactive sessions and compare new output with the output appearing
in the doc string. All we have to do in the current example is to run the
module file decay.py with

Terminal> python -m doctest decay.py

This command imports the doctest module, which runs all doctests
found in the file and reports discrepancies between expected and com-
puted output. Alternatively, the test block in a module may run all
doctests by

if __name__ == ’__main__’:
import doctest
doctest.testmod()

Doctests can also be embedded in nose/pytest unit tests as explained in
the next section.

http://docs.python.org/library/doctest.html

5.3 Tests for verifying implementations 181

Doctests prevent command-line arguments!

No additional command-line argument is allowed when running
doctests. If your program relies on command-line input, make sure
the doctests can be run without such input on the command line.

However, you can simulate command-line input by filling
sys.argv with values, e.g.,

import sys; sys.argv = ’--I 1.0 --a 5’.split()

The execution command above will report any problem if a test fails.
As an illustration, let us alter the u value at t=1.5 in the output of the
doctest by replacing the last digit 8 by 7. This edit triggers a report:

Terminal

Terminal> python -m doctest decay.py
**
File "decay.py", line ...
Failed example:

for n in range(len(t)):
print ’t=%.1f, u=%.14f’ % (t[n], u[n])

Expected:
t=0.0, u=0.80000000000000
t=0.5, u=0.43076923076923
t=1.0, u=0.23195266272189
t=1.5, u=0.12489758761948

Got:
t=0.0, u=0.80000000000000
t=0.5, u=0.43076923076923
t=1.0, u=0.23195266272189
t=1.5, u=0.12489758761947

Pay attention to the number of digits in doctest results!

Note that in the output of t and u we write u with 14 digits. Writing
all 16 digits is not a good idea: if the tests are run on different
hardware, round-off errors might be different, and the doctest
module detects that the numbers are not precisely the same and
reports failures. In the present application, where 0 < u(t) ≤ 0.8, we
expect round-off errors to be of size 10−16, so comparing 15 digits
would probably be reliable, but we compare 14 to be on the safe
side. On the other hand, comparing a small number of digits may
hide software errors.

182 5 Scientific software engineering

Doctests are highly encouraged as they do two things: 1) demonstrate
how a function is used and 2) test that the function works.

5.3.2 Unit tests and test functions

The unit testing technique consists of identifying smaller units of code
and writing one or more tests for each unit. One unit can typically be a
function. Each test should, ideally, not depend on the outcome of other
tests. The recommended practice is actually to design and write the unit
tests first and then implement the functions!

In scientific computing it is not always obvious how to best perform
unit testing. The units are naturally larger than in non-scientific software.
Very often the solution procedure of a mathematical problem identifies a
unit, such as our solver function.

Two Python test frameworks: nose and pytest. Python offers two very
easy-to-use software frameworks for implementing unit tests: nose and
pytest. These work (almost) in the same way, but our recommendation
is to go for pytest.

Test function requirements. For a test to qualify as a test function in
nose or pytest, three rules must be followed:

1. The function name must start with test_.
2. Function arguments are not allowed.
3. An AssertionError exception must be raised if the test fails.

A specific example might be illustrative before proceeding. We have the
following function that we want to test:

def double(n):
return 2*n

The corresponding test function could, in principle, have been written as

def test_double():
"""Test that double(n) works for one specific n."""
n = 4
expected = 2*4
computed = double(4)
if expected != computed:

raise AssertionError

The last two lines, however, are never written like this in test func-
tions. Instead, Python’s assert statement is used: assert success,

5.3 Tests for verifying implementations 183

msg, where success is a boolean variable, which is False if the test fails,
and msg is an optional message string that is printed when the test fails.
A better version of the test function is therefore

def test_double():
"""Test that double(n) works for one specific n."""
n = 4
expected = 2*4
computed = double(4)
msg = ’expected %g, computed %g’ % (expected, computed)
success = expected == computed
assert success, msg

Comparison of real numbers. Because of the finite precision arithmetics
on a computer, which gives rise to round-off errors, the == operator is
not suitable for checking whether two real numbers are equal. Obviously,
this principle also applies to tests in test functions. We must therefore
replace a == b by a comparison based on a tolerance tol: abs(a-b) <
tol. The next example illustrates the problem and its solution.

Here is a slightly different function that we want to test:

def third(x):
return x/3.

We write a test function where the expected result is computed as 1
3x

rather than x/3:

def test_third():
"""Check that third(x) works for many x values."""
for x in np.linspace(0, 1, 21):

expected = (1/3.0)*x
computed = third(x)
success = expected == computed
assert success

This test_third function executes silently, i.e., no failure, until x be-
comes 0.15. Then round-off errors make the == comparison False. In
fact, seven of the x values above face this problem. The solution is to
compare expected and computed with a small tolerance:

def test_third():
"""Check that third(x) works for many x values."""
for x in np.linspace(0, 1, 21):

expected = (1/3.)*x
computed = third(x)
tol = 1E-15
success = abs(expected - computed) < tol
assert success

184 5 Scientific software engineering

Always compare real numbers with a tolerance!

Real numbers should never be compared with the == operator, but
always with the absolute value of the difference and a tolerance. So,
replace a == b, if a and/or b is float, by

tol = 1E-14
abs(a - b) < tol

The suitable size of tol depends on the size of a and b (see Prob-
lem 5.5). Unless a and b are around unity in size, one should use a
relative difference:

tol = 1E-14
abs((a - b)/a) < tol

Special assert functions from nose. Test frameworks often contain
more tailored assert functions that can be called instead of using the
assert statement. For example, comparing two objects within a tolerance,
as in the present case, can be done by the assert_almost_equal from
the nose framework:

import nose.tools as nt

def test_third():
x = 0.15
expected = (1/3.)*x
computed = third(x)
nt.assert_almost_equal(

expected, computed, delta=1E-15,
msg=’diff=%.17E’ % (expected - computed))

Whether to use the plain assert statement with a comparison based
on a tolerance or to use the ready-made function assert_almost_equal
depends on the programmer’s preference. The examples used in the doc-
umentation of the pytest framework stick to the plain assert statement.

Locating test functions. Test functions can reside in a module together
with the functions they are supposed to verify, or the test functions can
be collected in separate files having names starting with test. Actually,
nose and pytest can recursively run all test functions in all test*.py
files in the current directory, as well as in all subdirectories!

The decay.py module file features test functions in the module, but
we could equally well have made a subdirectory tests and put the test
functions in tests/test_decay.py.

http://tinyurl.com/ofkw6kc/softeng/decay.py
http://tinyurl.com/ofkw6kc/softeng/tests/test_decay.py

5.3 Tests for verifying implementations 185

Running tests. To run all test functions in the file decay.py do
Terminal

Terminal> nosetests -s -v decay.py
Terminal> py.test -s -v decay.py

The -s option ensures that output from the test functions is printed in
the terminal window, while -v prints the outcome of each individual test
function.

Alternatively, if the test functions are located in some separate
test*.py files, we can just write

Terminal

Terminal> py.test -s -v

to recursively run all test functions in the current directory tree. The
corresponding

Terminal

Terminal> nosetests -s -v

command does the same, but requires subdirectory names to start with
test or end with _test or _tests (which is a good habit anyway).
An example of a tests directory with a test*.py file is found in src/
softeng/tests.

Embedding doctests in a test function. Doctests can also be executed
from nose/pytest unit tests. Here is an example of a file test_decay_
doctest.py where we in the test block run all the doctests in the
imported module decay, but we also include a local test function that
does the same:

import sys, os
sys.path.insert(0, os.pardir)
import decay
import doctest

def test_decay_module_with_doctest():
"""Doctest embedded in a nose/pytest unit test."""
Test all functions with doctest in module decay
failure_count, test_count = doctest.testmod(m=decay)
assert failure_count == 0

if __name__ == ’__main__’:
Run all functions with doctests in this module
failure_count, test_count = doctest.testmod(m=decay)

http://tinyurl.com/ofkw6kc/softeng/tests
http://tinyurl.com/ofkw6kc/softeng/tests
http://tinyurl.com/ofkw6kc/softeng/tests/test_decay_doctest.py
http://tinyurl.com/ofkw6kc/softeng/tests/test_decay_doctest.py

186 5 Scientific software engineering

Running this file as a program from the command line triggers the
doctest.testmod call in the test block, while applying py.test or
nosetests to the file triggers an import of the file and execution of the
test function test_decay_modue_with_doctest.
Installing nose and pytest. With pip available, it is trivial to install
nose and/or pytest: sudo pip install nose and sudo pip install
pytest.

5.3.3 Test function for the solver

Finding good test problems for verifying the implementation of numerical
methods is a topic on its own. The challenge is that we very seldom know
what the numerical errors are. For the present model problem (5.1)-(5.2)
solved by (5.3) one can, fortunately, derive a formula for the numerical
approximation:

un = I

(1− (1− θ)a∆t
1 + θa∆t

)n
.

Then we know that the implementation should produce numbers that
agree with this formula to machine precision. The formula for un is known
as an exact discrete solution of the problem and can be coded as

def u_discrete_exact(n, I, a, theta, dt):
"""Return exact discrete solution of the numerical schemes."""
dt = float(dt) # avoid integer division
A = (1 - (1-theta)*a*dt)/(1 + theta*dt*a)
return I*A**n

A test function can evaluate this solution on a time mesh and check that
the u values produced by the solver function do not deviate with more
than a small tolerance:

def test_u_discrete_exact():
"""Check that solver reproduces the exact discr. sol."""
theta = 0.8; a = 2; I = 0.1; dt = 0.8
Nt = int(8/dt) # no of steps
u, t = solver(I=I, a=a, T=Nt*dt, dt=dt, theta=theta)

Evaluate exact discrete solution on the mesh
u_de = np.array([u_discrete_exact(n, I, a, theta, dt)

for n in range(Nt+1)])

Find largest deviation
diff = np.abs(u_de - u).max()
tol = 1E-14

5.3 Tests for verifying implementations 187

success = diff < tol
assert success

Among important things to consider when constructing test functions
is testing the effect of wrong input to the function being tested. In our
solver function, for example, integer values of a, ∆t, and θ may cause
unintended integer division. We should therefore add a test to make sure
our solver function does not fall into this potential trap:

def test_potential_integer_division():
"""Choose variables that can trigger integer division."""
theta = 1; a = 1; I = 1; dt = 2
Nt = 4
u, t = solver(I=I, a=a, T=Nt*dt, dt=dt, theta=theta)
u_de = np.array([u_discrete_exact(n, I, a, theta, dt)

for n in range(Nt+1)])
diff = np.abs(u_de - u).max()
assert diff < 1E-14

In more complicated problems where there is no exact solution of the
numerical problem solved by the software, one must use the method of
manufactured solutions, compute convergence rates for a series of ∆t
values, and check that the rates converges to the expected ones (from
theory). This type of testing is fully explained in Section 3.1.6.

5.3.4 Test function for reading positional command-line
arguments

The function read_command_line_positional extracts numbers from
the command line. To test it, we must decide on a set of values for the
input data, fill sys.argv accordingly, and check that we get the expected
values:

def test_read_command_line_positional():
Decide on a data set of input parameters
I = 1.6; a = 1.8; T = 2.2; theta = 0.5
dt_values = [0.1, 0.2, 0.05]
Expected return from read_command_line_positional
expected = [I, a, T, theta, dt_values]
Construct corresponding sys.argv array
sys.argv = [sys.argv[0], str(I), str(a), str(T), ’CN’] + \

[str(dt) for dt in dt_values]
computed = read_command_line_positional()
for expected_arg, computed_arg in zip(expected, computed):

assert expected_arg == computed_arg

Note that sys.argv[0] is always the program name and that we have
to copy that string from the original sys.argv array to the new one we

188 5 Scientific software engineering

construct in the test function. (Actually, this test function destroys the
original sys.argv that Python fetched from the command line.)

Any numerical code writer should always be skeptical to the use of
the exact equality operator == in test functions, since round-off errors
often come into play. Here, however, we set some real values, convert
them to strings and convert back again to real numbers (of the same
precision). This string-number conversion does not involve any finite
precision arithmetics effects so we can safely use == in tests. Note also
that the last element in expected and computed is the list dt_values,
and == works for comparing two lists as well.

5.3.5 Test function for reading option-value pairs

The function read_command_line_argparse can be verified with a test
function that has the same setup as test_read_command_line_positional
above. However, the construction of the command line is a bit more
complicated. We find it convenient to construct the line as a string and
then split the line into words to get the desired list sys.argv:

def test_read_command_line_argparse():
I = 1.6; a = 1.8; T = 2.2; theta = 0.5
dt_values = [0.1, 0.2, 0.05]
Expected return from read_command_line_argparse
expected = [I, a, T, theta, dt_values]
Construct corresponding sys.argv array
command_line = ’%s --a %s --I %s --T %s --scheme CN --dt ’ % \

(sys.argv[0], a, I, T)
command_line += ’ ’.join([str(dt) for dt in dt_values])
sys.argv = command_line.split()
computed = read_command_line_argparse()
for expected_arg, computed_arg in zip(expected, computed):

assert expected_arg == computed_arg

Recall that the Python function zip enables iteration over several lists,
tuples, or arrays at the same time.

Let silent test functions speak up during development!

When you develop test functions in a module, it is common to use
IPython for interactive experimentation:

In[1]: import decay

In[2]: decay.test_read_command_line_argparse()

5.3 Tests for verifying implementations 189

Note that a working test function is completely silent! Many find
it psychologically annoying to convince themselves that a completely
silent function is doing the right things. It can therefore, during
development of a test function, be convenient to insert print state-
ments in the function to monitor that the function body is indeed
executed. For example, one can print the expected and computed
values in the terminal window:

def test_read_command_line_argparse():
...
for expected_arg, computed_arg in zip(expected, computed):

print expected_arg, computed_arg
assert expected_arg == computed_arg

After performing this edit, we want to run the test again, but in
IPython the module must first be reloaded (reimported):

In[3]: reload(decay) # force new import

In[2]: decay.test_read_command_line_argparse()
1.6 1.6
1.8 1.8
2.2 2.2
0.5 0.5
[0.1, 0.2, 0.05] [0.1, 0.2, 0.05]

Now we clearly see the objects that are compared.

5.3.6 Classical class-based unit testing

The test functions written for the nose and pytest frameworks are very
straightforward and to the point, with no framework-required boilerplate
code. We just write the statements we need to get the computations and
comparisons done, before applying the required assert.

The classical way of implementing unit tests (which derives from the
JUnit object-oriented tool in Java) leads to much more comprehensive
implementations with a lot of boilerplate code. Python comes with a built-
in module unittest for doing this type of classical unit tests. Although
nose or pytest are much more convenient to use than unittest, class-
based unit testing in the style of unittest has a very strong position in
computer science and is so widespread in the software industry that even
computational scientists should have an idea how such unit test code is
written. A short demo of unittest is therefore included next. (Readers

190 5 Scientific software engineering

who are not familiar with object-oriented programming in Python may
find the text hard to understand, but one can safely jump to the next
section.)

Suppose we have a function double(x) in a module file mymod.py:

def double(x):
return 2*x

Unit testing with the aid of the unittest module consists of writing a
file test_mymod.py for testing the functions in mymod.py. The individual
tests must be methods with names starting with test_ in a class derived
from class TestCase in unittest. With one test method for the function
double, the test_mymod.py file becomes

import unittest
import mymod

class TestMyCode(unittest.TestCase):
def test_double(self):

x = 4
expected = 2*x
computed = mymod.double(x)
self.assertEqual(expected, computed)

if __name__ == ’__main__’:
unittest.main()

The test is run by executing the test file test_mymod.py as a standard
Python program. There is no support in unittest for automatically
locating and running all tests in all test files in a directory tree.

We could use the basic assert statement as we did with nose and pytest
functions, but those who write code based on unittest almost exclusively
use the wide range of built-in assert functions such as assertEqual,
assertNotEqual, assertAlmostEqual, to mention some of them.

Translation of the test functions from the previous sections to
unittest means making a new file test_decay.py file with a test class
TestDecay where the stand-alone functions for nose/pytest now become
methods in this class.

import unittest
import decay
import numpy as np

def u_discrete_exact(n, I, a, theta, dt):
...

class TestDecay(unittest.TestCase):

5.4 Sharing the software with other users 191

def test_exact_discrete_solution(self):
theta = 0.8; a = 2; I = 0.1; dt = 0.8
Nt = int(8/dt) # no of steps
u, t = decay.solver(I=I, a=a, T=Nt*dt, dt=dt, theta=theta)
Evaluate exact discrete solution on the mesh
u_de = np.array([u_discrete_exact(n, I, a, theta, dt)

for n in range(Nt+1)])
diff = np.abs(u_de - u).max() # largest deviation
self.assertAlmostEqual(diff, 0, delta=1E-14)

def test_potential_integer_division(self):
...
self.assertAlmostEqual(diff, 0, delta=1E-14)

def test_read_command_line_positional(self):
...
for expected_arg, computed_arg in zip(expected, computed):

self.assertEqual(expected_arg, computed_arg)

def test_read_command_line_argparse(self):
...

if __name__ == ’__main__’:
unittest.main()

5.4 Sharing the software with other users

As soon as you have some working software that you intend to share with
others, you should package your software in a standard way such that
users can easily download your software, install it, improve it, and ask you
to approve their improvements in new versions of the software. During
recent years, the software development community has established quite
firm tools and rules for how all this is done. The following subsections
cover three steps in sharing software:

1. Organizing the software for public distribution.
2. Uploading the software to a cloud service (here GitHub).
3. Downloading and installing the software.

5.4.1 Organizing the software directory tree
We start with organizing our software as a directory tree. Our software
consists of one module file, decay.py, and possibly some unit tests in a
separate file located in a directory tests.

192 5 Scientific software engineering

The decay.py can be used as a module or as a program. For dis-
tribution to other users who install the program decay.py in system
directories, we need to insert the following line at the top of the file:

#!/usr/bin/env python

This line makes it possible to write just the filename and get the file
executed by the python program (or more precisely, the first python
program found in the directories in the PATH environment variable).

Distributing just a module file. Let us start out with the minimum
solution alternative: distributing just the decay.py file. Then the software
is just one file and all we need is a directory with this file. This directory
will also contain an installation script setup.py and a README file telling
what the software is about, the author’s email address, a URL for
downloading the software, and other useful information.

The setup.py file can be as short as

from distutils.core import setup
setup(name=’decay’,

version=’0.1’,
py_modules=[’decay’],
scripts=[’decay.py’],
)

The py_modules argument specifies a list of modules to be installed,
while scripts specifies stand-alone programs. Our decay.py can be used
either as a module or as an executable program, so we want users to
have both possibilities.

Distributing a package. If the software consists of more files than one
or two modules, one should make a Python package out of it. In our case
we make a package decay containing one module, also called decay.

To make a package decay, create a directory decay and an empty file
in it with name __init__.py. A setup.py script must now specify the
directory name of the package and also an executable program (scripts=)
in case we want to run decay.py as a stand-alone application:

from distutils.core import setup
import os

setup(name=’decay’,
version=’0.1’,
author=’Hans Petter Langtangen’,
author_email=’hpl@simula.no’,
url=’https://github.com/hplgit/decay-package/’,
packages=[’decay’],

5.4 Sharing the software with other users 193

scripts=[os.path.join(’decay’, ’decay.py’)]
)

We have also added some author and download information. The reader
is referred to the Distutils documentation for more information on how
to write setup.py scripts.

Remark about the executable file
The executable program, decay.py, is in the above installation
script taken to be the complete module file decay.py. It would
normally be preferred to instead write a very short script essentially
importing decay and running the test block in decay.py. In this way,
we distribute a module and a very short file, say decay-main.py,
as an executable program:

#!/usr/bin/env python
import decay
decay.decay.experiment_compare_dt(True)
decay.decay.plt.show()

In this package example, we move the unit tests out of the decay.py
module to a separate file, test_decay.py, and place this file in a directory
tests. Then the nosetests and py.test programs will automatically
find and execute the tests.

The complete directory structure reads
Terminal

Terminal> /bin/ls -R
.:
decay README setup.py

./decay:
decay.py __init__.py tests

./decay/tests:
test_decay.py

5.4.2 Publishing the software at GitHub

The leading site today for publishing open source software projects is
GitHub at http://github.com, provided you want your software to be

https://docs.python.org/2/distutils/setupscript.html
http://github.com

194 5 Scientific software engineering

open to the world. With a paid GitHub account, you can have private
projects too.

Sign up for a GitHub account if you do not already have one. Go
to your account settings and provide an SSH key (typically the file
~/.ssh/id_rsa.pub) such that you can communicate with GitHub with-
out being prompted for your password. All communication between your
computer and GitHub goes via the version control system Git. This may
at first sight look tedious, but this is the way professionals work with
software today. With Git you have full control of the history of your
files, i.e., “who did what when”. The technology makes Git superior to
simpler alternatives like Dropbox and Google Drive, especially when
you collaborate with others. There is a reason why Git has gained the
position it has, and there is no reason why you should not adopt this
tool.

To create a new project, click on New repository on the main page
and fill out a project name. Click on the check button Initialize this
repository with a README, and click on Create repository. The next
step is to clone (copy) the GitHub repo (short for repository) to your
own computer(s) and fill it with files. The typical clone command is

Terminal

Terminal> git clone git://github.com:username/projname.git

where username is your GitHub username and projname is the name of
the repo (project). The result of git clone is a directory projname. Go
to this directory and add files. As soon as the repo directory is populated
with files, run

Terminal

Terminal> git add .
Terminal> git commit -am ’First registration of project files’
Terminal> git push origin master

The above git commands look cryptic, but these commands plus 2-3
more are the essence of what you need in your daily work with files in
small or big software projects. I strongly encourage you to learn more
about version control systems and project hosting sites [6].

Your project files are now stored in the cloud at https://github.
com/username/projname. Anyone can get the software by the listed git
clone command you used above, or by clicking on the links for zip and
tar files.

http://hplgit.github.io/teamods/bitgit/html/
https://github.com/username/projname
https://github.com/username/projname

5.4 Sharing the software with other users 195

Every time you update the project files, you need to register the update
at GitHub by

Terminal

Terminal> git commit -am ’Description of the changes you made...’
Terminal> git push origin master

The files at GitHub are now synchronized with your local ones. Similarly,
every time you start working on files in this project, make sure you have
the latest version: git pull origin master.

You are recommended to read a quick intro that makes you up and
going with this style of professional work. And you should put all your
writings and programming projects in repositories in the cloud!

5.4.3 Downloading and installing the software
Users of your software go to the Git repo at github.com and clone the
repository. One can use either SSH or HTTP for communication. Most
users will use the latter, typically

Terminal

Terminal> git clone https://github.com/username/projname.git

The result is a directory projname with the files in the repo.
Installing just a module file. The software package is in the case above
a directory decay with three files

Terminal

Terminal> ls decay
README decay.py setup.py

To install the decay.py file, a user just runs setup.py:
Terminal

Terminal> sudo python setup.py install

This command will install the software in system directories, so the
user needs to run the command as root on Unix systems (therefore the
command starts with sudo). The user can now import the module by
import decay and run the program by

Terminal

Terminal> decay.py

http://hplgit.github.io/teamods/bitgit/html/

196 5 Scientific software engineering

A user can easily install the software on her personal account if a
system-wide installation is not desirable. We refer to the installation
documentation for the many arguments that can be given to setup.py.
Note that if the software is installed on a personal account, the PATH and
PYTHONPATH environment variables must contain the relevant directories.

Our setup.py file specifies a module decay to be installed
as well as a program decay.py. Modules are typically in-
stalled in some lib directory on the computer system, e.g.,
/usr/local/lib/python2.7/dist-packages, while executable pro-
grams go to /usr/local/bin.

Installing a package. When the software is organized as a Python pack-
age, the installation is done by running setup.py exactly as explained
above, but the use of a module decay in a package decay requires the
following syntax:

import decay
u, t = decay.decay.solver(...)

That is, the call goes like packagename.modulename.functionname.

Package import in __init__.py

One can ease the use of packages by providing a somewhat simpler
import like

import decay
u, t = decay.solver(...)

or
from decay import solver
u, t = solver(...)

This is accomplished by putting an import statement in the
__init__.py file, which is always run when doing the package
import import decay or from decay import. The __init__.py
file must now contain

from decay import *

Obviously, it is the package developer who decides on such an
__init__.py file or if it should just be empty.

https://docs.python.org/2/install/index.html#alternate-installation
https://docs.python.org/2/install/index.html#alternate-installation

5.5 Classes for problem and solution method 197

5.5 Classes for problem and solution method

The numerical solution procedure was compactly and conveniently imple-
mented in a Python function solver in Section 5.1.1. In more complicated
problems it might be beneficial to use classes instead of functions only.
Here we shall describe a class-based software design well suited for sci-
entific problems where there is a mathematical model of some physical
phenomenon, and some numerical methods to solve the equations involved
in the model.

We introduce a class Problem to hold the definition of the physical
problem, and a class Solver to hold the data and methods needed to
numerically solve the problem. The forthcoming text will explain the
inner workings of these classes and how they represent an alternative to
the solver and experiment_* functions in the decay module.

Explaining the details of class programming in Python is considered far
beyond the scope of this text. Readers who are unfamiliar with Python
class programming should first consult one of the many electronic Python
tutorials or textbooks to come up to speed with concepts and syntax of
Python classes before reading on. The author has a gentle introduction
to class programming for scientific applications in [8], see Chapter 7 and
9 and Appendix E. Other useful resources are

• The Python Tutorial: http://docs.python.org/2/tutorial/
classes.html

• Wiki book on Python Programming: http://en.wikibooks.org/
wiki/Python_Programming/Classes

• tutorialspoint.com: http://www.tutorialspoint.com/python/
python_classes_objects.htm

5.5.1 The problem class
The purpose of the problem class is to store all information about the
mathematical model. This usually means the physical parameters and
formulas in the problem. Looking at our model problem (5.1)-(5.2), the
physical data cover I, a, and T . Since we have an analytical solution
of the ODE problem, we may add this solution in terms of a Python
function (or method) to the problem class as well. A possible problem
class is therefore

from numpy import exp

http://hplgit.github.io/primer.html/doc/web/index.html
http://hplgit.github.io/primer.html/doc/web/index.html
http://docs.python.org/2/tutorial/classes.html
http://docs.python.org/2/tutorial/classes.html
http://en.wikibooks.org/wiki/Python_Programming/Classes
http://en.wikibooks.org/wiki/Python_Programming/Classes
http://www.tutorialspoint.com/python/python_classes_objects.htm
http://www.tutorialspoint.com/python/python_classes_objects.htm

198 5 Scientific software engineering

class Problem(object):
def __init__(self, I=1, a=1, T=10):

self.T, self.I, self.a = I, float(a), T

def u_exact(self, t):
I, a = self.I, self.a
return I*exp(-a*t)

We could in the u_exact method have written self.I*exp(-self.a*t),
but using local variables I and a allows the nicer formula I*exp(-a*t),
which looks much closer to the mathematical expression Ie−at. This is not
an important issue with the current compact formula, but is beneficial
in more complicated problems with longer formulas to obtain the closest
possible relationship between code and mathematics. The coding style
in this book is to strip off the self prefix when the code expresses
mathematical formulas.

The class data can be set either as arguments in the constructor or at
any time later, e.g.,

problem = Problem(T=5)
problem.T = 8
problem.dt = 1.5

(Some programmers prefer set and get functions for setting and getting
data in classes, often implemented via properties in Python, but this
author considers that overkill when there are just a few data items in a
class.)

It would be convenient if class Problem could also initialize the data
from the command line. To this end, we add a method for defining a set of
command-line options and a method that sets the local attributes equal
to what was found on the command line. The default values associated
with the command-line options are taken as the values provided to the
constructor. Class Problem now becomes

class Problem(object):
def __init__(self, I=1, a=1, T=10):

self.T, self.I, self.a = I, float(a), T

def define_command_line_options(self, parser=None):
"""Return updated (parser) or new ArgumentParser object."""
if parser is None:

import argparse
parser = argparse.ArgumentParser()

parser.add_argument(
’--I’, ’--initial_condition’, type=float,
default=1.0, help=’initial condition, u(0)’,

5.5 Classes for problem and solution method 199

metavar=’I’)
parser.add_argument(

’--a’, type=float, default=1.0,
help=’coefficient in ODE’, metavar=’a’)

parser.add_argument(
’--T’, ’--stop_time’, type=float,
default=1.0, help=’end time of simulation’,
metavar=’T’)

return parser

def init_from_command_line(self, args):
"""Load attributes from ArgumentParser into instance."""
self.I, self.a, self.T = args.I, args.a, args.T

def u_exact(self, t):
"""Return the exact solution u(t)=I*exp(-a*t)."""
I, a = self.I, self.a
return I*exp(-a*t)

Observe that if the user already has an ArgumentParser object it can be
supplied, but if she does not have any, class Problem makes one. Python’s
None object is used to indicate that a variable is not initialized with a
proper value.

5.5.2 The solver class

The solver class stores parameters related to the numerical solution
method and provides a function solve for solving the problem. For
convenience, a problem object is given to the constructor in a solver
object such that the object gets access to the physical data. In the present
example, the numerical solution method involves the parameters ∆t and
θ, which then constitute the data part of the solver class. We include,
as in the problem class, functionality for reading ∆t and θ from the
command line:

class Solver(object):
def __init__(self, problem, dt=0.1, theta=0.5):

self.problem = problem
self.dt, self.theta = float(dt), theta

def define_command_line_options(self, parser):
"""Return updated (parser) or new ArgumentParser object."""
parser.add_argument(

’--scheme’, type=str, default=’CN’,
help=’FE, BE, or CN’)

parser.add_argument(
’--dt’, ’--time_step_values’, type=float,
default=[1.0], help=’time step values’,

200 5 Scientific software engineering

metavar=’dt’, nargs=’+’, dest=’dt_values’)
return parser

def init_from_command_line(self, args):
"""Load attributes from ArgumentParser into instance."""
self.dt, self.theta = args.dt, args.theta

def solve(self):
self.u, self.t = solver(

self.problem.I, self.problem.a, self.problem.T,
self.dt, self.theta)

def error(self):
"""Return norm of error at the mesh points."""
u_e = self.problem.u_exact(self.t)
e = u_e - self.u
E = np.sqrt(self.dt*np.sum(e**2))
return E

Note that we see no need to repeat the body of the previously developed
and tested solver function. We just call that function from the solve
method. In this way, class Solver is merely a class wrapper of the stand-
alone solver function. With a single object of class Solver we have all
the physical and numerical data bundled together with the numerical
solution method.
Combining the objects. Eventually we need to show how the classes
Problem and Solver play together. We read parameters from the com-
mand line and make a plot with the numerical and exact solution:

def experiment_classes():
problem = Problem()
solver = Solver(problem)

Read input from the command line
parser = problem.define_command_line_options()
parser = solver. define_command_line_options(parser)
args = parser.parse_args()
problem.init_from_command_line(args)
solver. init_from_command_line(args)

Solve and plot
solver.solve()
import matplotlib.pyplot as plt
t_e = np.linspace(0, T, 1001) # very fine mesh for u_e
u_e = problem.u_exact(t_e)
print ’Error:’, solver.error()

plt.plot(t, u, ’r--o’)
plt.plot(t_e, u_e, ’b-’)
plt.legend([’numerical, theta=%g’ % theta, ’exact’])
plt.xlabel(’t’)

5.5 Classes for problem and solution method 201

plt.ylabel(’u’)
plotfile = ’tmp’
plt.savefig(plotfile + ’.png’); plt.savefig(plotfile + ’.pdf’)
plt.show()

5.5.3 Improving the problem and solver classes
The previous Problem and Solver classes containing parameters soon
get much repetitive code when the number of parameters increases. Much
of this code can be parameterized and be made more compact. For this
purpose, we decide to collect all parameters in a dictionary, self.prm,
with two associated dictionaries self.type and self.help for holding
associated object types and help strings. The reason is that processing
dictionaries is easier than processing a set of individual attributes. For
the specific ODE example we deal with, the three dictionaries in the
problem class are typically

self.prm = dict(I=1, a=1, T=10)
self.type = dict(I=float, a=float, T=float)
self.help = dict(I=’initial condition, u(0)’,

a=’coefficient in ODE’,
T=’end time of simulation’)

Provided a problem or solver class defines these three dictionaries in the
constructor, we can create a super class Parameters with general code for
defining command-line options and reading them as well as methods for
setting and getting each parameter. A Problem or Solver for a particular
mathematical problem can then inherit most of the needed functionality
and code from the Parameters class. For example,

class Problem(Parameters):
def __init__(self):

self.prm = dict(I=1, a=1, T=10)
self.type = dict(I=float, a=float, T=float)
self.help = dict(I=’initial condition, u(0)’,

a=’coefficient in ODE’,
T=’end time of simulation’)

def u_exact(self, t):
I, a = self[’I a’.split()]
return I*np.exp(-a*t)

class Solver(Parameters):
def __init__(self, problem):

self.problem = problem # class Problem object
self.prm = dict(dt=0.5, theta=0.5)
self.type = dict(dt=float, theta=float)

202 5 Scientific software engineering

self.help = dict(dt=’time step value’,
theta=’time discretization parameter’)

def solve(self):
from decay import solver
I, a, T = self.problem[’I a T’.split()]
dt, theta = self[’dt theta’.split()]
self.u, self.t = solver(I, a, T, dt, theta)

By inheritance, these classes can automatically do a lot more when it
comes to reading and assigning parameter values:

problem = Problem()
solver = Solver(problem)

Read input from the command line
parser = problem.define_command_line_options()
parser = solver. define_command_line_options(parser)
args = parser.parse_args()
problem.init_from_command_line(args)
solver. init_from_command_line(args)

Other syntax for setting/getting parameter values
problem[’T’] = 6
print ’Time step:’, solver[’dt’]

solver.solve()
u, t = solver.u, solver.t

A generic class for parameters. A simplified version of the parameter
class looks as follows:

class Parameters(object):
def __getitem__(self, name):

"""obj[name] syntax for getting parameters."""
if isinstance(name, (list,tuple)): # get many?

return [self.prm[n] for n in name]
else:

return self.prm[name]

def __setitem__(self, name, value):
"""obj[name] = value syntax for setting a parameter."""
self.prm[name] = value

def define_command_line_options(self, parser=None):
"""Automatic registering of options."""
if parser is None:

import argparse
parser = argparse.ArgumentParser()

for name in self.prm:
tp = self.type[name] if name in self.type else str
help = self.help[name] if name in self.help else None

5.6 Automating scientific experiments 203

parser.add_argument(
’--’ + name, default=self.get(name), metavar=name,
type=tp, help=help)

return parser

def init_from_command_line(self, args):
for name in self.prm:

self.prm[name] = getattr(args, name)

The file decay_oo.py contains a slightly more advanced version of class
Parameters where the functions for getting and setting parameters con-
tain tests for valid parameter names, and raise exceptions with informative
messages if any name is not registered.

We have already sketched the Problem and Solver classes that build
on inheritance from Parameters. We have also shown how they are used.
The only remaining code is to make the plot, but this code is identical to
previous versions when the numerical solution is available in an object u
and the exact one in u_e.

The advantage with the Parameters class is that it scales to problems
with a large number of physical and numerical parameters: as long as
the parameters are defined once via a dictionary, the compact code in
class Parameters can handle any collection of parameters of any size.

5.6 Automating scientific experiments

Empirical scientific investigations based on running computer programs
require careful design of the experiments and accurate reporting of results.
Although there is a strong tradition to do such investigations manually,
the extreme requirements to scientific accuracy make a program much
better suited to conduct the experiments. We shall in this section outline
how we can write such programs, often called scripts, for running other
programs and archiving the results.

Scientific investigation

The purpose of the investigations is to explore the quality of numer-
ical solutions to an ordinary differential equation. More specifically,
we solve the initial-value problem

u′(t) = −au(t), u(0) = I, t ∈ (0, T], (5.4)

http://tinyurl.com/ofkw6kc/softeng/decay_oo.py

204 5 Scientific software engineering

by the θ-rule:

un+1 = 1− (1− θ)a∆t
1 + θa∆t

un, u0 = I . (5.5)

This scheme corresponds to well-known methods: θ = 0 gives the
Forward Euler (FE) scheme, θ = 1 gives the Backward Euler (BE)
scheme, and θ = 1

2 gives the Crank-Nicolson (CN) or midpoint/cen-
tered scheme.

For chosen constants I, a, and T , we run the three schemes for
various values of ∆t, and present the following results in a report:

1. visual comparison of the numerical and exact solution in a plot
for each ∆t and θ = 0, 1, 1

2 ,
2. a table and a plot of the norm of the numerical error versus ∆t

for θ = 0, 1, 1
2 .

The report will also document the mathematical details of the
problem under investigation.

5.6.1 Available software

Appropriate software for implementing (5.5) is available in a program
model.py, which is run as

Terminal

Terminal> python model.py --I 1.5 --a 0.25 --T 6 --dt 1.25 0.75 0.5

The command-line input corresponds to setting I = 1.5, a = 0.25, T = 6,
and run three values of ∆t: 1.25, 0.75, ad 0.5.

The results of running this model.py command are text in the terminal
window and a set of plot files. The plot files have names M_D.E, where M
denotes the method (FE, BE, CN for θ = 0, 1, 1

2 , respectively), D the time
step length (here 1.25, 0.75, or 0.5), and E is the plot file extension
png or pdf. The text output in the terminal window looks like

0.0 1.25: 5.998E-01
0.0 0.75: 1.926E-01
0.0 0.50: 1.123E-01
0.0 0.10: 1.558E-02
0.5 1.25: 6.231E-02
0.5 0.75: 1.543E-02

http://tinyurl.com/nc4upel/doconce_src/model.py

5.6 Automating scientific experiments 205

0.5 0.50: 7.237E-03
0.5 0.10: 2.469E-04
1.0 1.25: 1.766E-01
1.0 0.75: 8.579E-02
1.0 0.50: 6.884E-02
1.0 0.10: 1.411E-02

The first column is the θ value, the next the ∆t value, and the final
column represents the numerical error E (the norm of discrete error
function on the mesh).

5.6.2 The results we want to produce

The results we need for our investigations are slightly different than what
is directly produced by model.py:

1. We need to collect all the plots for one numerical method (FE, BE,
CN) in a single plot. For example, if 4 ∆t values are run, the summa-
rizing figure for the BE method has 2× 2 subplots, with the subplot
corresponding to the largest ∆t in the upper left corner and the
smallest in the bottom right corner.

2. We need to create a table containing ∆t values in the first column
and the numerical error E for θ = 0, 0.5, 1 in the next three columns.
This table should be available as a standard CSV file.

3. We need to plot the numerical error E versus ∆t in a log-log plot.

Consequently, we must write a script that can run model.py as described
and produce the results 1-3 above. This requires combining multiple plot
files into one file and interpreting the output from model.py as data for
plotting and file storage.

If the script’s name is exper1.py, we run it with the desired ∆t values
as positional command-line arguments:

Terminal

Terminal> python exper1.py 0.5 0.25 0.1 0.05

This run will then generate eight plot files: FE.png and FE.pdf summa-
rizing the plots with the FE method, BE.png and BE.pdf with the BE
method, CN.png and CN.pdf with the CN method, and error.png and
error.pdf with the log-log plot of the numerical error versus ∆t. In
addition, the table with numerical errors is written to a file error.csv.

206 5 Scientific software engineering

Reproducible and replicable science

A script that automates running our computer experiments will
ensure that the experiments can easily be rerun by anyone in the
future, either to confirm the same results or redo the experiments
with other input data. Also, whatever we did to produce the results
is documented in every detail in the script.

A project where anyone can easily repeat the experiments with
the same data is referred to as being replicable, and replicability
should be a fundamental requirement in scientific computing work.
Of more scientific interest is reproducibilty, which means that we can
also run alternative experiments to arrive at the same conclusions.
This requires more than an automating script.

5.6.3 Combining plot files

The script for running experiments needs to combine multiple image files
into one. The montage and convert programs in the ImageMagick soft-
ware suite can be used to combine image files. However, these programs
are best suited for PNG files. For vector plots in PDF format one needs
other tools to preserve the quality: pdftk, pdfnup, and pdfcrop.

Suppose you have four files f1.png, f2.png, f3.png, and f4.png and
want to combine them into a 2× 2 table of subplots in a new file f.png,
see Figure 5.4 for an example.

The appropriate ImageMagick commands are
Terminal

Terminal> montage -background white -geometry 100% -tile 2x \
f1.png f2.png f3.png f4.png f.png

Terminal> convert -trim f.png f.png
Terminal> convert f.png -transparent white f.png

The first command mounts the four files in one, the next convert
command removes unnecessary surrounding white space, and the final
convert command makes the white background transparent.

High-quality montage of PDF files f1.pdf, f2.pdf, f3.pdf, and
f4.pdf into f.pdf goes like

Terminal

Terminal> pdftk f1.pdf f2.pdf f3.pdf f4.pdf output tmp.pdf
Terminal> pdfnup --nup 2x2 --outfile tmp.pdf tmp.pdf

http://www.imagemagick.org/script/montage.php
http://www.imagemagick.org/script/convert.php

5.6 Automating scientific experiments 207

0 1 2 3 4 5
t

0.0

0.2

0.4

0.6

0.8

1.0
u

Method: theta-rule, theta=1, dt=1.25

numerical
exact

0 1 2 3 4 5 6
t

0.0

0.2

0.4

0.6

0.8

1.0

u

Method: theta-rule, theta=1, dt=0.75

numerical
exact

0 1 2 3 4 5
t

0.0

0.2

0.4

0.6

0.8

1.0

u

Method: theta-rule, theta=1, dt=0.5

numerical
exact

0 1 2 3 4 5
t

0.0

0.2

0.4

0.6

0.8

1.0

u

Method: theta-rule, theta=1, dt=0.1

numerical
exact

Fig. 5.4 Illustration of the Backward Euler method for four time step values.

Terminal> pdfcrop tmp.pdf f.pdf
Terminal> rm -f tmp.pdf

5.6.4 Running a program from Python
The script for automating experiments needs to run the model.py pro-
gram with appropriate command-line options. Python has several tools
for executing an arbitrary command in the operating systems. Let cmd be
a string containing the desired command. In the present case study, cmd
could be ’python model.py –I 1 –dt 0.5 0.2’. The following code
executes cmd and loads the text output into a string output:

from subprocess import Popen, PIPE, STDOUT
p = Popen(cmd, shell=True, stdout=PIPE, stderr=STDOUT)
output, _ = p.communicate()

Check if the execution was successful

208 5 Scientific software engineering

failure = p.returncode
if failure:

print ’Command failed:’, cmd; sys.exit(1)

Unsuccessful execution usually makes it meaningless to continue the
program, and therefore we abort the program with sys.exit(1). Any
argument different from 0 signifies to the computer’s operating system
that our program stopped with a failure.

Programming tip: use _ for dummy variable

Sometimes we need to unpack tuples or lists in separate variables,
but we are not interested in all the variables. One example is

output, error = p.communicate()

but error is of no interest in the example above. One can then
use underscore _ as variable name for the dummy (uninteresting)
variable(s):

output, _ = p.communicate()

Here is another example where we iterate over a list of three-tuples,
but the interest is limited to the second element in each three-tuple:

for _, value, _ in list_of_three_tuples:
work with value

We need to interpret the contents of the string output and store
the data in an appropriate data structure for further processing. Since
the content is basically a table and will be transformed to a spread
sheet format, we let the columns in the table be represented by lists in
the program, and we collect these columns in a dictionary whose keys
are natural column names: dt and the three values of θ. The following
code translates the output of cmd (output) to such a dictionary of lists
(errors):

errors = {’dt’: dt_values, 1: [], 0: [], 0.5: []}
for line in output.splitlines():

words = line.split()
if words[0] in (’0.0’, ’0.5’, ’1.0’): # line with E?

typical line: 0.0 1.25: 7.463E+00
theta = float(words[0])
E = float(words[2])
errors[theta].append(E)

5.6 Automating scientific experiments 209

5.6.5 The automating script

We have now all the core elements in place to write the complete script
where we run model.py for a set of ∆t values (given as positional
command-line arguments), make the error plot, write the CSV file, and
combine plot files as described above. The complete code is listed below,
followed by some explaining comments.

import os, sys, glob
import matplotlib.pyplot as plt

def run_experiments(I=1, a=2, T=5):
The command line must contain dt values
if len(sys.argv) > 1:

dt_values = [float(arg) for arg in sys.argv[1:]]
else:

print ’Usage: %s dt1 dt2 dt3 ...’ % sys.argv[0]
sys.exit(1) # abort

Run module file and grab output
cmd = ’python model.py --I %g --a %g --T %g’ % (I, a, T)
dt_values_str = ’ ’.join([str(v) for v in dt_values])
cmd += ’ --dt %s’ % dt_values_str
print cmd
from subprocess import Popen, PIPE, STDOUT
p = Popen(cmd, shell=True, stdout=PIPE, stderr=STDOUT)
output, _ = p.communicate()
failure = p.returncode
if failure:

print ’Command failed:’, cmd; sys.exit(1)

errors = {’dt’: dt_values, 1: [], 0: [], 0.5: []}
for line in output.splitlines():

words = line.split()
if words[0] in (’0.0’, ’0.5’, ’1.0’): # line with E?

typical line: 0.0 1.25: 7.463E+00
theta = float(words[0])
E = float(words[2])
errors[theta].append(E)

Find min/max for the axis
E_min = 1E+20; E_max = -E_min
for theta in 0, 0.5, 1:

E_min = min(E_min, min(errors[theta]))
E_max = max(E_max, max(errors[theta]))

plt.loglog(errors[’dt’], errors[0], ’ro-’)
plt.loglog(errors[’dt’], errors[0.5], ’b+-’)
plt.loglog(errors[’dt’], errors[1], ’gx-’)
plt.legend([’FE’, ’CN’, ’BE’], loc=’upper left’)
plt.xlabel(’log(time step)’)
plt.ylabel(’log(error)’)

210 5 Scientific software engineering

plt.axis([min(dt_values), max(dt_values), E_min, E_max])
plt.title(’Error vs time step’)
plt.savefig(’error.png’); plt.savefig(’error.pdf’)

Write out a table in CSV format
f = open(’error.csv’, ’w’)
f.write(r’Δt,$\theta=0$,$\theta=0.5$,$\theta=1$’ + ’\n’)
for _dt, _fe, _cn, _be in zip(

errors[’dt’], errors[0], errors[0.5], errors[1]):
f.write(’%.2f,%.4f,%.4f,%.4f\n’ % (_dt, _fe, _cn, _be))

f.close()

Combine images into rows with 2 plots in each row
image_commands = []
for method in ’BE’, ’CN’, ’FE’:

pdf_files = ’ ’.join([’%s_%g.pdf’ % (method, dt)
for dt in dt_values])

png_files = ’ ’.join([’%s_%g.png’ % (method, dt)
for dt in dt_values])

image_commands.append(
’montage -background white -geometry 100%’ +
’ -tile 2x %s %s.png’ % (png_files, method))

image_commands.append(
’convert -trim %s.png %s.png’ % (method, method))

image_commands.append(
’convert %s.png -transparent white %s.png’ %
(method, method))

image_commands.append(
’pdftk %s output tmp.pdf’ % pdf_files)

num_rows = int(round(len(dt_values)/2.0))
image_commands.append(

’pdfnup --nup 2x%d --outfile tmp.pdf tmp.pdf’ % num_rows)
image_commands.append(

’pdfcrop tmp.pdf %s.pdf’ % method)

for cmd in image_commands:
print cmd
failure = os.system(cmd)
if failure:

print ’Command failed:’, cmd; sys.exit(1)

Remove the files generated above and by model.py
from glob import glob
filenames = glob(’*_*.png’) + glob(’*_*.pdf’) + glob(’tmp*.pdf’)
for filename in filenames:

os.remove(filename)

if __name__ == ’__main__’:
run_experiments(I=1, a=2, T=5)
plt.show()

We may comment upon many useful constructs in this script:

5.6 Automating scientific experiments 211

• [float(arg) for arg in sys.argv[1:]] builds a list of real num-
bers from all the command-line arguments.

• [’%s_%s.png’ % (method, dt) for dt in dt_values] builds a
list of filenames from a list of numbers (dt_values).

• All montage, convert, pdftk, pdfnup, and pdfcrop commands for
creating composite figures are stored in a list and later executed in a
loop.

• glob(’*_*.png’) returns a list of the names of all files in the current
directory where the filename matches the Unix wildcard notation
_.png (meaning any text, underscore, any text, and then .png).

• os.remove(filename) removes the file with name filename.
• failure = os.system(cmd) runs an operating system command with

simpler syntax than what is required by subprocess (but the output
of cmd cannot be captured).

5.6.6 Making a report
The results of running computer experiments are best documented in a
little report containing the problem to be solved, key code segments, and
the plots from a series of experiments. At least the part of the report
containing the plots should be automatically generated by the script that
performs the set of experiments, because in the script we know exactly
which input data that were used to generate a specific plot, thereby
ensuring that each figure is connected to the right data. Take a look at a
sample report to see what we have in mind.
Word, OpenOffice, GoogleDocs. Microsoft Word, its open source coun-
terparts OpenOffice and LibreOffice, along with GoogleDocs and similar
online services are the dominating tools for writing reports today. Never-
theless, scientific reports often need mathematical equations and nicely
typeset computer code in monospace font. The support for mathematics
and computer code in the mentioned tools is in this author’s view not
on par with the technologies based on markup languages and which are
addressed below. Also, with markup languages one has a readable, pure
text file as source for the report, and changes in this text can easily be
tracked by version control systems like Git. The result is a very strong
tool for monitoring “who did what when” with the files, resulting in
increased reliability of the writing process. For collaborative writing, the
merge functionality in Git leads to safer simultaneously editing than
what is offered even by collaborative tools like GoogleDocs.

http://en.wikipedia.org/wiki/Glob_(programming)
http://tinyurl.com/nc4upel/_static/sphinx-cloud/
http://tinyurl.com/nc4upel/_static/sphinx-cloud/

212 5 Scientific software engineering

HTML with MathJax. HTML is the markup language used for web
pages. Nicely typeset computer code is straightforward in HTML, and
high-quality mathematical typesetting is available using an extension
to HTML called MathJax, which allows formulas and equations to be
typeset with LATEX syntax and nicely rendered in web browsers, see Fig-
ure 5.5. A relatively small subset of LATEX environments for mathematics
is supported, but the syntax for formulas is quite rich. Inline formulas
look like \(u’=-au \) while equations are surrounded by $$ signs. In-
side such signs, one can use \[u’=-au \] for unnumbered equations,
or \begin{equation} and \end{equation} for numbered equations, or
\begin{align} and \end{align} for multiple numbered aligned equa-
tions. You need to be familiar with mathematical typesetting in LaTeX
to write MathJax code.

The file exper1_mathjax.py calls a script exper1.py to perform the
numerical experiments and then runs Python statements for creating an
HTML file with the source code for the scientific report.

Fig. 5.5 Report in HTML format with MathJax.

LATEX. The de facto language for mathematical typesetting and scientific
report writing is LaTeX. A number of very sophisticated packages have
been added to the language over a period of three decades, allowing very
fine-tuned layout and typesetting. For output in the PDF format, see
Figure 5.6 for an example, LATEX is the definite choice when it comes
to typesetting quality. The LATEX language used to write the reports has
typically a lot of commands involving backslashes and braces, and many

http://www.mathjax.org/
http://en.wikibooks.org/wiki/LaTeX/Mathematics
http://tinyurl.com/p96acy2/report_generation/exper1_html.py
http://tinyurl.com/p96acy2/exper1.py
http://tinyurl.com/nc4upel/_static/report_mathjax.html.html
http://tinyurl.com/nc4upel/_static/report_mathjax.html
http://en.wikipedia.org/wiki/LaTeX
http://tinyurl.com/nc4upel/_static/report.pdf
http://tinyurl.com/nc4upel/_static/report.tex.html

5.6 Automating scientific experiments 213

claim that LATEX syntax is not particularly readable. For output on the
web via HTML code (i.e., not only showing the PDF in the browser
window), LATEX struggles with delivering high quality typesetting. Other
tools, especially Sphinx, give better results and can also produce nice-
looking PDFs. The file exper1_latex.py shows how to generate the
LATEX source from a program.

Fig. 5.6 Report in PDF format generated from LATEX source.

Sphinx. Sphinx is a typesetting language with similarities to HTML and
LATEX, but with much less tagging. It has recently become very popular
for software documentation and mathematical reports. Sphinx can utilize
LATEX for mathematical formulas and equations. Unfortunately, the subset
of LATEXmathematics supported is less than in full MathJax (in particular,
numbering of multiple equations in an align type environment is not
supported). The Sphinx syntax is an extension of the reStructuredText
language. An attractive feature of Sphinx is its rich support for fancy
layout of web pages. In particular, Sphinx can easily be combined with
various layout themes that give a certain look and feel to the web site
and that offers table of contents, navigation, and search facilities, see
Figure 5.7.

Markdown. A recent, very popular format for easy writing of web pages
is Markdown. Text is written very much like one would do in email, using
spacing and special characters to naturally format the code instead of
heavily tagging the text as in LATEX and HTML. With the tool Pandoc one

http://tinyurl.com/p96acy2/report_generation/exper1_latex.py
http://sphinx.pocoo.org/
http://tinyurl.com/nc4upel/_static/report_sphinx.rst.html
http://tinyurl.com/nc4upel/_static/sphinx-cloud/index.html
http://tinyurl.com/nc4upel/_static/sphinx-cloud/index.html
http://daringfireball.net/projects/markdown/
http://johnmacfarlane.net/pandoc/

214 5 Scientific software engineering

Fig. 5.7 Report in HTML format generated from Sphinx source.

can go from Markdown to a variety of formats. HTML is a common output
format, but LATEX, epub, XML, OpenOffice/LibreOffice, MediaWiki, and
Microsoft Word are some other possibilities. A Markdown version of
our scientific report demo is available as an IPython/Jupyter notebook
(described next).

IPython/Jupyter notebooks. The IPython Notebook is a web-based
tool where one can write scientific reports with live computer code
and graphics. Or the other way around: software can be equipped with
documentation in the style of scientific reports. A slightly extended
version of Markdown is used for writing text and mathematics, and
the source code of a notebook is in json format. The interest in the
notebook has grown amazingly fast over just a few years, and further
development now takes place in the Jupyter project, which supports
a lot of programming languages for interactive notebook computing.
Jupyter notebooks are primarily live electronic documents, but they can
be printed out as PDF reports too. A notebook version of our scientific
report can be downloaded and experimented with or just statically viewed
in a browser.

Wiki formats. A range of wiki formats are popular for creating notes
on the web, especially documents which allow groups of people to edit
and add content. Apart from MediaWiki (the wiki format used for
Wikipedia), wiki formats have no support for mathematical typesetting
and also limited tools for displaying computer code in nice ways. Wiki

http://ipython.org/notebook.html
http://tinyurl.com/nc4upel/_static/report.ipynb.html
https://jupyter.org/
http://tinyurl.com/p96acy2/_static/report.ipynb
http://nbviewer.ipython.org/url/hplgit.github.com/teamods/writing_reports/_static/report.ipynb
http://www.mediawiki.org/wiki/MediaWiki

5.6 Automating scientific experiments 215

formats are therefore less suitable for scientific reports compared to the
other formats mentioned here.

DocOnce. Since it is difficult to choose the right tool or format for
writing a scientific report, it is advantageous to write the content in
a format that easily translates to LATEX, HTML, Sphinx, Markdown,
IPython/Jupyter notebooks, and various wikis. DocOnce is such a tool.
It is similar to Pandoc, but offers some special convenient features for
writing about mathematics and programming. The tagging is modest,
somewhere between LATEX and Markdown. The program exper1_do.py
demonstrates how to generate DocOnce code for a scientific report. There
is also a corresponding rich demo of the resulting reports that can be
made from this DocOnce code.

5.6.7 Publishing a complete project

To assist the important principle of replicable science, a report document-
ing scientific investigations should be accompanied by all the software
and data used for the investigations so that others have a possibility to
redo the work and assess the qualify of the results.

One way of documenting a complete project is to make a directory tree
with all relevant files. Preferably, the tree is published at some project
hosting site like Bitbucket or GitHub so that others can download it as
a tarfile, zipfile, or clone the files directly using the Git version control
system. For the investigations outlined in Section 5.6.6, we can create a
directory tree with files

setup.py
./src:

model.py
./doc:

./src:
exper1_mathjax.py
make_report.sh
run.sh

./pub:
report.html

The src directory holds source code (modules) to be reused in other
projects, the setup.py script builds and installs such software, the doc
directory contains the documentation, with src for the source of the
documentation (usually written in a markup language) and pub for
published (compiled) documentation. The run.sh file is a simple Bash

https://github.com/hplgit/doconce
http://tinyurl.com/nc4upel/_static/report.do.txt.html
http://tinyurl.com/p96acy2/exper1_do.py
http://tinyurl.com/nc4upel/index.html
http://hplgit.github.com/teamods/bitgit/html/

216 5 Scientific software engineering

script listing the python commands we used to run exper1_mathjax.py
to generate the experiments and the report.html file.

5.7 Exercises

Problem 5.1: Make a tool for differentiating curves

Suppose we have a curve specified through a set of discrete coordinates
(xi, yi), i = 0, . . . , n, where the xi values are uniformly distributed with
spacing ∆x: xi = ∆x. The derivative of this curve, defined as a new
curve with points (xi, di), can be computed via finite differences:

d0 = y1 − y0

∆x
, (5.6)

di = yi+1 − yi−1

2∆x , i = 1, . . . , n− 1, (5.7)

dn = yn − yn−1

∆x
. (5.8)

a) Write a function differentiate(x, y) for differentiating a curve
with coordinates in the arrays x and y, using the formulas above. The
function should return the coordinate arrays of the resulting differentiated
curve.

b) Since the formulas for differentiation used here are only approximate,
with unknown approximation errors, it is challenging to construct test
cases. Here are three approaches, which should be implemented in three
separate test functions.

1. Consider a curve with three points and compute di, i = 0, 1, 2, by
hand. Make a test that compares the hand-calculated results with
those from the function in a).

2. The formulas for di are exact for points on a straight line, as all the
di values are then the same, equal to the slope of the line. A test can
check this property.

3. For points lying on a parabola, the values for di, i = 1, . . . , n − 1,
should equal the exact derivative of the parabola. Make a test based
on this property.

5.7 Exercises 217

c) Start with a curve corresponding to y = sin(πx) and n+ 1 points in
[0, 1]. Apply differentiate four times and plot the resulting curve and
the exact y = sin πx for n = 6, 11, 21, 41.
Filename: curvediff.

Problem 5.2: Make solid software for the Trapezoidal rule

An integral ∫ b

a
f(x)dx

can be numerically approximated by the Trapezoidal rule,

∫ b

a
f(x)dx ≈ h

2 (f(a) + f(b)) + h
n−1∑
i=1

f(xi),

where xi is a set of uniformly spaced points in [a, b]:

h = b− a
n

, xi = a+ ih, i = 1, . . . , n− 1 .

Somebody has used this rule to compute the integral
∫ π

0 sin2 x dx:

from math import pi, sin
np = 20
h = pi/np
I = 0
for k in range(1, np):

I += sin(k*h)**2
print I

a) The “flat” implementation above suffers from serious flaws:

1. A general numerical algorithm (the Trapezoidal rule) is implemented
in a specialized form where the formula for f is inserted directly into
the code for the general integration formula.

2. A general numerical algorithm is not encapsulated as a general func-
tion, with appropriate parameters, which can be reused across a wide
range of applications.

3. The lazy programmer dropped the first terms in the general formula
since sin(0) = sin(π) = 0.

4. The sloppy programmer used np (number of points?) as variable for n
in the formula and a counter k instead of i. Such small deviations from

218 5 Scientific software engineering

the mathematical notation are completely unnecessary. The closer the
code and the mathematics can get, the easier it is to spot errors in
formulas.

Write a function trapezoidal that fixes these flaws. Place the function
in a module trapezoidal.
b) Write a test function test_trapezoidal. Call the test function
explicitly to check that it works. Remove the call and run pytest on the
module:

Terminal

Terminal> py.test -s -v trapezoidal

Hint. Note that even if you know the value of the integral, you do not
know the error in the approximation produced by the Trapezoidal rule.
However, the Trapezoidal rule will integrate linear functions exactly (i.e.,
to machine precision). Base a test function on a linear f(x).
c) Add functionality such that we can compute

∫ b
a f(x)dx by providing

f , a, b, and n as positional command-line arguments to the module file:
Terminal

Terminal> python trapezoidal.py ’sin(x)**2’ 0 pi 20

Here, a = 0, b = π, and n = 20.
Note that the trapezoidal.py file must still be a valid module file, so

the interpretation of command-line data and computation of the integral
must be performed from calls in a test block.
Hint. To translate a string formula on the command line, like sin(x)**2,
into a Python function, you can wrap a function declaration around the
formula and run exec on the string to turn it into live Python code:

import math, sys
formula = sys.argv[1]
f_code = """
def f(x):

return %s
""" % formula
exec(code, math.__dict__)

The result is the same as if we had hardcoded

from math import *

def f(x):
return sin(x)**2

5.7 Exercises 219

in the program. Note that exec needs the namespace math.__dict__,
i.e., all names in the math module, such that it understands sin and
other mathematical functions. Similarly, to allow a and b to be math
expressions like pi/4 and exp(4), do

Terminal

a = eval(sys.argv[2], math.__dict__)
b = eval(sys.argv[2], math.__dict__)

d) Write a test function for verifying the implementation of data reading
from the command line.
Filename: trapezoidal.

Problem 5.3: Implement classes for the Trapezoidal rule
We consider the same problem setting as in Problem 5.2. Make a mod-
ule with a class Problem representing the mathematical problem to be
solved and a class Solver representing the solution method. The rest
of the functionality of the module, including test functions and reading
data from the command line, should be as in Problem 5.2. Filename:
trapezoidal_class.

Problem 5.4: Write a doctest and a test function
Type in the following program:

import sys
This sqrt(x) returns real if x>0 and complex if x<0
from numpy.lib.scimath import sqrt

def roots(a, b, c):
"""
Return the roots of the quadratic polynomial
p(x) = a*x**2 + b*x + c.

The roots are real or complex objects.
"""
q = b**2 - 4*a*c
r1 = (-b + sqrt(q))/(2*a)
r2 = (-b - sqrt(q))/(2*a)
return r1, r2

a, b, c = [float(arg) for arg in sys.argv[1:]]
print roots(a, b, c)

220 5 Scientific software engineering

a) Equip the roots function with a doctest. Make sure to test both real
and complex roots. Write out numbers in the doctest with 14 digits or
less.

b) Make a test function for the roots function. Perform the same
mathematical tests as in a), but with different programming technology.
Filename: test_roots.

Problem 5.5: Investigate the size of tolerances in
comparisons

When we replace a comparison a == b, where a and/or b are float
objects, by a comparison with tolerance, abs(a-b) < tol, the ap-
propriate size of tol depends on the size of a and b. Investigate
how the size of abs(a-b) varies when b takes on values 10k, k =
−5,−9, . . . , 20 and a=1.0/49*b*49. Thereafter, compute the relative
difference abs((a-b)/a) for the same b values.
Filename: tolerance.

Remarks. You will experience that if a and b are large, as they can be
in, e.g., geophysical applications where lengths measured in meters can
be of size 106 m, tol must be about 10−9, while a and b around unity
can have tol of size 10−15. The way out of the problem with choosing a
tolerance is to use relative differences.

Exercise 5.6: Make use of a class implementation

Implement the experiment_compare_dt function from decay.py using
class Problem and class Solver from Section 5.5. The parameters I, a,
T, the scheme name, and a series of dt values should be read from the
command line. Filename: experiment_compare_dt_class.

Problem 5.7: Make solid software for a difference equation

We have the following evolutionary difference equation for the number of
individuals un of a certain specie at time n∆t:

un+1 = un +∆t run
(

1− un

Mn

)
, u0 = U0 . (5.9)

5.7 Exercises 221

Here, n is a counter in time, ∆t is time between time levels n and n+ 1
(assumed constant), r is a net reproduction rate for the specie, and Mn

is the upper limit of the population that the environment can sustain at
time level n. Filename: logistic.

References

[1] W. Gander, M. J. Gander, and F. Kwok. Scientific Computing - An
Introducting Using Maple and MATLAB. Texts in Computational
Science and Engineering. Springer, 2015.

[2] D. Griffiths, F. David, and D. J. Higham. Numerical Methods for
Ordinary Differential Equations: Initial Value Problems. Springer,
2010.

[3] E. Hairer, S. P. Nørsett, and G. Wanner. Solving Ordinary Differen-
tial Equations I. Nonstiff Problems. Springer, 1993.

[4] G. Hairer and E. Wanner. Solving Ordinary Differential Equations
II. Springer, 2010.

[5] J. D. Hunter, D. Dale, E. Firing, and M. Droettboom. Matplotlib
documentation, 2012. http://matplotlib.org/users/.

[6] H. P. Langtangen. Quick intro to version control systems and project
hosting sites. http://hplgit.github.io/teamods/bitgit/html/.

[7] H. P. Langtangen. SciTools documentation. http://hplgit.
github.io/scitools/doc/web/index.html.

[8] H. P. Langtangen. A Primer on Scientific Programming with Python.
Texts in Computational Science and Engineering. Springer, fifth
edition, 2016.

[9] H. P. Langtangen and G. K. Pedersen. Scaling of Differential
Equations. SimulaSpringerBrief. Springer, 2015. http://tinyurl.
com/qfjgxmf/web.

[10] H. P. Langtangen and L. Wang. Odespy software package. https:
//github.com/hplgit/odespy.

[11] D. B. Meade and A. A. Struthers. Differential equations in the

© 2016, Hans Petter Langtangen. Released under CC Attribution 4.0 license

http://matplotlib.org/users/
http://hplgit.github.io/teamods/bitgit/html/
http://hplgit.github.io/scitools/doc/web/index.html
http://hplgit.github.io/scitools/doc/web/index.html
http://tinyurl.com/qfjgxmf/web
http://tinyurl.com/qfjgxmf/web
https://github.com/hplgit/odespy
https://github.com/hplgit/odespy

224 REFERENCES

new millenium: the parachute problem. International Journal of
Engineering Education, 15(6):417–424, 1999.

[12] L. Petzold and U. M. Ascher. Computer Methods for Ordinary Dif-
ferential Equations and Differential-Algebraic Equations, volume 61.
SIAM, 1998.

[13] L. N. Trefethen. Trefethen’s index cards - Forty years of notes about
People, Words and Mathematics. World Scientific, 2011.

Index

θ-rule, 12, 91

A-stable methods, 55
Adams-Bashforth scheme, 2nd-

order, 94
Adams-Bashforth scheme, 3rd or-

der, 94
adaptive time stepping, 100
algebraic equation, 7
amplification factor, 55
argparse (Python module), 173
ArgumentParser (Python class),

173
array arithmetics, 31, 43
array computing, 31, 43
averaging

arithmetic, 11
geometric, 129

backward difference, 9
Backward Euler scheme, 9
backward scheme, 1-step, 9
backward scheme, 2-step, 91
BDF2 scheme, 91

centered difference, 10
chemical reactions

irreversible, 117
reversible, 118

command-line arguments, 172, 173
consistency, 64
continuous function norms, 32
convergence, 64
convergence rate, 86
Crank-Nicolson scheme, 10
cropping images, 36

debugging, 166
decay ODE, 2
difference equation, 7
directory, 20
discrete equation, 7
discrete function norms, 32
Distutils, 193
doc strings, 23
DocOnce, 215
doctest in test function, 185
doctests, 180

225

226 INDEX

Dormand-Prince Runge-Kutta 4-5
method, 100

EPS plot, 36
error

amplification factor, 59
global, 60
norms, 34

explicit schemes, 91
exponential decay, 2

finite difference operator notation,
17

finite difference scheme, 7
finite differences, 6

backward, 9
centered, 10
forward, 6

folder, 20
format string syntax (Python), 24
forward difference, 6
Forward Euler scheme, 7

geometric mean, 129
GitHub, 193
Google Docs, 211
grid, 3

Heun’s method, 93
HTML, 211

implicit schemes, 91
importing modules, 156, 196
interactive Python, 58
IPython notebooks, 214
isympy, 58

Jupyter notebooks, 214

Kelvin-Voigt material model, 131

L-stable methods, 55

lambda functions, 83
LaTeX, 212
Leapfrog scheme, 92
Leapfrog scheme, filtered, 92
LibreOffice, 211
list comprehension, 172
logger, 166
logging module, 166
logistic model, 111
Lotka-Volterra model, 122

Markdown, 213
MathJax, 211
mesh, 3
mesh function, 3
mesh function norms, 32
method of manufactured solutions,

84
MMS (method of manufactured so-

lutions), 84
montage program, 36
Monte Carlo simulation, 69

norm
continuous, 32
discrete (mesh function), 32

nose, 182

ode45, 100
OpenOffice, 211
operator notation, finite differences,

17
option-value pairs (command line),

173
os.system, 210

PDF plot, 36
pdfcrop program, 38
pdfnup program, 38
pdftk program, 38
plotting curves, 26

INDEX 227

PNG plot, 36
population dynamics, 109
predator-prey model, 122
printf format, 24
problem class, 197
pytest, 182

radioactive decay, 113
reading the command line, 173
refactoring, 155
relative differences, 183, 220
replicability, 205, 215
representative (mesh function), 31
reproducibility, 205
RK4, 94
Runge-Kutta, 2nd-order method,

93
Runge-Kutta, 4th-order method,

94

scalar computing, 34
scaling, 130
setup.py, 192
software testing

doctests, 180
nose, 182
pytest, 182
test function, 182
unit testing (class-based), 189

solver class, 199
Sphinx (typesetting tool), 213
stability, 54, 64
sympy, 58
sys.argv, 172

Taylor-series methods (for ODEs),
93

terminal velocity, 128
test function, 29, 182
TestCase (class in unittest), 190
theta-rule, 12, 91

time step, 14

uncertainty quantification, 70
unit testing, 29, 182, 189
unittest, 189, 190
Unix wildcard notation, 210

vectorization, 31, 43
verification, 89
viewing graphics files, 36
viscoelasticity, 131
visualizing curves, 26

weighted average, 12
wildcard notation (Unix), 210
Word (Microsoft), 211
wrapper (code), 199

	Preface
	Algorithms and implementations
	Finite difference methods
	A basic model for exponential decay
	The Forward Euler scheme
	The Backward Euler scheme
	The Crank-Nicolson scheme
	The unifying -rule
	Constant time step
	Mathematical derivation of finite difference formulas
	Compact operator notation for finite differences

	Implementation
	Computer language: Python
	Making a solver function
	Integer division
	Doc strings
	Formatting numbers
	Running the program
	Plotting the solution
	Verifying the implementation
	Computing the numerical error as a mesh function
	Computing the norm of the error mesh function
	Experiments with computing and plotting
	Memory-saving implementation

	Exercises

	Analysis
	Experimental investigations
	Discouraging numerical solutions
	Detailed experiments

	Stability
	Exact numerical solution
	Stability properties derived from the amplification factor

	Accuracy
	Visual comparison of amplification factors
	Series expansion of amplification factors
	The ratio of numerical and exact amplification factors
	The global error at a point
	Integrated error
	Truncation error
	Consistency, stability, and convergence

	Various types of errors in a differential equation model
	Model errors
	Data errors
	Discretization errors
	Rounding errors
	Discussion of the size of various errors

	Exercises

	Generalizations
	Model extensions
	Generalization: including a variable coefficient
	Generalization: including a source term
	Implementation of the generalized model problem
	Verifying a constant solution
	Verification via manufactured solutions
	Computing convergence rates
	Extension to systems of ODEs

	General first-order ODEs
	Generic form of first-order ODEs
	The -rule
	An implicit 2-step backward scheme
	Leapfrog schemes
	The 2nd-order Runge-Kutta method
	A 2nd-order Taylor-series method
	The 2nd- and 3rd-order Adams-Bashforth schemes
	The 4th-order Runge-Kutta method
	The Odespy software
	Example: Runge-Kutta methods
	Example: Adaptive Runge-Kutta methods

	Exercises

	Models
	Scaling
	Dimensionless variables
	Dimensionless numbers
	A scaling for vanishing initial condition

	Evolution of a population
	Exponential growth
	Logistic growth

	Compound interest and inflation
	Newton's law of cooling
	Radioactive decay
	Deterministic model
	Stochastic model
	Relation between stochastic and deterministic models
	Generalization of the radioactive decay modeling

	Chemical kinetics
	Irreversible reaction of two substances
	Reversible reaction of two substances
	Irreversible reaction of two substances into a third
	A biochemical reaction

	Spreading of diseases
	Predator-prey models in ecology
	Decay of atmospheric pressure with altitude
	The general model
	Multiple atmospheric layers
	Simplifications

	Compaction of sediments
	Vertical motion of a body in a viscous fluid
	Overview of forces
	Equation of motion
	Terminal velocity
	A Crank-Nicolson scheme
	Physical data
	Verification
	Scaling

	Viscoelastic materials
	Decay ODEs from solving a PDE by Fourier expansions
	Exercises

	Scientific software engineering
	Implementations with functions and modules
	Mathematical problem and solution technique
	A first, quick implementation
	A more decent program
	Prefixing imported functions by the module name
	Implementing the numerical algorithm in a function
	Do not have several versions of a code
	Making a module
	Example on extending the module code
	Documenting functions and modules
	Logging intermediate results

	User interfaces
	Command-line arguments
	Positional command-line arguments
	Option-value pairs on the command line
	Creating a graphical web user interface

	Tests for verifying implementations
	Doctests
	Unit tests and test functions
	Test function for the solver
	Test function for reading positional command-line arguments
	Test function for reading option-value pairs
	Classical class-based unit testing

	Sharing the software with other users
	Organizing the software directory tree
	Publishing the software at GitHub
	Downloading and installing the software

	Classes for problem and solution method
	The problem class
	The solver class
	Improving the problem and solver classes

	Automating scientific experiments
	Available software
	The results we want to produce
	Combining plot files
	Running a program from Python
	The automating script
	Making a report
	Publishing a complete project

	Exercises

	References
	Index

