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Encouraging numerical solutions
I=1,a=260=1,050, At =1.25,0.75,0.5,0.1.
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Discouraging numerical solutions; Forward Euler
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‘ Analysis of finite difference equations

Model:
u'(t) = —au(t), u(0)=1 (1)
Method: - (1-0)an
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Problem setti
How good is this method? Is it safe to use it?

Discouraging numerical solutions; Crank-Nicolson
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‘ Summary of observatio

The characteristics of the displayed curves can be summarized as
follows:

o The Backward Euler scheme always gives a monotone solution,
lying above the exact solution.

@ The Crank-Nicolson scheme gives the most accurate results,
but for At = 1.25 the solution oscillates.

@ The Forward Euler scheme gives a growing, oscillating solution
for At = 1.25; a decaying, oscillating solution for At = 0.75;
a strange solution u” =0 for n > 1 when At =0.5; and a
solution seemingly as accurate as the one by the Backward
Euler scheme for At = 0.1, but the curve lies below the exact
solution.




‘ Problem setting

We ask the question

o Under what circumstances, i.e., values of the input data /, a,
and At will the Forward Euler and Crank-Nicolson schemes
result in undesired oscillatory solutions?

Techniques of investigation:

o Numerical experiments
@ Mathematical analysis

Another question to be raised is

o How does At impact the error in the numerical solution?

‘ Exact numerical solution

Starting with u® = /, the simple recursion (2) can be applied
repeatedly n times, with the result that
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Such a formula for the exact discrete solution is unusual to obtain
in practice, but very handy for our analysis here.

Note: An exact dicrete solution fulfills a discrete equation (without
round-off errors), whereas an exact solution fulfills the original
mathematical equation.
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To avoid oscillatory solutions we must have A > 0 and

<0
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o Always fulfilled for Backward Euler
e At < 1/a for Forward Euler
e At < 2/a for Crank-Nicolson

Computation of stability in this problem

‘ Experimental investigation of oscillatory solutions

The solution is oscillatory if
u" >yt

("Safe choices" of At lie under the following curve as a function of

a.)
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‘ Stability

Since u" = IA",

o A <0 gives a factor (—1)" and oscillatory solutions
o |A| > 1 gives growing solutions
o Recall: the exact solution is monotone and decaying

o If these qualitative properties are not met, we say that the
numerical solution is unstable

‘ Computation of stability in this problem

[A]<1means -1<A<1

1—-(1-6)aAt
-1<— <1
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—1 is the critical limit (because A < 1 is always satisfied):
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o Always fulfilled for Backward Euler and Crank-Nicolson
o At < 2/a for Forward Euler




“Explanation of problems with Forward Euler
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‘ Summary of stability

O Forward Euler is conditionally stable
o At < 2/a for avoiding growth
o At < 1/a for avoiding oscillations
@ The Crank-Nicolson is unconditionally stable wrt growth and
conditionally stable wrt oscillations
o At < 2/a for avoiding oscillations

© Backward Euler is unconditionally stable
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‘ Comparing amplificati

factors

v is an amplification A of u™:

1-(1-60)aAt

n+1:A n{ A=
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The exact solution is also an amplification:

u(tnt1) = Aeu(tn), Ae= e At

A possible measure of accuracy: Ae — A

p = alt is the important parameter for numerical

performance

@ p = alt is a dimensionless parameter
o all expressions for stability and accuracy involve p

o Note that At alone is not so important, it is the combination
with a through p = aAt that matters

Another “proof” why p = aAt is key

If we scale the model by t = at, & = u/I, we get du/dt = —a,
4(0) =1 (no physical parameters!). The analysis show that At is
key, corresponding to a/At in the unscaled model.
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To investigate Ae — A mathematically, we can Taylor expand the
expression, using p = a/At as variable.

‘ Series expansion of

>>> from sympy import #*

>>> # Create p as a mathematical symbol with name ’p’

>>> p = Symbol(’p’)

>>> # (reate a mathematical ewzpression with p

>>> A_e = exp(-p)

>>>

>>> # Find the first 6 terms of the Taylor series of A_e

>>> A_e.series(p, 0, 6

1+ (1/2)%p**2 - p - 1/6%p**3 - 1/120%p**5 + (1/24)*p**4 + 0(p**6)

>>> theta = Symbol(’theta’)

>>> A = (1-(1-theta)+*p)/(1+theta*p)

>>> FE = A_e.series(p, 0, 4) - A.subs(theta, 0).series(p, 0, 4)
>>> BE = A_e.series(p, 0, 4) - A.subs(theta, 1).series(p, 0, 4)
>>> half = Rational(1,2) # ezact fraction 1/2

>>> CN = A_e.series(p, 0, 4) - A.subs(theta, half).series(p, 0, 4)

>>> FE
(1/2)*p**2 - 1/6%p**3 + 0(p**4)
>>> BE
-1/2#p*#2 + (5/6)*p**3 + 0(p**4)
>>> CN

(1/12) *p**3 + 0(p**4)

‘ The fraction of numerical and exact amplification factors

Focus: the error measure 1 — A/Ae as function of p = aAt:

>>> FE = 1 - (A.subs(theta, 0)/A_e).series(p, 0, 4)
>>> BE = 1 - (A.subs(theta, 1)/A_e).series(p, 0, 4)
>>> CN = 1 - (A.subs(theta, half)/A_e).series(p, 0, 4)
>>> FE

(1/2)#p**2 + (1/3)*p**3 + D(p**4)

>>> BE

-1/2%p**2 + (1/3)*p**3 + 0(p**4)

>>> CN

(1/12) xp**3 + 0(p**4)

Same leading-order terms as for the error measure A — Ae.

>>> n = Symbol(’n’)

>>> u_e = exp(-p*n) # I=1

>>> u_n = Ax*n # I=1

>>> FE = u_e.series(p, 0, 4) - u_n.subs(theta, 0).series(p, 0, 4)

>>> BE = u_e.series(p, 0, 4) - u_n.subs(theta, 1).series(p, 0, 4)

>>> CN = u_e.series(p, 0, 4) - u_n.subs(theta, half).series(p, 0, 4)
>>> FE

(1/2)*n*p**2 - 1/2%n*+2+p**3 + (1/3)*n*p**3 + 0(p**4)

>>> BE

(1/2) #n*#2%p**3 - 1/2%nkp**2 + (1/3)*n*p**3 + 0(p**4)

>>> CN

(1/12)#n*p**3 + D(p**4)
Substitute n by t/At:

o Forward and Backward Euler: leading order term %tazAt
o Crank-Nicolson: leading order term llfzta3At2

in amplification facto

Focus: the error measure A — Ae as function of At (recall that
p = alt):

[ O(At?), Forward and Backward Euler,
Ase= { O(At®), Crank-Nicolson (6)

‘ The true/global error at a

o The error in A reflects the local (amplification) error when
going from one time step to the next

o What is the global (true) error at t,?
e" = ug(ty) — u™ = le? — JA"

o Taylor series expansions of e” simplify the expression

The numerical scheme is convergent if the global error e” — 0 as
At — 0. If the error has a leading order term At’, the convergence
rate is of order r.




‘ Integrated errors

Focus: norm of the numerical error

Ne
At Z(ue(tn) —u")?
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Forward and Backward Euler:
1 /73
n 2
=-\/—a°At
el = 3y 5

Crank-Nicolson:

1 /T3
He”Hp:ﬁ ?ag‘At‘2

Analysis of both the pointwise and the time-integrated true errors:

Summary of errors

‘ Computation of the truncation er

o The residual R" is the truncation error.
o How does R" vary with At?

Tool: Taylor expand ue around the point where the ODE is sampled
(here t,)

1
Ue(tni1) = ue(tn) + up(ta)At + Eug(t,,)Atz +oe
Inserting this Taylor series in (7) gives
1

R™ = ul(tn) + Eu'e/(t,,)At + ...+ aue(tn)

Now, ue solves the ODE u, = —aue, and then

1
R" =~ Eug(tn)At

This is a mathematical expression for the truncation error.

‘ Truncation error

o How good is the discrete equation?

o Possible answer: see how well ve fits the discrete equation

+, n
[Df u = —au]
ie.,
gt _n .,
= —au
At

Insert ue (which does not in general fulfill this discrete equation):

Ue(tn+1) — ue(tn)

Y + aue(ty) = R" # 0 ™

‘ The truncation error for other schemes

Backward Euler:

1
R" ~ —Eug(t,,)At
Crank-Nicolson:

1
R™3 ~ ﬂué’/(tﬁ%)AtZ

Consistency, stability, and convergence

Truncation error measures the residual in the difference
equations. The scheme is consistent if the truncation error
goes to 0 as At — 0. Importance: the difference equations
approaches the differential equation as At — 0.

Stability means that the numerical solution exhibits the same
qualitative properties as the exact solution. Here: monotone,
decaying function.

Convergence implies that the true (global) error
e" = ue(tn) —u" — 0 as At — 0. This is really what we want!

The Lax equivalence theorem for linear differential equations:
consistency + stability is equivalent with convergence.

(Consistency and stability is in most problems much easier to
establish than convergence.)




